
Citation: Qureshi, B. Adaptive

Multi-Criteria Selection for Efficient

Resource Allocation in Frugal

Heterogeneous Hadoop Clusters.

Electronics 2024, 13, 1836. https://

doi.org/10.3390/electronics13101836

Received: 15 April 2024

Revised: 3 May 2024

Accepted: 7 May 2024

Published: 9 May 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Adaptive Multi-Criteria Selection for Efficient Resource
Allocation in Frugal Heterogeneous Hadoop Clusters
Basit Qureshi

Department of Computer Science, Prince Sultan University, Riyadh 11586, Saudi Arabia; qureshi@psu.edu.sa

Abstract: Efficient resource allocation is crucial in clusters with frugal Single-Board Computers
(SBCs) possessing limited computational resources. These clusters are increasingly being deployed
in edge computing environments in resource-constrained settings where energy efficiency and
cost-effectiveness are paramount. A major challenge in Hadoop scheduling is load balancing, as
frugal nodes within the cluster can become overwhelmed, resulting in degraded performance and
frequent occurrences of out-of-memory errors, ultimately leading to job failures. In this study, we
introduce an Adaptive Multi-criteria Selection for Efficient Resource Allocation (AMS-ERA) in Frugal
Heterogeneous Hadoop Clusters. Our criterion considers CPU, memory, and disk requirements for
jobs and aligns the requirements with available resources in the cluster for optimal resource allocation.
To validate our approach, we deploy a heterogeneous SBC-based cluster consisting of 11 SBC nodes
and conduct several experiments to evaluate the performance using Hadoop wordcount and terasort
benchmark for various workload settings. The results are compared to the Hadoop-Fair, FOG, and
IDaPS scheduling strategies. Our results demonstrate a significant improvement in performance
with the proposed AMS-ERA, reducing execution time by 27.2%, 17.4%, and 7.6%, respectively, using
terasort and wordcount benchmarks.

Keywords: frugal Hadoop clusters; dynamic analytical hierarchy process; locality-aware data placement;
single-board computers

1. Introduction

Frugal computing refers to the practice of designing, building, and deploying com-
puting systems with a focus on cost-effectiveness, resource efficiency, and sustainability.
The term “frugal” implies simplicity, economy, and minimalism, where the goal is to
meet computing needs with the least number of resources, both in terms of hardware
and energy [1]. Frugal clusters are an innovative solution that intersects sustainability
and digital transformation [2]. By leveraging energy-efficient hardware components like
Single-Board Computers (SBCs) [3], these clusters reduce energy consumption, aligning
with sustainability goals and minimizing environmental impact [4], thus aligning with
broader sustainability goals. Moreover, their cost-efficient nature makes them accessible
to organizations with limited budgets, democratizing access to big data processing capa-
bilities and fostering inclusivity in digital transformation initiatives [1]. Frugal clusters
prioritize resource optimization through adaptive resource allocation and workload-aware
scheduling, ensuring efficient resource utilization and maximizing performance.

Hadoop, an open-source framework, facilitates the distributed processing of large
datasets across computer clusters using simple programming models. A key distinction
of Hadoop is its integration of both storage and computation within the same framework.
Unlike traditional methods, Hadoop allows for the flexible movement of computation,
primarily MapReduce jobs, to the location of the data, managed by a Hadoop Distributed
File System (HDFS). Consequently, efficient data placement within compute nodes becomes
essential for effective big data processing [5]. Hadoop’s default approach to data locality
relies heavily on the physical proximity of data to computation nodes, which may not

Electronics 2024, 13, 1836. https://doi.org/10.3390/electronics13101836 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101836
https://doi.org/10.3390/electronics13101836
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7389-519X
https://doi.org/10.3390/electronics13101836
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101836?type=check_update&version=1

Electronics 2024, 13, 1836 2 of 25

always guarantee optimal performance. However, this feature overlooks other important
factors such as network congestion, node availability, and load balancing, which can
significantly impact data access latency and overall job execution time [6]. Additionally,
Hadoop’s default data locality mechanism does not take into account the heterogeneity
of cluster nodes, including variations in processing power, memory capacity, and disk
I/O capabilities [7,8]. As a result, tasks may be assigned to nodes that are ill suited
for processing them efficiently, leading to resource contention and reduced performance.
Furthermore, the default data locality mechanism may not dynamically adapt to changing
cluster conditions or workload patterns, resulting in suboptimal resource utilization and
wasted computational resources.

In recent times, researchers have addressed the optimal resource allocation for schedul-
ing issues in heterogeneous Hadoop clusters. Z. Guo and G. Fox. [9] introduced techniques
like speculative execution to mitigate the impact of slow nodes, thereby optimizing re-
source utilization and job completion times. The study emphasizes the importance of
efficient resource management and scheduling algorithms to improve overall performance
in environments with varying computational capabilities. In [10], Bae notes that in hetero-
geneous environments, Hadoop’s subpar performance was observed due to equal block
allocation across nodes in the cluster. They proposed a new data placement scheme aimed
at improving Hadoop’s data locality while minimizing replicated data by selecting and
replicating only blocks with the highest likelihood of remote access. In [11], Bawankule K.
presents a historical data-based data placement (HDBDP) policy to balance the workload
among heterogeneous nodes. Their approach is based on the node’s computing capabili-
ties to improve the map tasks’ data locality and to reduce the job turnaround time in the
heterogeneous Hadoop environment. Resource- and Network-aware Data Placement Algo-
rithm (RENDA) for resource- and network-aware data placement in Hadoop is presented
in [12]. The RENDA reduces the time of the data distribution and data processing stages by
estimating the heterogeneous performance of the nodes on a real-time basis. It carefully
allocates data blocks in several installments to participating nodes in the cluster.

The researchers in [13] discuss the development of a novel job scheduler, CLQLMRS,
using reinforcement learning to improve data and cache locality in MapReduce job schedul-
ing, highlighting the importance of reducing job execution time for enhancing Hadoop
performance. In [14], the authors propose a DQ-DCWS algorithm to balance data locality
and delays in Hadoop while considering five Quality of Service factors. The DQ-DCWS
is based on dynamic programming in calculating the length of the edge in the DAG and
scheduling tasks along the optimal path. In [15], Postoaca et al. presented a deadline-aware
fog Scheduler (FOG) for cloud edge applications. The job queue is ordered for context
based on deadlines. The nodes in the cluster are ordered using a similarity index. The
highest-ordered jobs are sorted and assigned to the appropriate clusters. The authors in [16]
propose an Improved Data Placement Strategy (IDaPS) based on intra-dependency among
data blocks to enhance performance and reduce data transfer overheads. The proposed
IDaPS uses the Markov clustering algorithm to characterize MapReduce task execution
based on intra-dependency and task execution frequency.

This paper addresses the challenge of efficient resource allocation in frugal Hadoop
clusters. We propose an Adaptive Multi-criteria Selection for Efficient Resource Allocation
(AMS-ERA) in Frugal Heterogeneous Hadoop Clusters. Our criterion considers CPU, mem-
ory, and disk requirements for jobs and aligns the requirements with available resources in
the cluster for optimal resource allocation. Resources available in the cluster are profiled
and ranked based on similarity and proximity using the K-means clustering method. A
dynamic Analytical Hierarchy Process (dAHP) determines the optimal placement of a
job using a score vector to determine the best possible node for a job. The process in-
volves refining the AHP model’s accuracy by integrating historical information obtained
through Hadoop APIs to assign weights to jobs based on their resource requirements.
Finally, the jobs are assigned to the most appropriate nodes, ensuring load balancing in
the heterogeneous cluster. These strategies aim to optimize data layout in Hadoop by

Electronics 2024, 13, 1836 3 of 25

maximizing parallelism while accommodating the resource constraints of frugal SBC nodes
in the Hadoop cluster. To validate the proposed AMS-ERA, we deploy a heterogeneous
SBC-based cluster consisting of 11 physical nodes and execute the Hadoop benchmark tests
to analyze the performance of the proposed technique against Hadoop-Fair, FOG [15], and
IDaPS [16] scheduling strategies. The results showcase a notable enhancement in perfor-
mance with our proposed approach. Our results demonstrate a significant improvement in
performance with the proposed AMS-ERA, reducing execution time by 27.2%, 17.4%, and
7.6%, respectively, using terasort and wordcount benchmarks. The contributions of this
work are threefold:

• We introduce the AMS-ERA approach to optimize resource allocation in frugal Hadoop
clusters with Single-Board Computers (SBCs). By considering CPU, memory, and
disk requirements for jobs, and aligning these with available resources, AMS-ERA
enhances resource allocation to improve performance and efficiency.

• The proposed method involves profiling available resources in the cluster using K-
means clustering and dynamically placing jobs based on a refined Analytical Hierarchy
Process (AHP). This dynamic placement ensures optimal resource utilization and load
balancing in heterogeneous clusters.

• We construct a heterogeneous 11-node Hadoop cluster using popular SBC devices to
validate our approach. The work demonstrates that AMS-ERA achieves significant
performance improvements compared to other scheduling strategies like Hadoop-Fair,
FOG, and IDaPS using various IO-intensive and CPU-intensive Hadoop microbench-
marks such as terasort and wordcount.

AMS-ERA adapts to changing conditions, improving load balancing and data locality
in a way that traditional Hadoop resource allocation strategies, which tend to rely heavily
on physical proximity, often fail to achieve. By dynamically selecting the best-suited nodes
for each job, AMS-ERA reduces execution time and avoids resource contention. This
innovative approach directly addresses the challenges of frugal clusters, where energy
efficiency and resource constraints are paramount.

The rest of the paper is organized as follows. Section 2 presents relevant work and
background. Section 3 details the proposed strategies and algorithms. Section 4 presents
the extensive performance evaluation of the SBC cluster followed by Section 5, concluding
this work.

2. Related Works
2.1. SBC in Cloud, Edge Clusters

One major challenge is the significant variance in computational capabilities among
frugal nodes, which can lead to uneven workload distribution and resource contention. Fru-
gal nodes typically have limited CPU processing power, memory, and storage, which can
constrain the types and sizes of tasks they can effectively execute [17–19]. Moreover, these
nodes may be deployed in edge or remote locations with unreliable network connectivity,
posing challenges for communication and data transfer between nodes [20]. Addition-
ally, frugal nodes are often deployed in resource-constrained environments where power
consumption and energy efficiency are critical considerations. Balancing computational
demands while minimizing energy consumption becomes crucial in such scenarios.

Shwe et al. [21] analyzed the efficacy of SBC-based clusters in three application
scenarios. This work compares big data processing platforms across three computing
paradigms—batch, stream, and function processing—in resource-constrained environ-
ments such as edge and fog computing, versus traditional cloud deployments. Using
Apache Spark for batch processing, Apache Flink for stream processing, and Apache Open-
Whisk for function processing, results suggest that resource-constrained environments
can effectively handle big data workloads. The researchers provide recommendations for
practical deployments in edge and fog computing and explore future research into training
complex deep learning models in these environments.

Electronics 2024, 13, 1836 4 of 25

In [3], Neto et al. outline the development, testing, and monitoring of a low-cost
big data cluster using Raspberry Pi 4B devices [22] running Apache Hadoop. The results
demonstrate that Raspberry Pi combined with Apache Hadoop can be a robust, cost-
effective solution for a low-cost big data cluster. A Raspberry Pi 3B+ is used as a monitoring
server to collect real-time data, thereby enabling improved monitoring and visualization of
cluster performance. The authors of [23] examine the use of Apache Hadoop on a cluster of
Raspberry Pi 4B SBCs to assess their potential as low-cost, energy-efficient platforms for big
data processing. Through a series of benchmarks and different storage configurations, the
research demonstrates that Raspberry Pi clusters can effectively handle large workloads,
offering a viable alternative to traditional servers.

In [24], Lambropoulos et al. explore the use of SBCs like Raspberry Pi 4B for edge
computing, demonstrating a successful transition from traditional x86 infrastructure to SBC-
based clusters. Despite higher CPU usage and storage latency, the SBC-based setup showed
significant power savings, consuming nine times less energy. The study discusses chal-
lenges with hardware compatibility and storage performance, suggesting future work on
dedicated storage solutions and improved hardware customization to overcome limitations
in edge environments. In [20], Sebbio et al. analyze the suitability of using a Raspberry
Pi 4 device for federated learning as an edge device. They conduct a thorough power
consumption analysis using the FedAvg algorithm for various datasets. Mills et al. [25]
propose modifications to the FedAvg algorithm to address communication issues on an
edge-computing-like testbed. The testbed is constructed using Raspberry Pi 2 and 3 clients
composed of 10 devices.

In [26], Krpic et al. explore how SBC clusters handle compute-bound applications,
using the High-Performance Linpack (HPL) benchmark to compare two four-node clusters
of different SBC generations: Odroid U3 and Odroid MC1. Results indicate that SBC
clusters can indeed serve as small-scale high-performance computing (HPC) systems,
capable of managing moderate compute workloads at the edge. The authors of [27]
propose a new Hadoop YARN architecture with two scheduling policies, namely master-
driven and slave-driven. These are specifically designed for SBC Hadoop Clusters for
big data processing. The authors design a small Hadoop cluster composed of Raspberry
Pi 4 devices to validate the proposed policies. The authors of [28] construct a Raspberry
Pi-based Hadoop cluster for image processing with various datasets of different sizes. They
compare the computation time of the SBC cluster against a PC and note that the SBC cluster
takes less time to complete the tasks for smaller datasets.

The above-mentioned works highlight the proposition of deploying Hadoop clusters
in edge environments with SBCs like Raspberry Pi as a viable option [19–21,23–27], driven
by cost-effectiveness, energy efficiency, sustainability, and flexibility. Although it may
require addressing certain challenges, the benefits in terms of reduced latency, scalability,
and sustainability make it a compelling choice for many edge and remote scenarios. While
deploying Hadoop on SBC clusters offers advantages, it also introduces challenges such as
hardware compatibility, performance issues, and software limitations. Addressing these
issues may require customized hardware solutions, improved storage controllers, and
adaptations to existing algorithms.

2.2. Hadoop YARN Scheduling Challenges in Resource-Constrained Clusters

Hadoop is an open-source framework designed for the distributed processing of large
datasets across clusters of computers. At its core, the Hadoop Distributed File System
(HDFS) serves as the distributed storage system, facilitating the reliable and scalable storage
of data across the cluster. YARN (Yet Another Resource Negotiator) is a key component
of the Hadoop ecosystem designed to manage cluster resources and allocate them for
processing tasks. Its architecture consists of three main components: the Resource Manager
(RM), Node Manager (NM), and Application Master (AM). The RM acts as the central
authority for resource management, overseeing job scheduling and monitoring the overall
cluster status. NM is responsible for managing resources on individual nodes in the cluster,

Electronics 2024, 13, 1836 5 of 25

including monitoring resource usage and executing tasks. The AM is specific to each
application and negotiates resources with the RM. YARN’s flexibility and scalability enable
it to efficiently manage resources across large-scale distributed computing environments.
The RM consists of a Scheduler, which is responsible for allocating resources to different
applications running on the cluster. The Application Manager oversees the lifecycle of ap-
plications submitted to the cluster. It coordinates with the NM to allocate resources, monitor
application progress, and handle application-specific requests. Lastly, the ResourceTracker
communicates with the NM to gather resource status and availability information from
individual nodes in the cluster. This information is relayed to the Scheduler, facilitating
efficient resource allocation.

Resource-aware and data locality-aware scheduling in Hadoop is a critical factor in im-
proving performance, particularly in the context of big data processing. Efficient scheduling
algorithms are crucial to ensure optimized cluster resource utilization, throughput, and fair-
ness. In default Hadoop scheduling, several challenges concerning work distribution and
balancing were reported by researchers. Inefficient data placement results in increased data
transfer overhead and longer job execution times, impacting overall system efficiency. The
scheduling mechanisms in Hadoop face several challenges, particularly in heterogeneous
environments [6,29–32]. One issue is the lack of awareness of individual node capacities,
including CPU processing power, memory availability, and disk storage. Consequently,
tasks may be assigned to nodes that are ill equipped to handle them efficiently, leading
to suboptimal performance and resource utilization. Another challenge arises from the
dynamic and unpredictable nature of workloads in distributed environments. Traditional
scheduling policies may struggle to adapt to changing workload patterns, resulting in
inefficient resource allocation and potential bottlenecks [14]. Additionally, ensuring data
locality, where computation is performed near the data it operates on, can be challenging
in large-scale clusters with diverse hardware configurations. Inefficient data placement
can lead to increased data transfer overhead and longer job execution times [10,33]. Ad-
dressing these problems requires the development of adaptive scheduling algorithms that
can intelligently allocate resources based on workload characteristics and cluster dynamics
while optimizing data locality and resource utilization.

Ullah et al. [32] introduced the Least Slack Time-Based Pre-emptive Deadline Con-
straint Scheduler (LSTPD) to enhance response and completion times for heterogeneous
MapReduce jobs. They propose an efficient pre-emptive deadline constraint scheduler
based on the least slack time and data locality. It first analyzes the task scheduling logs
of the Hadoop platform; next it considers the remaining execution time of the job being
executed in deciding pre-emption for scheduling. Javanmardi et al. [31] presented a unit-
based, cost-efficient scheduler for heterogeneous Hadoop systems, focusing on running
jobs in parallel on diverse clusters. The proposed algorithm distributes data based on the
performance of the nodes and then schedules the jobs according to their cost of execution
and decreases the cost of executing the jobs. The presented algorithm offers better perfor-
mance in terms of execution time, cost, and locality compared to YARN-native FIFO and
Fair schedulers.

Yao et al. [30] proposed new scheduling algorithms for Hadoop YARN clusters to
improve performance and resource utilization, leveraging fine-grained resource manage-
ment schemes to reduce the total execution time of MapReduce jobs. This is achieved
through leveraging insights derived from requested resources, resource capacities, and task
dependencies. In [29], Fu et al. propose a dynamic feedback load balancing scheduling
method for fair task scheduling in Hadoop. An improved task scheduling strategy based
on a genetic algorithm is proposed to allocate and execute application tasks to reduce task
completion time. They also propose a delay capacity scheduling algorithm to ensure that
most tasks can achieve localization and speed up job completion time. The researchers
in [13] developed a novel job scheduler, CLQLMRS, using reinforcement learning to im-
prove data and cache locality in MapReduce job scheduling, highlighting the importance
of reducing job execution time for enhancing Hadoop performance. The limitations of

Electronics 2024, 13, 1836 6 of 25

the study include the need to train the scheduling policy, which may be challenging in
environments with rapid changes, potentially hindering timely retraining.

In [14], the authors propose a DQ-DCWS algorithm to balance data locality and delays
in Hadoop while considering five Quality of Service factors. The DQ-DCWS is based on
dynamic programming in calculating the length of the edge in the DAG and scheduling
tasks along the optimal path. It aims to optimize workflow scheduling in data-intensive
scientific applications on heterogeneous cloud resources. The authors evaluated their work
using Montage workflow and deployed a Hadoop cluster over Amazon Elastic Compute
Cloud (EC2). A Resource- and Network-aware Data Placement Algorithm (RENDA) in
Hadoop is presented in [12]. The RENDA reduces the time of the data distribution and data
processing stages by estimating the heterogeneous performance of the nodes on a real-time
basis. It carefully allocates data blocks in several installments to participating nodes in
the cluster. Experimental results show that RENDA outperforms recent alternatives in
reducing data transfer overhead, average job completion time, and providing average
speedup. RENDA’s performance is largely dependent on the estimation of the remaining
time of the nodes and subsequent data block distribution.

Postoaca et al. [15] presented a deadline-aware FOG-Scheduler for cloud edge applica-
tions. The job queue is ordered for context based on deadlines. The nodes in the cluster
are ordered using a similarity index. The highest-ordered jobs are sorted and assigned
to the appropriate clusters. The proposed algorithm is tested in Apache Spark. In [16],
Vengadeswaran et al. propose an IDaPS based on intra-dependency (IDaPS) among data
blocks to enhance performance and reduce data transfer overheads. The proposed IDaPS
uses the Markov clustering algorithm to characterize MapReduce task execution based on
intra-dependency and task execution frequency. Next, the scheduling algorithm uses the
task execution frequency to determine a utility index. To achieve maximum parallelism,
the jobs with the maximum utility index are assigned for execution.

In [34], Zhou et al. presented an adaptive energy-aware framework called AFED-EF
for VM deployment in Cloud Data Centers. This framework aimed to address energy
efficiency and SLA violations for IoT applications by considering variable loads. The
proposed algorithm classifies the servers in the data center into various clusters using
a K-means algorithm. Using this classification, the proposed algorithm determines the
suitable server for load balancing. The study utilized real workload data from the CoMon
project to evaluate the performance of the proposed algorithm. The results show that
the proposed algorithm effectively balances energy consumption and SLA violations in
data centers.

The authors of [35] address the issue of high energy consumption in Cloud Data Cen-
ters while minimizing Service-Level Agreement (SLA) violations. To achieve this, the study
proposed two adaptive energy-aware algorithms aimed at maximizing energy efficiency
and reducing SLA violation rates. The proposed algorithms considered application types,
CPU, and memory resources during VM deployment. In [36], Banerjee et al. present a
Dynamic Heuristic Johnson Sequencing technique (DHJS) for job scheduling in Hadoop.
They apply the proposed technique to Hadoop default scheduling algorithms to determine
the best order of jobs on each server, thereby minimizing the makespan. The experimen-
tal results presented show performance improvement; however, the results are based on
testing using only three servers with limited scope.

Table 1 summarizes the contributions of recent studies, providing an overview of
various heterogeneous cluster scheduling techniques. Each work is categorized based on
its research focus, whether it uses resource-aware scheduling techniques that consider
CPU, memory, disk, or network resources in decision-making, and the type of testbed
deployment, whether it involves servers or Single-Board Computer (SBC) clusters. The
table also indicates the evaluation criteria, noting whether Hadoop microbenchmarks or
custom datasets were used for performance assessment.

Electronics 2024, 13, 1836 7 of 25

Table 1. Overview of heterogeneous cluster scheduling techniques.

Category Representative Works Resource
Awareness

Testbed/Evaluation
Criteria

Task
placement

[9]: Task scheduling based on network heterogeneity net X
[12]: RENDA—Estimation of node performance for
task placement CPU, mem Servers/Benchmarks

[36]: Dynamic Heuristic Johnson Sequencing technique for
task placement X Simulation

[14]: DQ-DCWS—Optimization of workflow using
dynamic programming disk Simulation

[30]: HASTE: Resource management for improved
task placement CPU, mem Servers/Benchmarks

Data locality

[10]: Varying Block size for improved data locality disk Servers/Benchmarks
[27]: Resource-aware task placement in heterogeneous
SBC clusters CPU, mem, disk SBC cluster/Benchmarks

[13]: CLQLMRS—Reinforcement learning improves
data locality disk, mem Servers/Benchmarks

Load
balancing

[11]: Historical data-based task placement in
heterogeneous clusters CPU, mem Servers/Benchmarks

[15]: Deadline-aware task scheduling based on
available resources X Servers/Custom dataset

[29]: Dynamic feedback fair scheduling with load balancing X Servers/Benchmarks

Improved
parallelism

[16]: Markov clustering-based job scoring for improved
task allocation disk Servers/Benchmarks

[31]: Optimizing DAG workflows for the cost of task execution disk Simulation
[32]: LSTPD—Deadline-constrained response times for
MapReduce jobs X Servers/Benchmarks

Improved
task selection

[37]: Task selection using K-means clustering technique X X
[38]: H-Fair; improved Fair scheduler for heavy workloads
in Hadoop X Simulation

[39]: Improved MapReduce workflow using K-means clustering X Servers/Custom dataset

Energy
efficiency

[33]: Efficient online placement in cloud containers X Simulation
[34]: AFED-EF—Classification of resources based on
energy efficiency

CPU, mem, disk,
net Server/Real workload

[35]: Energy-efficient scheduling based on resource constraints. CPU Servers/Custom dataset

Overall, scheduling tasks in heterogeneous clusters composed of frugal nodes require
specialized optimization techniques and adaptive scheduling algorithms tailored to the
unique characteristics and constraints of these devices. In this work, we propose AMS-ERA
for resource-aware scheduling in Frugal Heterogeneous Hadoop Clusters. Our criterion
considers CPU, memory, and disk requirements for jobs and aligns the requirements
with available resources in the cluster for optimal resource allocation. We construct an
11-node SBC cluster to test and validate the proposed approach using a Hadoop benchmark
for CPU-intensive and IO-intensive workloads. The next section presents details for the
proposed AMS-ERA.

3. Adaptive Multi-Criteria Selection for Efficient Resource Allocation
3.1. Motivation

The native Hadoop framework lacks a built-in mechanism to distinguish the specific
capacities of individual nodes, including CPU processing power and available physical
memory and storage availability. Such characteristics are crucial in edge clusters composed
of resource-frugal devices, as they significantly influence the performance of concurrently
executing MapReduce tasks.

Consider a scenario in which a cluster consisting of N nodes must process M MapRe-
duce tasks across D data blocks. According to the default configuration of Hadoop’s

Electronics 2024, 13, 1836 8 of 25

InputSplit, the number of MapReduce tasks corresponds to the number of data blocks,
meaning each task operates on one data block per node. However, this default approach
overlooks the available utilization of resources within the cluster leading to the suboptimal
allocation of resources. Typically, a node can have multiple CPU cores available, and
an optimal resource allocation strategy can leverage the available resources to allow the
simultaneous execution of multiple MapReduce jobs to improve the parallelism in the
cluster, thereby improving the overall efficiency of the cluster.

Single-Board Computers (SBCs), exemplified by the Raspberry Pi computers, typically
feature quad-core processors, with more advanced models boasting hexa- or octa-core
processors. Leveraging these resources effectively for optimal resource allocation is crucial.
Additionally, SBCs have limited onboard memory and disk capacity. In many instances,
the default Hadoop input split may not allocate data blocks optimally on these SBC-based
nodes, resulting in various out-of-memory errors [3,23]. Consequently, the MapReduce
jobs fail and need to restart, which can be expensive. In Table 2, we present a matrix listing
the various features of popular SBCs.

Table 2. A comparison of popular Single Board Computers.

SBC Device CPU Memory Storage with Read
MB/s

Price (USD) Incl.
Storage

Raspberry Pi3 [22] 1.4 GHz 64-bit quad-core
ARM Cortex-A53

1 GB
LPDDR3-SDRAM

32 GB SD Card
120 MB/s 38

Odroid Xu4 [40]
Exynos5 Octa ARM

Cortex-A15 Quad 2 GHz and
Cortex-A7 Quad 1.3 GHz

2 GB
DDR3

32 GB SD Card
120 MB/s 56

RockPro64 [41]

1.8 GHz Hexa Rockchip
RK3399 ARM Cortex A72

and 1.4 GHz Quad
Cortex-A53

4 GB
LPDDR4-SDRAM

64 GB SD Card
140 MB/s 84

Raspberry Pi4 × 4 1.8 GHz Quad core ARM
Cortex-A72

4 GB
LPDDR4-SDRAM

64 GB SD Card
140 MB/s 59

Raspberry Pi4 × 8 1.8 GHz Quad core ARM
Cortex-A72

8 GB
LPDDR4-SDRAM

128 GB SD Card
190 MB/s 84

Raspberry Pi5 2.4 GHz Quad-core 64-bit
ARM Cortex A76

8 GB
LPDDR4X-SDRAM

128 GB SD Card
190 MB/s 98

Moreover, the positioning of data blocks on nodes where MapReduce tasks are ex-
ecuted is crucial for efficient processing, aiming to minimize latency in data transfers
between different nodes within the cluster. Given the limited available resources on the
frugal SBC-based Hadoop clusters, it is essential to develop optimal resource allocation
strategies tailored to frugal Hadoop clusters, considering the unique resource constraints
of SBCs. Table 3 lists the main symbol notations and their meanings used in this paper.

Table 3. Symbols used and their meanings.

Symbol Description

J = {j1, . . . , jk} Set J of Jobs consisting of k number of jobs
C = {n1, . . . , nx} Cluster C consisting of x number of nodes

idi Unique identifier for a job ji
cpuri CPU requirement for job ji
diskri Disk requirement for job ji
memri Memory requirement for job ji

U(cpui) CPU utilization of ith node
U(memi) Memory utilization of ith node
U(diski) Disk utilization of ith node

resourcelist A data structure detailing the available resources in the cluster

Electronics 2024, 13, 1836 9 of 25

Table 3. Cont.

Symbol Description

koptimal Optimal value for centroids in K-means algorithm
µj Centroid in K-means clustering algorithm
Cji Pairwise decision criteria matrix
CI Consistency Index

λmax Maximal eigenvalue
weighti Weight of CPU, mem, and disk matrices

mij Normalized scores
Scorei Score for job ji

li Workload I

3.2. Problem Definition

We define a few terms to quantify the proposed research. We assume that a set of k
number of jobs J = {j1, . . . , jk} is submitted to a heterogeneous Hadoop cluster consisting
of x number of nodes C = {n1, . . . , nx}.

As each job may have unique CPU, memory, disk, and I/O requirements, we model a
vector consisting of these parameters for a job ji,

ji = {idi, cpuri, diskri, memri} (1)

where cpuri is the CPU, diskri is the disk, and memri is the memory requirement for the job
ji with a unique idi.

To define the utilization U = {U(CPU), U(mem), U(disk)} of resources available in a
node ni in Cluster C at time t, we give

U(cpui) =
{100− (% o f idle time)}

100
(2)

where U(cpui) is the CPU utilization of the ith node. The memory utilization U(memi) of a
node ni is given as

U(memi) =
∑ memk

mem(total)
(3)

where ∑ memk is the sum of memory usage of all jobs running in node ni where mem(total)
is the total memory available on the node. The disk utilization U(diski) of the ith node is
given as

U(diski) =
disk(used)
disk(total)

(4)

where disk(used) is the used capacity and disk(total) is the total disk capacity of the ith
node. The values of utilization are within range [0, 1].

In the Hadoop YARN cluster architecture, the NMs within Cluster C regularly transmit
status updates as heartbeat messages to the RM. These messages convey crucial information
regarding resource availability, including CPU utilization, memory usage, and disk I/O
activity for a data node managed by the corresponding NM.

The Hadoop cluster’s execution traces can be obtained using the Starfish Hadoop log
analysis tool [42], serving as crucial input for refining data placement decisions. Through-
out the execution of each job within the cluster, essential details such as Job ID and job
timestamp are captured and stored as job status files. These execution traces are typically
located in the configuration directory of the name node. The location of this file is available
in the Hadoop name node job history folder.

The proposed AMS-ERA leverages machine learning techniques such as K-means
clustering to cluster similar data by grouping nodes into clusters based on their similarity
or proximity to each other. We use these techniques to classify nodes in the cluster based
on the similarity of utilized resources (CPU, mem, disk), initializing a resourcelist that is

Electronics 2024, 13, 1836 10 of 25

subsequently used by the dAHP. A schematic diagram of various steps in the AMS-ERA
process can be seen in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 25

Figure 1. Workflow of the proposed AMS-ERA process for optimal job scheduling.

3.3. K-Means with Elbow Clustering
K-means clustering is a popular unsupervised machine learning algorithm used in

various domains. It is used to analyze, optimize, and manage resources, among other ap-
plications [37]. K-means partitions a dataset into k clusters based on their features. It se-
lects k centroids, and each datapoint is assigned to the closest centroid. The elbow method
[43] is used to determine the optimal number of clusters 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙. It involves plotting the
within-cluster sum of squares (WCSS) for different values of k and identifying the “elbow”
point where increasing the number of clusters does not significantly reduce the WCSS,
indicating the optimal k value.

Algorithm 1 presents the proposed K-means with an elbow optimization algorithm.
It starts by obtaining the RM listing for n nodes. Next, we use Min–Max normalization
[44] to rescale numerical data from the Hadoop RM to a fixed range. This normalization
method preserves the relative relationships between datapoints while ensuring that all
features have the same scale. We define the dataset 𝐷 = {𝑥ଵ, 𝑥ଶ … 𝑥௡}, where each 𝑥𝑖 is a
datapoint. We verify the status of all the nodes to remove any nodes that have a failed
state. In the node identification phase, based on the acquired parameters (U(cpu), U(mem),
U(disk)), the proposed approach organizes nodes into clusters characterized by similar
performance attributes.

Next, we determine the 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 where k is initially given in a range of 1 to 𝑘𝑚𝑎𝑥. First,
we select k initial centroids given by 𝜇1, 𝜇2 … 𝜇𝑘 via random selection. Next, we assign
each datapoint 𝑥𝑖 to the nearest centroid 𝜇𝑖. We then define 𝐶𝑗 as the set of datapoints
assigned to the 𝑗th cluster: 𝐶௝ = {𝑥௜ | ‖𝑥௜ − 𝜇௝ฮଶ ≤ ‖𝑥௜ − 𝜇௣ฮଶ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 = 1,2, … , 𝑘} (5)

where ‖𝑥௜ − 𝜇௝ฮଶ represents the squared Euclidean distance. Next, we recalculate each
centroid 𝜇௝ as the mean of the datapoints in its cluster, given as follows: 𝜇௝ = 1ห𝐶௝ห ෍ 𝑥௫ ∈ ஼ೕ (6)

We repeat steps in Equations (5) and (6) until the centroids no longer change signifi-
cantly or a predetermined number of iterations is reached. The WCSS for the clustering
with k clusters is given as follows:

Figure 1. Workflow of the proposed AMS-ERA process for optimal job scheduling.

3.3. K-Means with Elbow Clustering

K-means clustering is a popular unsupervised machine learning algorithm used in
various domains. It is used to analyze, optimize, and manage resources, among other
applications [37]. K-means partitions a dataset into k clusters based on their features.
It selects k centroids, and each datapoint is assigned to the closest centroid. The elbow
method [43] is used to determine the optimal number of clusters koptimal . It involves
plotting the within-cluster sum of squares (WCSS) for different values of k and identifying
the “elbow” point where increasing the number of clusters does not significantly reduce
the WCSS, indicating the optimal k value.

Algorithm 1 presents the proposed K-means with an elbow optimization algorithm. It
starts by obtaining the RM listing for n nodes. Next, we use Min–Max normalization [44]
to rescale numerical data from the Hadoop RM to a fixed range. This normalization
method preserves the relative relationships between datapoints while ensuring that all
features have the same scale. We define the dataset D = {x1, x2 . . . xn}, where each xi is
a datapoint. We verify the status of all the nodes to remove any nodes that have a failed
state. In the node identification phase, based on the acquired parameters (U(cpu), U(mem),
U(disk)), the proposed approach organizes nodes into clusters characterized by similar
performance attributes.

Next, we determine the koptimal where k is initially given in a range of 1 to kmax. First,
we select k initial centroids given by µ1, µ2 . . . µk via random selection. Next, we assign
each datapoint xi to the nearest centroid µi. We then define Cj as the set of datapoints
assigned to the jth cluster:

Cj = {xi
∣∣ ∥xi − µj∥2 ≤ ∥xi − µp∥2 f or all p = 1, 2, . . . , k} (5)

where ∥xi − µj∥2 represents the squared Euclidean distance. Next, we recalculate each
centroid µj as the mean of the datapoints in its cluster, given as follows:

µj =
1∣∣Cj
∣∣ ∑

x ∈ Cj

x (6)

Electronics 2024, 13, 1836 11 of 25

We repeat steps in Equations (5) and (6) until the centroids no longer change signifi-
cantly or a predetermined number of iterations is reached. The WCSS for the clustering
with k clusters is given as follows:

WCSS =
k

∑
j=1

∑
x ∈ Cj

∥xi − µj∥2 (7)

Next, we plot the WCSS against k and identify the “elbow” point, where the reduction
in WCSS starts to plateau. This elbow point suggests the optimal number of clusters koptimal
for the dataset D.

Once the koptimal is determined, we use the K-means clustering algorithm to cluster
the nodes based on resource utilization. Each datapoint is assigned to the nearest centroid
µp. Next, we calculate the Euclidean distance of datapoint xi to each centroid µp. The
datapoint xi is assigned to the nearest centroid based on the closest distance to the selected
centroid. After all datapoints have been assigned, we recalculate each centroid as the mean
(average) of all the datapoints assigned to that cluster. The process for the recalculation
of centroids is repeated koptimal times. Once the node similarity clusters are established,
our strategy organizes the groups based on the three selection attributes CPU, mem, and
disk, with higher-performing nodes belonging to higher-ranked clusters. The resulting
data are written to resourcelist for further processing. The runtime for Algorithm 1 can be
given as O(k× x) where x is the number of servers/nodes in the cluster C; k is the number
of clusters.

Algorithm 1: K-means clustering with elbow

1: Start: Obtain RM listing for n nodes.
2: apply Min–Max normalization to rescale the dataset
3: initialize resourcelist ← {idi, U(cpui), U(memi), U(diski)}
4: Let D = {x1, x2 . . . xn} be the dataset, where xi is a datapoint
5: determine koptimal for K-means using Equations (5)–(7)
6: foreach k in

{
1, 2, . . . koptimal }

7: calculate the distance of each datapoint xi to each centroid µp
8: assign each datapoint xi to the closest centroid

recalculate each centroid as in Equation (6)
9: end for
11: return resourcelist
12: end

3.4. Dynamic AHP-Based Job Scoring

In this section, we detail the dynamic AHP-based scoring mechanism for optimal
resource allocation to jobs. We develop an algorithm based on the AHP [45], where the
goal is to find the optimal placement of a job using a score vector to determine the best
possible node. The process involves refining the AHP model’s accuracy by integrating
historical information obtained through Hadoop APIs to assign weights to jobs based on
their resource requirements including CPU, memory, and disk requirements.

We define criteria considering the CPU, memory, and disk requirements of a job. We
also define alternate criteria for selecting the best possible node in the frugal cluster. The
criteria are pairwise compared based on the importance of the criteria. The alternatives are
compared against each of the criteria. Figure 2 shows the selection framework of the dAHP
for an example of n heterogeneous nodes, where n = 6.

Electronics 2024, 13, 1836 12 of 25Electronics 2024, 13, x FOR PEER REVIEW 12 of 25

Figure 2. dAHP 3-level criteria for node selection.

To select the optimal node for job allocation, we look at the job requirements, assum-
ing that a job requires a large amount of processing power and memory to complete; how-
ever, the storage requirement is not equally important. Based on this requirement, we de-
velop the pairwise comparison matrix Cji for this job. The criteria are prioritized based on
their importance. We assume that the CPU and memory requirements are equally im-
portant for a job. They are moderately more important than the disk requirement. Based
on these criteria, the Cji is given in Table 4.

Table 4. Pairwise decision criteria matrix Cji.

Cji CPU mem disk
CPU 1 1 2
mem 1 1 2
disk ½ ½ 1

Next, the alternate criteria are considered based on the node utilization requirements.
For instance, if a job requires a faster node, it should be assigned 𝑛ଶ. If it requires more
memory, it can be assigned 𝑛଺. Similarly, if more disk space is required, it can be assigned 𝑛଺ based on the node capabilities. The weights are determined through the magnitude of
the difference in node properties. For instance, if 𝑛ଶ and 𝑛ହ have a faster/larger number
of cores compared to 𝑛ଵ, they are assigned weight 4. This allows us to have three matrices
presenting a pairwise comparison of CPU, MEM, and DISK requirements. The CPU,
MEM, and DISK matrices are given in Tables 5–7, respectively.

Table 5. Pairwise CPU alternate criteria decision matrix CPU.

CPU 𝒏𝟏 𝒏𝟐 𝒏𝟑 𝒏𝟒 𝒏𝟓 𝒏𝟔 𝑛ଵ 1 0.25 0.33 0.33 0.25 0.25 𝑛ଶ 4 1 3 2 2 1 𝑛ଷ 3 0.33 1 1 1 0.5 𝑛ସ 3 0.5 1 1 1 0.5 𝑛ହ 4 0.5 1 1 1 0.5 𝑛଺ 4 1 2 2 2 1

Table 6. Pairwise mem alternate criteria decision matrix MEM.

MEM 𝒏𝟏 𝒏𝟐 𝒏𝟑 𝒏𝟒 𝒏𝟓 𝒏𝟔 𝑛ଵ 1 0.5 0.33 0.33 0.25 0.25 𝑛ଶ 2 1 0.5 0.5 0.33 0.33 𝑛ଷ 3 2 1 1 0.5 0.5 𝑛ସ 3 2 1 1 0.5 0.5 𝑛ହ 4 3 2 2 1 0.5 𝑛଺ 4 3 2 2 2 1

Select optimal
node

CPU mem disk

n1 n2 n3 n4 n5 n6

GOAL – level 1
Criteria – level 2

Alternate Criteria – level 3

Figure 2. dAHP 3-level criteria for node selection.

To select the optimal node for job allocation, we look at the job requirements, assuming
that a job requires a large amount of processing power and memory to complete; however,
the storage requirement is not equally important. Based on this requirement, we develop
the pairwise comparison matrix Cji for this job. The criteria are prioritized based on their
importance. We assume that the CPU and memory requirements are equally important
for a job. They are moderately more important than the disk requirement. Based on these
criteria, the Cji is given in Table 4.

Table 4. Pairwise decision criteria matrix Cji.

Cji CPU mem disk

CPU 1 1 2
mem 1 1 2
disk ½ ½ 1

Next, the alternate criteria are considered based on the node utilization requirements.
For instance, if a job requires a faster node, it should be assigned n2. If it requires more
memory, it can be assigned n6. Similarly, if more disk space is required, it can be assigned
n6 based on the node capabilities. The weights are determined through the magnitude of
the difference in node properties. For instance, if n2 and n5 have a faster/larger number of
cores compared to n1, they are assigned weight 4. This allows us to have three matrices
presenting a pairwise comparison of CPU, MEM, and DISK requirements. The CPU, MEM,
and DISK matrices are given in Tables 5–7, respectively.

Table 5. Pairwise CPU alternate criteria decision matrix CPU.

CPU n1 n2 n3 n4 n5 n6

n1 1 0.25 0.33 0.33 0.25 0.25
n2 4 1 3 2 2 1
n3 3 0.33 1 1 1 0.5
n4 3 0.5 1 1 1 0.5
n5 4 0.5 1 1 1 0.5
n6 4 1 2 2 2 1

Table 6. Pairwise mem alternate criteria decision matrix MEM.

MEM n1 n2 n3 n4 n5 n6

n1 1 0.5 0.33 0.33 0.25 0.25
n2 2 1 0.5 0.5 0.33 0.33
n3 3 2 1 1 0.5 0.5

Electronics 2024, 13, 1836 13 of 25

Table 6. Cont.

MEM n1 n2 n3 n4 n5 n6

n4 3 2 1 1 0.5 0.5
n5 4 3 2 2 1 0.5
n6 4 3 2 2 2 1

Table 7. Pairwise disk alternate criteria decision matrix DISK.

DISK n1 n2 n3 n4 n5 n6

n1 1 1 0.5 0.5 0.33 0.33
n2 1 1 0.5 0.5 0.33 0.33
n3 2 2 1 1 0.5 0.5
n4 2 2 1 1 0.5 0.5
n5 3 3 2 2 1 1
n6 3 3 2 2 1 1

To ensure consistency and accuracy, the pairwise comparison matrices are normalized
to determine the Consistency Index (CI). A matrix is considered to be consistent if the
transitivity rule is valid for all pairwise comparisons [39]. The CI is determined via

CI =
λmax − n

n− 1
(8)

where λmax is the maximal eigenvalue obtained via the summation of products between
each element of the eigenvector and the sum of columns of the matrix and n is the number
of nodes. In this case, since the size of the matrix is 6 × 6 where n = 6, the CI value for each
of the CPU, MEM, and DISK is 0.1477, 0.0178, and 0.0022, respectively. Using the Random
Index (RI) = 6, the Consistency Ratio (CR) for each of these matrices is 0.0119, 0.0143, and
0.0017, respectively. For reliable results, the CR values must be less than 0.1, ensuring that
the matrices are consistent. The score vector Scorei is determined for the job ji using the M
matrix, which consolidates the CPU, MEM, and DISK matrices, as given in Equation (6).

Scorei = max
n

∑
j=1

weighti . mij (9)

where weighti is the weight of CPU, mem, and disk obtained from corresponding matrices for
the defined criteria and mij is the normalized score for each value in the matrix. The score
vector Scorei computed in Equation (6), is given in Table 8. In this particular case, n6 has
the highest score = 0.280, indicating that it is the most suitable for the given requirements
of job ji.

Table 8. The score vector determined from the M matrix for every alternative.

M Weight n1 n2 n3 n4 n5 n6

CPU 0.4 0.051 0.278 0.130 0.138 0.146 0.258
mem 0.4 0.056 0.088 0.152 0.152 0.244 0.307
disk 0.2 0.082 0.082 0.149 0.149 0.270 0.270

score - 0.059 0.163 0.143 0.146 0.210 0.280

Similar to this example, each job’s score is determined using these criteria. After
computing scores for all jobs, the system selects the job with the highest score, indicating
the greatest resource demand. The resulting job priority list sorted in descending order
(ordered by score) is forwarded to the RM for resource allocation.

Electronics 2024, 13, 1836 14 of 25

3.5. Efficient Resource Allocation

The resource allocation takes place in the RM once the job priority listing is available.
By integrating the job listing information obtained from the previous phase, the RM
ensures the optimal match between job demand and available resources. The jobs with
the highest resource requirements are arranged in descending order. These high-resource-
demanding jobs are prioritized to utilize the most powerful nodes with the maximum
available resources. This load-balancing strategy ensures that less-resource-intensive jobs
do not hinder the utilization of the high-resource nodes.

Algorithm 2 presents the AMS-ERA resource allocation process. The RM maintains
a resourcelist of current resource utilization in the cluster for each node I {idi, U(cpui),
U(memi), U(diski)} as determined in Equations (2)–(4). To assign a job to a node, consider-
ing the jobs score vector {cpu, mem, disk} obtained in Table 8, the most under-utilized node
is sought. Once a job is assigned to a node, the utilization values in the resourcelist for the
corresponding node are updated. This ensures a well-balanced strategy that maximizes
the utilization of resources across the cluster while considering the heterogeneous Hadoop
cluster node capabilities. This enables our system to prevent resource-intensive jobs from
being allocated to lower-performing nodes in the cluster. Once the mapping is complete,
the jobs are sent for execution in newly allocated containers by YARN.

To give the runtime for the algorithm, we look at the three computation-intensive
operations. Step 5 in the algorithm requires the computation of pairwise decision matrices
for each job as detailed in Tables 5–7. Assuming that there are m jobs in a cluster of size
n nodes, the cost of forming pairwise comparison matrices for the three selection criteria
CPU, mem, and disk is n(n−1)

2 , giving a complexity of O
(
n2). In step 6, we determine the

values of Equations (8) and (9) for the normalization and consistency check; these require
a runtime of O(n). Steps 10 and 11 compute the M matrix and the score vector. The total
number of pairwise comparisons required to compute the matrix M and the score vector
would be given as O

(
m× n2), where the size of the matrix is n× n. Finally, the best values

are written to the resourcelist. Overall, the complexity of both algorithms can be given
as O

(
m× n2).

Algorithm 2: AMS-ERA resource allocation

1: Start: Obtain RM listing for n nodes
2: obtain resourcelist
3: obtain RM listing for m jobs; initialize jobprioritylisting

4: foreach m ∈ jobs
5: determine pairwise decision matrices CPU, MEM, DISK for m
6: determine consistency CI = λmax−n

n−1
7: if CR = CI

RI < 0.1 then continue
8: else re-compute
9: end if
10: determine M matrix
11: Compute Scorem → jobprioritylisting

12: end for
13: foreach i ∈ jobprioritylisting

14: assign best (ji, cpu, mem, disk)→ resourcelist
15: update resourcelist
16: end for

4. Experimental Evaluation

In this section, we present the experimental setup and conduct various experiments to
compare and analyze the performance of the proposed AMS-ERA against Hadoop-Fair,
FOG, and IDaPS Schedulers.

Electronics 2024, 13, 1836 15 of 25

4.1. Experiment Setup

For experimentation, we construct an SBC-based heterogeneous Hadoop cluster with
11 SBC nodes configured in two racks with 5 SBCs in each rack using Gigabit Ethernet. Ten
of these SBCs run the Hadoop worker nodes, whereas one serves as the master node. As
the master node runs the RM, requiring a large amount of memory, a Raspberry Pi5 device
is dedicated to running the master node. On each device, we install a compatible version
of Linux Debian; with armbian 23.1 Jammy Gnome on RockPro, Debian Bullseye 11 on
Odroid XU4, and RaspberryPi OS Lite 11 on all Raspberry Pi devices. Each device has Java
ARM64 version 8 and Hadoop version 3.3.6. Each SBC is equipped with a bootable SD
Card; to better observe the placement of jobs with different disk requirements, we varied
the capacity of the SD Card for the different SBCs. A 4 GB swap space was reserved on
each SD Card; this would be essential for virtual memory management in SBCs with low
RAM availability.

To simulate a small cluster, we created two racks, each consisting of five SBC nodes.
Each rack has a Gigabit Ethernet switch connecting all the SBCs with a router. The master
node running on an Rpi5 connects to the router. The schematic diagram of the experimental
setup is available in Figure 3. Table 9 shows the configuration of the worker nodes in the
cluster. We used Hadoop YARN 3.3.6 to run our experiments. The HDFS block size was
set to 128 MB, with block replication set to 2, and the inputSplit size was set to 128 MB.
To avoid out-of-memory errors on Hadoop runs, we modified the mapred-site.xml and
YARN-site.xml files. The details are provided in Table 10.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 25

11 on Odroid XU4, and RaspberryPi OS Lite 11 on all Raspberry Pi devices. Each device
has Java ARM64 version 8 and Hadoop version 3.3.6. Each SBC is equipped with a boot-
able SD Card; to better observe the placement of jobs with different disk requirements, we
varied the capacity of the SD Card for the different SBCs. A 4 GB swap space was reserved
on each SD Card; this would be essential for virtual memory management in SBCs with
low RAM availability.

To simulate a small cluster, we created two racks, each consisting of five SBC nodes.
Each rack has a Gigabit Ethernet switch connecting all the SBCs with a router. The master
node running on an Rpi5 connects to the router. The schematic diagram of the experi-
mental setup is available in Figure 3. Table 9 shows the configuration of the worker nodes
in the cluster. We used Hadoop YARN 3.3.6 to run our experiments. The HDFS block size
was set to 128 MB, with block replication set to 2, and the inputSplit size was set to 128 MB.
To avoid out-of-memory errors on Hadoop runs, we modified the mapred-site.xml and
YARN-site.xml files. The details are provided in Table 10.

Figure 3. Cluster configuration with 10 worker nodes placed in two racks with a master node.

Table 9. Worker node configuration in the Hadoop cluster.

Worker
Node

Rack SBC Device CPU Cores Memory Storage with Read
MB/s

Operating System

W1 1
Raspber-

ryPi3
4 (1.4 GHz) 1 GB 32 GB SD Card 120 MB/s RaspberryPi OS Lite 11

W2 1 RockPro64
6 (2 × 1.8 GHz) (4 × 1.4

GHz)
4 GB 64 GB SD Card 140 MB/s

armbian 23.1 Jammy
Gnome

W3 1
Raspber-

ryPi4
4 (1.8 GHz) 4 GB 64 GB SD Card 140 MB/s RaspberryPi OS Lite 11

W4 1 RockPro64
6 (2 × 1.8 GHz) (4 × 1.4

GHz)
4 GB 32 GB SD Card 120 MB/s

armbian 23.1 Jammy
Gnome

W5 1 Odroid Xu4
8 (4 × 2.0 GHz) (4 × 1.3

GHz)
2 GB 64 GB SD Card 140 MB/s Debian Bullseye 11

W6 2
Raspber-

ryPi5
4 (2.4 GHz) 8 GB

128 GB SD Card 190
MB/s

RaspberryPi OS Lite 11

W7 2 Odroid Xu4
8 (4 × 2.0 GHz) (4 × 1.3

GHz)
2 GB 32 GB SD Card 120 MB/s Debian Bullseye 11

W8 2
Raspber-

ryPi3
4 (1.4 GHz) 1 GB 64 GB SD Card 140 MB/s RaspberryPi OS Lite 11

W9 2
Raspber-

ryPi5
4 (2.4 GHz) 8 GB 64 GB SD Card 140 MB/s RaspberryPi OS Lite 11

W10 2
Raspber-

ryPi4
4 (1.8 GHz) 4 GB

128 GB SD Card 190
MB/s

RaspberryPi OS Lite 11

Rack 1 Switch

MasterRack 1: Worker nodes Rack 2: Worker nodes

Internet

W1

W2

W3

W4

W5

W6

Rack 2 Switch

W7

W8

W9

W10

Figure 3. Cluster configuration with 10 worker nodes placed in two racks with a master node.

Table 9. Worker node configuration in the Hadoop cluster.

Worker
Node Rack SBC Device CPU Cores Memory Storage with Read MB/s Operating System

W1 1 RaspberryPi3 4 (1.4 GHz) 1 GB 32 GB SD Card 120 MB/s RaspberryPi OS Lite 11

W2 1 RockPro64 6 (2 × 1.8 GHz)
(4 × 1.4 GHz) 4 GB 64 GB SD Card 140 MB/s armbian 23.1 Jammy

Gnome
W3 1 RaspberryPi4 4 (1.8 GHz) 4 GB 64 GB SD Card 140 MB/s RaspberryPi OS Lite 11

W4 1 RockPro64 6 (2 × 1.8 GHz)
(4 × 1.4 GHz) 4 GB 32 GB SD Card 120 MB/s armbian 23.1 Jammy

Gnome

W5 1 Odroid Xu4 8 (4 × 2.0 GHz)
(4 × 1.3 GHz) 2 GB 64 GB SD Card 140 MB/s Debian Bullseye 11

W6 2 RaspberryPi5 4 (2.4 GHz) 8 GB 128 GB SD Card 190 MB/s RaspberryPi OS Lite 11

W7 2 Odroid Xu4 8 (4 × 2.0 GHz)
(4 × 1.3 GHz) 2 GB 32 GB SD Card 120 MB/s Debian Bullseye 11

W8 2 RaspberryPi3 4 (1.4 GHz) 1 GB 64 GB SD Card 140 MB/s RaspberryPi OS Lite 11
W9 2 RaspberryPi5 4 (2.4 GHz) 8 GB 64 GB SD Card 140 MB/s RaspberryPi OS Lite 11
W10 2 RaspberryPi4 4 (1.8 GHz) 4 GB 128 GB SD Card 190 MB/s RaspberryPi OS Lite 11

Electronics 2024, 13, 1836 16 of 25

Table 10. Hadoop YARN configuration properties.

Mapred-site.xml Value

yarn.app.mapreduce.am.resource.mb 852
mapreduce.map.cpu.vcores 2

mapreduce.reduce.cpu.vcores 1
mapreduce.map.memory.mb 852

mapreduce.reduce.memory.mb 852

YARN-site.xml Value

yarn.nodemanager.resource.memory-mb 1024
yarn.nodemanager.resource.cpu-vcores 1
yarn.scheduler.maximum-allocation-mb 1024

yarn.scheduler.maximum-allocation-vcores 8
yarn.nodemanager.vmem-pmem-ratio 2.1

4.2. Generating Job Workloads for Validation

Taking inspiration from previous benchmark studies [10,12,16,18,27,29,30,38], we
select wordcount and terasort workloads for the evaluation of AMS-ERA.

• The Hadoop wordcount benchmark is a CPU-intensive task because it involves pro-
cessing large volumes of text data to count the occurrences of each word. This process
requires significant computational resources, particularly for tasks like tokenization,
sorting, and aggregation, which are essential steps in the word-counting process. As a
result, the benchmark primarily stresses the CPU’s processing capabilities rather than
other system resources such as memory or disk I/O. These 10 jobs are posted to the
cluster simultaneously.

• The Hadoop terasort benchmark is an IO-intensive task because it involves sorting a
large volume of data. This process requires substantial input/output (IO) operations
as it reads and writes data to and from storage extensively during the sorting process.
The benchmark stresses the system’s IO subsystem, including disk read and write
speeds, as well as network bandwidth if the data are distributed across multiple nodes
in a cluster.

In order to observe the effectiveness of the proposed AMS-ERA scheduling for clus-
tering the jobs based on the CPU, mem, and disk criteria, we generate five job workloads
{l1, l2, l3, l4, l5}, each with varying resource requirements, resulting in highly heteroge-
neous container sizes for the map and reducing tasks across different jobs. Each workload
is given a different dataset whose sizes are 2, 4, 8, 15.1, and 19.5 GB, respectively. The
datasets are generated from text files available at project Gutenberg. These dataset sizes
represent a range of small to large workloads, allowing us to evaluate the scheduling
algorithm’s performance across different job scenarios. By including a range of dataset
sizes, we could determine how the proposed AMS-ERA scheduling algorithm handles
different resource requirements.

The default InputSplit size of 128 MB is used to distribute the datafiles across the
HDFS. The replication factor of 2 is used. Based on the dataset size and the InputSplit size,
we define the number of maps and reduces to be <map, reduce> given as <16, 1>, <32, 2>,
<64, 4>, <128, 4>, and <160, 8>, respectively.

We execute wordcount and terasort on these workloads with these parameters and
observe job placement, resource utilization, and the overall job execution time in the cluster.
To ensure the reliability and robustness of our experimental study, we conducted multiple
experimental runs for each benchmark and workload. Specifically, for each of the workloads
(l1 through l5), we performed at least three experimental repetitions to gather consistent
data. This repetition allowed us to account for any variability in cluster performance and
ensure that our conclusions were statistically valid. Each experiment was run under the
same conditions to maintain consistency, providing a strong basis for comparison across
different configurations.

Electronics 2024, 13, 1836 17 of 25

4.3. Node Clustering Based on Intra-Node Similarity Metrics

The AMS-ERA profiles the nodes available in the cluster based on available resources.
We visually determined the elbow point for three experimental runs for workload l3 using
wordcount and terasort. Workload l3, with a dataset size of 8 GB, served as a suitable test
case for determining the optimal value for k. This dataset is large enough to offer significant
insight into node resource clustering while not being so large as to skew results due to
extreme data processing demands. Moreover, by establishing koptimal for this workload, the
same methodology can be applied to smaller workloads (l1 and l2) or larger workloads (l4
and l5), ensuring that the clustering approach can be scaled effectively based on the size
and complexity of the data being processed. Based on these experiments, we determine the
value of koptimal= 3.

Figure 4a reveals the result of AMS-ERA node grouping based on available re-
sources during the execution of the wordcount benchmark using the workload l3. A
high-performance group of nodes is highlighted in green, consisting of nodes w6 and w9; a
medium-performance group of nodes is represented in yellow, comprising w2, w3, w4, w5,
w7, and w10. The nodes labeled low-performance are indicated in orange, including nodes
w1 and w8.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 25

4.3. Node Clustering Based on Intra-Node Similarity Metrics
The AMS-ERA profiles the nodes available in the cluster based on available resources.

We visually determined the elbow point for three experimental runs for workload 𝑙ଷ us-
ing wordcount and terasort. Workload 𝑙ଷ, with a dataset size of 8 GB, served as a suitable
test case for determining the optimal value for k. This dataset is large enough to offer sig-
nificant insight into node resource clustering while not being so large as to skew results
due to extreme data processing demands. Moreover, by establishing 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 for this
workload, the same methodology can be applied to smaller workloads (𝑙ଵ and 𝑙ଶ) or
larger workloads (𝑙ସ and 𝑙ହ), ensuring that the clustering approach can be scaled effec-
tively based on the size and complexity of the data being processed. Based on these ex-
periments, we determine the value of 𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙= 3.

Figure 4a reveals the result of AMS-ERA node grouping based on available resources
during the execution of the wordcount benchmark using the workload 𝑙ଷ. A high-perfor-
mance group of nodes is highlighted in green, consisting of nodes w6 and w9; a medium-
performance group of nodes is represented in yellow, comprising w2, w3, w4, w5, w7,
and w10. The nodes labeled low-performance are indicated in orange, including nodes
w1 and w8.

(a)

(b)

Figure 4. The worker nodes profiling based on their CPU, mem, and disk resource utilization for
workload 𝑙ଷ. Intra-node similarity reveals the performance of nodes clustered in high-, medium-,

w1 w2
w3w4

w5

w6

w7w8

w9

w10

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80

m
em

 %
ag

e

CPU %age

Clustering the intra-node similarity = Wordcount

w1

w2
w3w4

w5

w6

w7
w8

w9

w10

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80

m
em

 %
ag

e

CPU %age

Clustering the intra-node similarity = Terasort

Figure 4. The worker nodes profiling based on their CPU, mem, and disk resource utilization for
workload l3. Intra-node similarity reveals the performance of nodes clustered in high-, medium-, and
low-performance nodes for wordcount jobs. The size of the bubble reveals the percentage of disk
utilization. (a) Wordcount and (b) terasort.

Electronics 2024, 13, 1836 18 of 25

Similarly, Figure 4b reveals the results for terasort jobs run for workload l3; compar-
atively, terasort requires large disk IO. The proposed clustering algorithm successfully
groups the nodes based on the utilization of CPU, mem, and disk resources for terasort jobs
with different requirements. Worker nodes w1, w4, and w7 are installed with relatively
smaller 32 GB and slower disk IO read/write speed SD Cards. As the terasort progresses,
more of their onboard available storage is consumed. Consequently, nodes w6, w9, and w10
give identical disk IO, which is comparatively slower due to the user of faster hardware.
The effect of larger disk IO can be seen in Figure 4b, where a larger bubble area reveals
increased disk IO.

4.4. Workload Execution Time

Hadoop Fair Scheduler (Fair), a default scheduler in Hadoop, lacks data locality
implementation. It allocates resources to jobs, ensuring each job receives an equal share
of resources over time. The scheduler organizes jobs into pools and distributes resources
equitably among these pools.

The FOG-scheduler presented in [15] considers ordering the scheduling queue based
on deadlines. The nodes in the cluster are ordered using a similarity index. The highest-
ordered jobs are sorted and assigned to the appropriate clusters.

The IDaPS presented in [16] uses the Markov clustering algorithm to characterize
MapReduce task execution based on intra-dependency and task execution frequency. The
scheduling algorithm orders the tasks based on execution frequency to achieve maximum
parallelism. In this section, we compare these recent works against the proposed AMS-ERA
for various workloads of wordcount and terasort.

Figure 5a shows the comparison of the execution time of the five wordcount workloads
using Hadoop default fair scheduler, FOG, IDaPs, and the proposed AMS-ERA. For smaller
workloads l1 and l2, a total of 16 and 32 map jobs are created; with this workload, the
execution runtimes for the proposed AMS-ERA are 27.2%, 17.4%, and 7.6% and 24.5%,
14.1%, and 8.1% faster compared to Fair, FOG and IDaPs, respectively.

For workloads l3 and l4, a total of 64 and 128 map jobs were created; the execution
times for AMS-ERA were 16.2%, 12.7%, and 6.8% and 14%, 8%, and 2% faster. For the
larger workload l5, AMS-ERA was 11.5%, 4.5%, and 0.2% faster. For larger workloads, both
AMS-ERA and IDaPs exhibit similar performance.

We note that as the workload increases, the comparative performance of AMS-ERA
against the compared schedulers for execution runtime also decreases. It can be asserted
that this is due to the large number of disk IO reads and writes required by the wordcount
algorithm. As the frugal cluster consists of SD Cards with slower read/write speeds, it is
imperative that the runtime be affected by the available hardware speeds.

Our observation is confirmed when we compare the wordcount workload execution
runtimes with the terasort execution runtimes. As mentioned earlier, terasort requires
much less IO-intensive read/write operations to the disk; therefore, the expected runtime
would be lower. For smaller workloads l1 and l2, the execution runtimes of terasort for
the proposed AMS-ERA are 38.4%, 25.9%, and 20.5% and 34.9%, 20.7%, and 17.8% faster
compared to Fair, FOG, and IDaPs, respectively.

For workloads l3 and l4, with a total of 64 and 128 map jobs, the execution times
for AMS-ERA were 31%, 18%, and 13% and 26%, 14.4%, and 11% faster. For the larger
workload l5, AMS-ERA was 18.7%, 12.1%, and 7.8% faster.

Figure 5b shows the comparison of the execution time of the five terasort workloads.
As terasort is a comparatively less disk IO-intensive application, the AMS-ERA compares
well with Fair, FOG, and IDaPs for all ranges of workloads.

From these results, we observe that in the worst-case scenario for workload l5, where
the entire dataset is required for execution (approx. 20 GB), both AMS-ERA and IDaPS
exhibit similar performance. For smaller datasets and workloads, the proposed AMS-ERA
performs significantly better. Figure 6a,b show the comparison of AMS-ERA performance

Electronics 2024, 13, 1836 19 of 25

percentage against the compared schedulers for the various workflows using wordcount
and terasort benchmarks.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 25

and low-performance nodes for wordcount jobs. The size of the bubble reveals the percentage of
disk utilization. (a) Wordcount and (b) terasort.

Similarly, Figure 4b reveals the results for terasort jobs run for workload 𝑙ଷ; compar-
atively, terasort requires large disk IO. The proposed clustering algorithm successfully
groups the nodes based on the utilization of CPU, mem, and disk resources for terasort
jobs with different requirements. Worker nodes w1, w4, and w7 are installed with rela-
tively smaller 32 GB and slower disk IO read/write speed SD Cards. As the terasort pro-
gresses, more of their onboard available storage is consumed. Consequently, nodes w6,
w9, and w10 give identical disk IO, which is comparatively slower due to the user of faster
hardware. The effect of larger disk IO can be seen in Figure 4b, where a larger bubble area
reveals increased disk IO.

4.4. Workload Execution Time
Hadoop Fair Scheduler (Fair), a default scheduler in Hadoop, lacks data locality im-

plementation. It allocates resources to jobs, ensuring each job receives an equal share of
resources over time. The scheduler organizes jobs into pools and distributes resources eq-
uitably among these pools.

The FOG-scheduler presented in [15] considers ordering the scheduling queue based
on deadlines. The nodes in the cluster are ordered using a similarity index. The highest-
ordered jobs are sorted and assigned to the appropriate clusters.

The IDaPS presented in [16] uses the Markov clustering algorithm to characterize
MapReduce task execution based on intra-dependency and task execution frequency. The
scheduling algorithm orders the tasks based on execution frequency to achieve maximum
parallelism. In this section, we compare these recent works against the proposed AMS-
ERA for various workloads of wordcount and terasort.

Figure 5a shows the comparison of the execution time of the five wordcount work-
loads using Hadoop default fair scheduler, FOG, IDaPs, and the proposed AMS-ERA. For
smaller workloads 𝑙ଵ and 𝑙ଶ, a total of 16 and 32 map jobs are created; with this workload,
the execution runtimes for the proposed AMS-ERA are 27.2%, 17.4%, and 7.6% and 24.5%,
14.1%, and 8.1% faster compared to Fair, FOG and IDaPs, respectively.

For workloads 𝑙ଷ and 𝑙ସ, a total of 64 and 128 map jobs were created; the execution
times for AMS-ERA were 16.2%, 12.7%, and 6.8% and 14%, 8%, and 2% faster. For the
larger workload 𝑙ହ, AMS-ERA was 11.5%, 4.5%, and 0.2% faster. For larger workloads,
both AMS-ERA and IDaPs exhibit similar performance.

(a)

0

500

1000

1500

2000

2500

3000

L1 L2 L3 L4 L5

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Workloads

Execution time for wordcount for various workloads

Fair FOG IDaPs AMS-ERA

Electronics 2024, 13, x FOR PEER REVIEW 19 of 25

(b)

Figure 5. (a) A comparison of the execution times in seconds for wordcount jobs with workloads
{𝑙ଵ, 𝑙ଶ, 𝑙ଷ, 𝑙ସ, 𝑙ହ} between Hadoop-Fair, FOG, IDaPS, and AMS-ERA. (b) depicts the execution times
for terasort with the same workloads.

We note that as the workload increases, the comparative performance of AMS-ERA
against the compared schedulers for execution runtime also decreases. It can be asserted
that this is due to the large number of disk IO reads and writes required by the wordcount
algorithm. As the frugal cluster consists of SD Cards with slower read/write speeds, it is
imperative that the runtime be affected by the available hardware speeds.

Our observation is confirmed when we compare the wordcount workload execution
runtimes with the terasort execution runtimes. As mentioned earlier, terasort requires
much less IO-intensive read/write operations to the disk; therefore, the expected runtime
would be lower. For smaller workloads 𝑙ଵ and 𝑙ଶ, the execution runtimes of terasort for
the proposed AMS-ERA are 38.4%, 25.9%, and 20.5% and 34.9%, 20.7%, and 17.8% faster
compared to Fair, FOG, and IDaPs, respectively.

For workloads 𝑙ଷ and 𝑙ସ, with a total of 64 and 128 map jobs, the execution times for
AMS-ERA were 31%, 18%, and 13% and 26%, 14.4%, and 11% faster. For the larger work-
load 𝑙ହ, AMS-ERA was 18.7%, 12.1%, and 7.8% faster.

Figure 5b shows the comparison of the execution time of the five terasort workloads.
As terasort is a comparatively less disk IO-intensive application, the AMS-ERA compares
well with Fair, FOG, and IDaPs for all ranges of workloads.

From these results, we observe that in the worst-case scenario for workload 𝑙ହ, where
the entire dataset is required for execution (approx. 20 GB), both AMS-ERA and IDaPS
exhibit similar performance. For smaller datasets and workloads, the proposed AMS-ERA
performs significantly better. Figure 6a,b show the comparison of AMS-ERA performance
percentage against the compared schedulers for the various workflows using wordcount
and terasort benchmarks.

0

500

1000

1500

2000

2500

3000

L1 L2 L3 L4 L5

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Workloads

Execution time for Terasort for various workloads

Fair FOG IDaPs AMS-ERA

Figure 5. (a) A comparison of the execution times in seconds for wordcount jobs with workloads
{l1, l2, l3, l4, l5} between Hadoop-Fair, FOG, IDaPS, and AMS-ERA. (b) depicts the execution times
for terasort with the same workloads.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 25

(a)

(b)

Figure 6. (a) A comparison of the performance percentage of AMS-ERA execution times against
Hadoop-Fair, FOG, and IDaPS for wordcount jobs with workloads {𝑙ଵ, 𝑙ଶ, 𝑙ଷ, 𝑙ସ, 𝑙ହ} (b) Performance
percentage of AMS-ERA against Hadoop-Fair, FOG, and IDaPS for terasort.

4.5. Local Job Placement and Resource Utilization
The default Hadoop Fair scheduling scheme distributes data without considering the

computing capacity of nodes or network delay, resulting in poor performance. This lack
of optimization leads to a higher percentage of non-local task executions and data transfer
overhead compared to alternative schemes. Moreover, it overlooks the heterogeneity of
the available nodes in the cluster. Consequently, the failure to account for these differences
results in the suboptimal placement of map tasks in the cluster, thereby leading to poor
performance.

The proposed AMS-ERA assigns resource-intensive jobs to high-performance nodes
within each group, sorting nodes in descending order based on their capacity range, in-
cluding CPU, mem, and disk. Additionally, with higher cluster utilization, more jobs com-
plete their execution quickly, enabling YARN to release resources sooner. Less demanding
jobs are allocated to nodes that best match their resource requirements. Consequently, the
system minimizes resource wastage and improves load balancing both between and
within groups of heterogeneous nodes.

Figure 7a shows the percentage of locally assigned map tasks. All three schedulers
outperform the Hadoop fair scheduler. For the wordcount workloads, as the number of
map tasks increases, the utilization of resources for the proposed AMS-ERA also

vs IDaPs
vs FOG

vs Fair

0%

5%

10%

15%

20%

25%

30%

L1 L2 L3 L4 L5

Pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Workloads

Comparison of AMS-ERA performance %age for
Wordcount workloads

vs IDaPs vs FOG vs Fair

vs IDaPs
vs FOG

vs Fair

0%

10%

20%

30%

40%

L1 L2 L3 L4 L5

Pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Workloads

Comparison of AMS-ERA performance %age for
Terasort workloads

vs IDaPs vs FOG vs Fair

Figure 6. Cont.

Electronics 2024, 13, 1836 20 of 25

Electronics 2024, 13, x FOR PEER REVIEW 20 of 25

(a)

(b)

Figure 6. (a) A comparison of the performance percentage of AMS-ERA execution times against
Hadoop-Fair, FOG, and IDaPS for wordcount jobs with workloads {𝑙ଵ, 𝑙ଶ, 𝑙ଷ, 𝑙ସ, 𝑙ହ} (b) Performance
percentage of AMS-ERA against Hadoop-Fair, FOG, and IDaPS for terasort.

4.5. Local Job Placement and Resource Utilization
The default Hadoop Fair scheduling scheme distributes data without considering the

computing capacity of nodes or network delay, resulting in poor performance. This lack
of optimization leads to a higher percentage of non-local task executions and data transfer
overhead compared to alternative schemes. Moreover, it overlooks the heterogeneity of
the available nodes in the cluster. Consequently, the failure to account for these differences
results in the suboptimal placement of map tasks in the cluster, thereby leading to poor
performance.

The proposed AMS-ERA assigns resource-intensive jobs to high-performance nodes
within each group, sorting nodes in descending order based on their capacity range, in-
cluding CPU, mem, and disk. Additionally, with higher cluster utilization, more jobs com-
plete their execution quickly, enabling YARN to release resources sooner. Less demanding
jobs are allocated to nodes that best match their resource requirements. Consequently, the
system minimizes resource wastage and improves load balancing both between and
within groups of heterogeneous nodes.

Figure 7a shows the percentage of locally assigned map tasks. All three schedulers
outperform the Hadoop fair scheduler. For the wordcount workloads, as the number of
map tasks increases, the utilization of resources for the proposed AMS-ERA also

vs IDaPs
vs FOG

vs Fair

0%

5%

10%

15%

20%

25%

30%

L1 L2 L3 L4 L5

Pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Workloads

Comparison of AMS-ERA performance %age for
Wordcount workloads

vs IDaPs vs FOG vs Fair

vs IDaPs
vs FOG

vs Fair

0%

10%

20%

30%

40%

L1 L2 L3 L4 L5

Pe
rfo

rm
an

ce
 p

er
ce

nt
ag

e

Workloads

Comparison of AMS-ERA performance %age for
Terasort workloads

vs IDaPs vs FOG vs Fair

Figure 6. (a) A comparison of the performance percentage of AMS-ERA execution times against
Hadoop-Fair, FOG, and IDaPS for wordcount jobs with workloads {l1, l2, l3, l4, l5} (b) Performance
percentage of AMS-ERA against Hadoop-Fair, FOG, and IDaPS for terasort.

4.5. Local Job Placement and Resource Utilization

The default Hadoop Fair scheduling scheme distributes data without considering the
computing capacity of nodes or network delay, resulting in poor performance. This lack of
optimization leads to a higher percentage of non-local task executions and data transfer
overhead compared to alternative schemes. Moreover, it overlooks the heterogeneity of
the available nodes in the cluster. Consequently, the failure to account for these differ-
ences results in the suboptimal placement of map tasks in the cluster, thereby leading to
poor performance.

The proposed AMS-ERA assigns resource-intensive jobs to high-performance nodes
within each group, sorting nodes in descending order based on their capacity range, includ-
ing CPU, mem, and disk. Additionally, with higher cluster utilization, more jobs complete
their execution quickly, enabling YARN to release resources sooner. Less demanding jobs
are allocated to nodes that best match their resource requirements. Consequently, the
system minimizes resource wastage and improves load balancing both between and within
groups of heterogeneous nodes.

Figure 7a shows the percentage of locally assigned map tasks. All three schedulers
outperform the Hadoop fair scheduler. For the wordcount workloads, as the number of
map tasks increases, the utilization of resources for the proposed AMS-ERA also improves.
For smaller workloads l1, AMS-ERA outperforms the comparison with 52% local placement
compared to 20% for IDaPS and 14% for FOG. With larger workloads l5, the locality
improves up to 79% for AMS-ERA compared to 76% for IDaPS and 61% for FOG. We
observe a similar task placement rate (percentage) for terasort workloads as can be seen
in Figure 7b. This shows that the AMS-ERA optimizes task locality based on resource
availability in the cluster.

Figure 8a shows a comparison of the percentage of resource utilization for wordcount
workload l3. The AMS-ERA utilizes the highest resources effectively to complete the
workload at the earliest. This shows the AMS-ERA job placement in the cluster effectively
outperforms the Hadoop fair, FOG, and IDaPS. Figure 8b shows similar results for a terasort
workload. As terasort is not disk-intensive, we can see that AMS-ERA has the highest
average CPU and memory utilization; however, the disk utilization is slightly lower. Given
these results, we can assume that AMS-ERA successfully considered the availability of
resources in the cluster when placing the jobs. As a consequence of lower disk utilization,
the map tasks for terasort were placed in high-performing nodes such as w6 and w9, which
resulted in faster execution times.

Electronics 2024, 13, 1836 21 of 25

Electronics 2024, 13, x FOR PEER REVIEW 21 of 25

improves. For smaller workloads 𝑙ଵ, AMS-ERA outperforms the comparison with 52% lo-
cal placement compared to 20% for IDaPS and 14% for FOG. With larger workloads 𝑙ହ,
the locality improves up to 79% for AMS-ERA compared to 76% for IDaPS and 61% for
FOG. We observe a similar task placement rate (percentage) for terasort workloads as can
be seen in Figure 7b. This shows that the AMS-ERA optimizes task locality based on re-
source availability in the cluster.

Figure 8a shows a comparison of the percentage of resource utilization for wordcount
workload 𝑙ଷ . The AMS-ERA utilizes the highest resources effectively to complete the
workload at the earliest. This shows the AMS-ERA job placement in the cluster effectively
outperforms the Hadoop fair, FOG, and IDaPS. Figure 8b shows similar results for a tera-
sort workload. As terasort is not disk-intensive, we can see that AMS-ERA has the highest
average CPU and memory utilization; however, the disk utilization is slightly lower.
Given these results, we can assume that AMS-ERA successfully considered the availability
of resources in the cluster when placing the jobs. As a consequence of lower disk utiliza-
tion, the map tasks for terasort were placed in high-performing nodes such as w6 and w9,
which resulted in faster execution times.

(a)

(b)

Figure 7. A comparison local task allocation rate (percentage) for AMS-ERA, Hadoop-Fair, FOG,
IDaPS for (a) wordcount jobs with workloads {𝑙ଵ, 𝑙ଶ, 𝑙ଷ, 𝑙ସ, 𝑙ହ} and (b) for terasort jobs.

0
10
20
30
40
50
60
70
80
90

100

L1 L2 L3 L4 L5

Lo
ca

l t
as

ks
 ra

te
 (%

ag
e)

Workloads

%age of local map tasks for Wordcount

Fair FOG IDaPs AMS-ERA

0
10
20
30
40
50
60
70
80
90

100

L1 L2 L3 L4 L5

Lo
ca

l t
as

ks
 ra

te
 (%

ag
e)

Workloads

%age of local map tasks for Terasort

Fair FOG IDaPs AMS-ERA

Figure 7. A comparison local task allocation rate (percentage) for AMS-ERA, Hadoop-Fair, FOG,
IDaPS for (a) wordcount jobs with workloads {l1, l2, l3, l4, l5} and (b) for terasort jobs.

Electronics 2024, 13, x FOR PEER REVIEW 22 of 25

(a)

(b)

Figure 8. A comparison of the percentage of CPU, mem, and disk resource utilization for (a) a word-
count workload 𝑙ଷ and (b) a terasort workload.

4.6. Cost of Frugal Hadoop Cluster Setup
Building a Hadoop cluster with a diverse range of SBC models, each offering varying

CPU, memory, and storage resources, allowed for diversification. This approach facilitates
cost optimization by selecting models based on their price–performance ratio and the spe-
cific demands of the workload. The cost of our cluster setup was USD 822 for the 11 SBC
devices along with networking essentials (cables, 2× Gigabit Switches, a router) and SD
Card storage media.

During our experimental investigations, we observed a notable performance gap be-
tween the previous-generation RPi 3B nodes and traditional PC setups, with the former
exhibiting suboptimal performance levels. However, with the introduction of AMS-ERA,
which accounts for the heterogeneous nature of resources within the cluster, we observed
significant improvements in execution times. Looking forward, we anticipate even greater
performance enhancements with the latest RPi 5 nodes, which boast improved onboard
resources compared to their predecessors.

This evolution in hardware capabilities underscores the potential for frugal SBC-
based edge devices to not only enhance performance but also contribute to sustainability
and cost-effectiveness in data processing applications. With the anticipated decrease in
the cost of RPi 5 devices and their promising performance metrics, they present a compel-
ling option for achieving both sustainability and cost-effectiveness in edge computing en-
vironments.

0
10
20
30
40
50
60
70
80
90

100

Fair FOG IDaPs AMS-ERA

Re
so

ur
ce

 U
sa

ge
 (%

ag
e)

Workloads

%age of resource usage for Terasort with L3

cpu mem disk

Figure 8. Cont.

Electronics 2024, 13, 1836 22 of 25

Electronics 2024, 13, x FOR PEER REVIEW 22 of 25

(a)

(b)

Figure 8. A comparison of the percentage of CPU, mem, and disk resource utilization for (a) a word-
count workload 𝑙ଷ and (b) a terasort workload.

4.6. Cost of Frugal Hadoop Cluster Setup
Building a Hadoop cluster with a diverse range of SBC models, each offering varying

CPU, memory, and storage resources, allowed for diversification. This approach facilitates
cost optimization by selecting models based on their price–performance ratio and the spe-
cific demands of the workload. The cost of our cluster setup was USD 822 for the 11 SBC
devices along with networking essentials (cables, 2× Gigabit Switches, a router) and SD
Card storage media.

During our experimental investigations, we observed a notable performance gap be-
tween the previous-generation RPi 3B nodes and traditional PC setups, with the former
exhibiting suboptimal performance levels. However, with the introduction of AMS-ERA,
which accounts for the heterogeneous nature of resources within the cluster, we observed
significant improvements in execution times. Looking forward, we anticipate even greater
performance enhancements with the latest RPi 5 nodes, which boast improved onboard
resources compared to their predecessors.

This evolution in hardware capabilities underscores the potential for frugal SBC-
based edge devices to not only enhance performance but also contribute to sustainability
and cost-effectiveness in data processing applications. With the anticipated decrease in
the cost of RPi 5 devices and their promising performance metrics, they present a compel-
ling option for achieving both sustainability and cost-effectiveness in edge computing en-
vironments.

0
10
20
30
40
50
60
70
80
90

100

Fair FOG IDaPs AMS-ERA

Re
so

ur
ce

 U
sa

ge
 (%

ag
e)

Workloads

%age of resource usage for Terasort with L3

cpu mem disk

Figure 8. A comparison of the percentage of CPU, mem, and disk resource utilization for (a) a
wordcount workload l3 and (b) a terasort workload.

4.6. Cost of Frugal Hadoop Cluster Setup

Building a Hadoop cluster with a diverse range of SBC models, each offering varying
CPU, memory, and storage resources, allowed for diversification. This approach facilitates
cost optimization by selecting models based on their price–performance ratio and the
specific demands of the workload. The cost of our cluster setup was USD 822 for the 11 SBC
devices along with networking essentials (cables, 2× Gigabit Switches, a router) and SD
Card storage media.

During our experimental investigations, we observed a notable performance gap
between the previous-generation RPi 3B nodes and traditional PC setups, with the former
exhibiting suboptimal performance levels. However, with the introduction of AMS-ERA,
which accounts for the heterogeneous nature of resources within the cluster, we observed
significant improvements in execution times. Looking forward, we anticipate even greater
performance enhancements with the latest RPi 5 nodes, which boast improved onboard
resources compared to their predecessors.

This evolution in hardware capabilities underscores the potential for frugal SBC-based
edge devices to not only enhance performance but also contribute to sustainability and
cost-effectiveness in data processing applications. With the anticipated decrease in the cost
of RPi 5 devices and their promising performance metrics, they present a compelling option
for achieving both sustainability and cost-effectiveness in edge computing environments.

5. Conclusions and Future Work

In this work, we proposed Adaptive Multi-criteria Selection for Efficient Resource
Allocation (AMS-ERA) in Frugal Heterogeneous Hadoop Clusters, addressing the critical
challenge of resource allocation in clusters with frugal Single-Board Computers (SBCs).
By considering the CPU, memory, and disk requirements for jobs and aligning them with
available resources in the cluster, AMS-ERA optimizes resource allocation for optimal
performance. Through K-means clustering, available resources are profiled and ranked
based on similarity and proximity, enabling dynamic job placement. A dAHP refines
the selection process by integrating historical data through Hadoop APIs. Jobs are then
assigned to the most suitable nodes, ensuring load balancing in the heterogeneous cluster.
Compared to Hadoop-Fair, FOG, and IDaPS scheduling strategies, AMS-ERA demonstrates
superior performance, reducing execution time by 27.2%, 17.4%, and 7.6%, respectively,
in terasort and wordcount benchmarks. The results show that the AMS-ERA is robust
and performs consistently well across the diversified Map Reduce-based applications with
various workload sizes. Furthermore, these also demonstrate that AMS-ERA ensures
reduced execution time and improved data locality compared to Hadoop Fair, FOG, and

Electronics 2024, 13, 1836 23 of 25

IDaPS. This study underscores the effectiveness of AMS-ERA in optimizing data layout,
maximizing parallelism, and accommodating resource constraints in frugal SBC-based
Hadoop clusters, paving the way for enhanced big data processing performance in resource-
constrained environments.

AMS-ERA introduces a dynamic and adaptive approach to resource allocation, which
could revolutionize how operational tasks are managed in Hadoop clusters. By profiling
and ranking available resources and then aligning them with the job requirements, op-
erational practices would become more efficient and responsive to workload demands.
The capability to profile resources using K-means clustering and assign jobs based on a
dAHP provides a flexible mechanism for job scheduling. This flexibility can lead to a more
balanced workload, reducing bottlenecks, and potentially allowing operations teams to
focus on other critical aspects of cluster management.

Since AMS-ERA is designed for frugal clusters with SBCs, its adaptive resource alloca-
tion mechanism could significantly impact edge computing. It could allow edge devices to
participate in larger Hadoop clusters more effectively, opening new possibilities for data
processing closer to the data source. The AMS-ERA framework could facilitate the deploy-
ment of Hadoop clusters in more constrained environments, like IoT applications or remote
sites with limited infrastructure. By optimizing resource allocation and reducing execution
time, AMS-ERA can indirectly lead to reduced energy consumption and operational costs.
This is particularly relevant in SBC-based clusters, where energy efficiency is crucial.

At the moment, AMS-ERA is limited to CPU, memory, and disk utilization when
considering job placement in the cluster. This scope of criteria might not cover all aspects
of resource allocation efficiency, such as network bandwidth or I/O throughput. While
the current version of AMS-ERA does not explicitly incorporate these factors, they are
indirectly addressed through load balancing and job placement. Although AMS-ERA uses
a dAHP to adapt to changes, there could be limitations in handling extreme fluctuations
or sudden spikes in demand. This may lead to suboptimal resource utilization or load
balancing in some scenarios. In the future, we intend to extend it to consider network
localization, network capacities, and node/rack-based job placement. Furthermore, we
intend to test AMS-ERA integrating real-time workflow datasets, enabling more robust
and efficient performance evaluations. This could enhance its application in environments
where real-time data processing is critical, such as stream processing or online analytics.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The author would like to acknowledge the support of Prince Sultan University
for the payment of the article processing charges.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Awaysheh, F.M.; Tommasini, R.; Awad, A. Big Data Analytics from the Rich Cloud to the Frugal Edge. In Proceedings of the 2023

IEEE International Conference on Edge Computing and Communications (EDGE), Chicago, IL, USA, 2–8 July 2023; pp. 319–329.
2. Qin, W. How to Unleash Frugal Innovation through Internet of Things and Artificial Intelligence: Moderating Role of En-

trepreneurial Knowledge and Future Challenges. Technol. Forecast. Soc. Chang. 2024, 202, 123286. [CrossRef]
3. Neto, A.J.A.; Neto, J.A.C.; Moreno, E.D. The Development of a Low-Cost Big Data Cluster Using Apache Hadoop and Raspberry

Pi. A Complete Guide. Comput. Electr. Eng. 2022, 104, 108403. [CrossRef]
4. Vanderbauwhede, W. Frugal Computing—On the Need for Low-Carbon and Sustainable Computing and the Path towards

Zero-Carbon Computing. arXiv 2023, arXiv:2303.06642.
5. Chandramouli, H.; Shwetha, K.S. Integrated Data, Task and Resource Management to Speed Up Processing Small Files in Hadoop

Cluster. Int. J. Intell. Eng. Syst. 2024, 17, 572–584. [CrossRef]
6. Han, T.; Yu, W. A Review of Hadoop Resource Scheduling Research. In Proceedings of the 2023 8th International Conference on

Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 23–25 November 2023; pp. 26–30.
7. Jeyaraj, R.; Paul, A. Optimizing MapReduce Task Scheduling on Virtualized Heterogeneous Environments Using Ant Colony

Optimization. IEEE Access 2022, 10, 55842–55855. [CrossRef]

https://doi.org/10.1016/j.techfore.2024.123286
https://doi.org/10.1016/j.compeleceng.2022.108403
https://doi.org/10.22266/ijies2024.0430.46
https://doi.org/10.1109/ACCESS.2022.3176729

Electronics 2024, 13, 1836 24 of 25

8. Saba, T.; Rehman, A.; Haseeb, K.; Alam, T.; Jeon, G. Cloud-Edge Load Balancing Distributed Protocol for IoE Services Using
Swarm Intelligence. Clust. Comput. 2023, 26, 2921–2931. [CrossRef]

9. Guo, Z.; Fox, G. Improving MapReduce Performance in Heterogeneous Network Environments and Resource Utilization. In
Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), Ottawa,
ON, Canada, 13–16 May 2012; pp. 714–716.

10. Bae, M.; Yeo, S.; Park, G.; Oh, S. Novel Data-placement Scheme for Improving the Data Locality of Hadoop in Heterogeneous
Environments. Concurr. Comput. 2021, 33, e5752. [CrossRef]

11. Bawankule, K.L.; Dewang, R.K.; Singh, A.K. Historical Data Based Approach for Straggler Avoidance in a Heterogeneous Hadoop
Cluster. J. Ambient Intell. Humaniz. Comput. 2021, 12, 9573–9589. [CrossRef]

12. Thakkar, H.K.; Sahoo, P.K.; Veeravalli, B. RENDA: Resource and Network Aware Data Placement Algorithm for Periodic
Workloads in Cloud. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2906–2920. [CrossRef]

13. Ghazali, R.; Adabi, S.; Rezaee, A.; Down, D.G.; Movaghar, A. CLQLMRS: Improving Cache Locality in MapReduce Job Scheduling
Using Q-Learning. J. Cloud Comput. 2022, 11, 45. [CrossRef]

14. Ding, F.; Ma, M. Data Locality-Aware and QoS-Aware Dynamic Cloud Workflow Scheduling in Hadoop for Heterogeneous
Environment. Int. J. Web Grid Serv. 2023, 19, 113–135. [CrossRef]

15. Postoaca, A.-V.; Negru, C.; Pop, F. Deadline-Aware Scheduling in Cloud-Fog-Edge Systems. In Proceedings of the 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 11–14 May
2020; pp. 691–698.

16. Vengadeswaran, S.; Balasundaram, S.R.; Dhavakumar, P. IDaPS—Improved Data-Locality Aware Data Placement Strategy Based
on Markov Clustering to Enhance MapReduce Performance on Hadoop. J. King Saud Univ. Comput. Inf. Sci. 2024, 36, 101973.
[CrossRef]

17. Adnan, A.; Tahir, Z.; Asis, M.A. Performance Evaluation of Single Board Computer for Hadoop Distributed File System (HDFS).
In Proceedings of the 2019 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta,
Indonesia, 24–25 July 2019; pp. 624–627.

18. Qureshi, B.; Koubaa, A. On Energy Efficiency and Performance Evaluation of Single Board Computer Based Clusters: A Hadoop
Case Study. Electronics 2019, 8, 182. [CrossRef]

19. Fati, S.M.; Jaradat, A.K.; Abunadi, I.; Mohammed, A.S. Modelling Virtual Machine Workload in Heterogeneous Cloud Computing
Platforms. J. Inf. Technol. Res. 2020, 13, 156–170. [CrossRef]

20. Sebbio, S.; Morabito, G.; Catalfamo, A.; Carnevale, L.; Fazio, M. Federated Learning on Raspberry Pi 4: A Comprehensive Power
Consumption Analysis. In Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing,
Taormina, Italy, 4–7 December 2023; ACM: New York, NY, USA, 2023; pp. 1–6.

21. Shwe, T.; Aritsugi, M. Optimizing Data Processing: A Comparative Study of Big Data Platforms in Edge, Fog, and Cloud Layers.
Appl. Sci. 2024, 14, 452. [CrossRef]

22. Raspberry Pi. Available online: https://www.raspberrypi.com/ (accessed on 7 May 2024).
23. Lee, E.; Oh, H.; Park, D. Big Data Processing on Single Board Computer Clusters: Exploring Challenges and Possibilities. IEEE

Access 2021, 9, 142551–142565. [CrossRef]
24. Lambropoulos, G.; Mitropoulos, S.; Douligeris, C.; Maglaras, L. Implementing Virtualization on Single-Board Computers: A Case

Study on Edge Computing. Computers 2024, 13, 54. [CrossRef]
25. Mills, J.; Hu, J.; Min, G. Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT. IEEE Internet Things J.

2020, 7, 5986–5994. [CrossRef]
26. Krpic, Z.; Loina, L.; Galba, T. Evaluating Performance of SBC Clusters for HPC Workloads. In Proceedings of the 2022 International

Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 19–21 October 2022; pp. 173–178.
27. Lim, S.; Park, D. Improving Hadoop Mapreduce Performance on Heterogeneous Single Board Computer Clusters. SSRN

Preprint 2023. [CrossRef]
28. Srinivasan, K.; Chang, C.Y.; Huang, C.H.; Chang, M.H.; Sharma, A.; Ankur, A. An Efficient Implementation of Mobile Raspberry

Pi Hadoop Clusters for Robust and Augmented Computing Performance. J. Inf. Process. Syst. 2018, 14, 989–1009. [CrossRef]
29. Fu, W.; Wang, L. Load Balancing Algorithms for Hadoop Cluster in Unbalanced Environment. Comput. Intell. Neurosci. 2022,

2022, 1545024. [CrossRef]
30. Yao, Y.; Gao, H.; Wang, J.; Sheng, B.; Mi, N. New Scheduling Algorithms for Improving Performance and Resource Utilization in

Hadoop YARN Clusters. IEEE Trans. Cloud Comput. 2021, 9, 1158–1171. [CrossRef]
31. Javanmardi, A.K.; Yaghoubyan, S.H.; Bagherifard, K.; Nejatian, S.; Parvin, H. A Unit-Based, Cost-Efficient Scheduler for

Heterogeneous Hadoop Systems. J. Supercomput. 2021, 77, 1–22. [CrossRef]
32. Ullah, I.; Khan, M.S.; Amir, M.; Kim, J.; Kim, S.M. LSTPD: Least Slack Time-Based Preemptive Deadline Constraint Scheduler for

Hadoop Clusters. IEEE Access 2020, 8, 111751–111762. [CrossRef]
33. Zhou, R.; Li, Z.; Wu, C. An Efficient Online Placement Scheme for Cloud Container Clusters. IEEE J. Sel. Areas Commun. 2019, 37,

1046–1058. [CrossRef]
34. Zhou, Z.; Shojafar, M.; Alazab, M.; Abawajy, J.; Li, F. AFED-EF: An Energy-Efficient VM Allocation Algorithm for IoT Applications

in a Cloud Data Center. IEEE Trans. Green Commun. Netw. 2021, 5, 658–669. [CrossRef]

https://doi.org/10.1007/s10586-022-03916-5
https://doi.org/10.1002/cpe.5752
https://doi.org/10.1007/s12652-020-02699-0
https://doi.org/10.1109/TPDS.2021.3080582
https://doi.org/10.1186/s13677-022-00322-5
https://doi.org/10.1504/IJWGS.2023.129338
https://doi.org/10.1016/j.jksuci.2024.101973
https://doi.org/10.3390/electronics8020182
https://doi.org/10.4018/JITR.20201001.oa1
https://doi.org/10.3390/app14010452
https://www.raspberrypi.com/
https://doi.org/10.1109/ACCESS.2021.3120660
https://doi.org/10.3390/computers13020054
https://doi.org/10.1109/JIOT.2019.2956615
https://doi.org/10.2139/ssrn.4639601
https://doi.org/10.3745/JIPS.01.0031
https://doi.org/10.1155/2022/1545024
https://doi.org/10.1109/TCC.2019.2894779
https://doi.org/10.1007/s11227-020-03256-4
https://doi.org/10.1109/ACCESS.2020.3002565
https://doi.org/10.1109/JSAC.2019.2906745
https://doi.org/10.1109/TGCN.2021.3067309

Electronics 2024, 13, 1836 25 of 25

35. Zhou, Z.; Abawajy, J.; Chowdhury, M.; Hu, Z.; Li, K.; Cheng, H.; Alelaiwi, A.A.; Li, F. Minimizing SLA Violation and Power
Consumption in Cloud Data Centers Using Adaptive Energy-Aware Algorithms. Future Gener. Comput. Syst. 2018, 86, 836–850.
[CrossRef]

36. Banerjee, P.; Roy, S.; Sinha, A.; Hassan, M.; Burje, S.; Agrawal, A.; Bairagi, A.K.; Alshathri, S.; El-Shafai, W. MTD-DHJS: Makespan-
Optimized Task Scheduling Algorithm for Cloud Computing With Dynamic Computational Time Prediction. IEEE Access 2023,
11, 105578–105618. [CrossRef]

37. Zhang, L. Research on K-Means Clustering Algorithm Based on MapReduce Distributed Programming Framework. Procedia
Comput. Sci. 2023, 228, 262–270. [CrossRef]

38. Postoaca, A.V.; Pop, F.; Prodan, R. H-Fair: Asymptotic Scheduling of Heavy Workloads in Heterogeneous Data Centers.
In Proceedings of the 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
Washington, DC, USA, 1–4 May 2018; pp. 366–369.

39. Guo, T.; Bahsoon, R.; Chen, T.; Elhabbash, A.; Samreen, F.; Elkhatib, Y. Cloud Instance Selection Using Parallel K-Means and AHP.
In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion, Auckland, New
Zealand, 2–5 December 2019; ACM: New York, NY, USA, 2019; pp. 71–76.

40. Odroid Xu4. Available online: https://www.hardkernel.com/shop/odroid-xu4-special-price/ (accessed on 7 May 2024).
41. RockPro64. Available online: https://pine64.com/product/rockpro64-4gb-single-board-computer/ (accessed on 7 May 2024).
42. Herodotou, H.; Lim, H.; Luo, G.; Borisov, N.; Dong, L.; Cetin, F.; Babu, S. Starfish: A Self-Tuning System for Big Data Analytics. In

Proceedings of the CIDR 2011—5th Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, 9–12 January
2011; Conference Proceedings; pp. 261–272.

43. Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration K-Means Clustering Method and Elbow Method For
Identification of The Best Customer Profile Cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [CrossRef]

44. Kim, H.-J.; Baek, J.-W.; Chung, K. Associative Knowledge Graph Using Fuzzy Clustering and Min-Max Normalization in Video
Contents. IEEE Access 2021, 9, 74802–74816. [CrossRef]

45. Singh, A.; Das, A.; Bera, U.K.; Lee, G.M. Prediction of Transportation Costs Using Trapezoidal Neutrosophic Fuzzy Analytic
Hierarchy Process and Artificial Neural Networks. IEEE Access 2021, 9, 103497–103512. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.future.2017.07.048
https://doi.org/10.1109/ACCESS.2023.3318553
https://doi.org/10.1016/j.procs.2023.11.030
https://www.hardkernel.com/shop/odroid-xu4-special-price/
https://pine64.com/product/rockpro64-4gb-single-board-computer/
https://doi.org/10.1088/1757-899X/336/1/012017
https://doi.org/10.1109/ACCESS.2021.3080180
https://doi.org/10.1109/ACCESS.2021.3098657

	Introduction
	Related Works
	SBC in Cloud, Edge Clusters
	Hadoop YARN Scheduling Challenges in Resource-Constrained Clusters

	Adaptive Multi-Criteria Selection for Efficient Resource Allocation
	Motivation
	Problem Definition
	K-Means with Elbow Clustering
	Dynamic AHP-Based Job Scoring
	Efficient Resource Allocation

	Experimental Evaluation
	Experiment Setup
	Generating Job Workloads for Validation
	Node Clustering Based on Intra-Node Similarity Metrics
	Workload Execution Time
	Local Job Placement and Resource Utilization
	Cost of Frugal Hadoop Cluster Setup

	Conclusions and Future Work
	References

