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Abstract: Photovoltaic (PV) power forecasting plays a crucial role in optimizing renewable energy
integration into the grid, necessitating accurate predictions to mitigate the inherent variability of
solar energy generation. We propose a novel forecasting model that combines improved variational
mode decomposition (IVMD) with the temporal convolutional network-gated recurrent unit (TCN-
GRU) architecture, enriched with a multi-head attention mechanism. By focusing on four key
environmental factors influencing PV output, the proposed IVMD-TCN-GRU framework targets
a significant research gap in renewable energy forecasting methodologies. Initially, leveraging the
sparrow search algorithm (SSA), we optimize the parameters of VMD, including the mode component
K-value and penalty factor, based on the minimum envelope entropy principle. The optimized VMD
then decomposes PV power, while the TCN-GRU model harnesses TCN’s proficiency in learning local
temporal features and GRU’s capability in rapidly modeling sequence data, while leveraging multi-
head attention to better utilize the global correlation information within sequence data. Through
this design, the model adeptly captures the correlations within time series data, demonstrating
superior performance in prediction tasks. Subsequently, the SSA is employed to optimize GRU
parameters, and the decomposed PV power mode components and environmental feature attributes
are inputted into the TCN-GRU neural network. This facilitates dynamic temporal modeling of
multivariate feature sequences. Finally, the predicted values of each component are summed to
realize PV power forecasting. Validation using real data from a PV station corroborates that the
novel model demonstrates a substantial reduction in RMSE and MAE of up to 55.1% and 54.5%,
respectively, particularly evident in instances of pronounced photovoltaic power fluctuations during
inclement weather conditions. The proposed method exhibits marked improvements in accuracy
compared to traditional PV power prediction methods, underscoring its significance in enhancing
forecasting precision and ensuring the secure scheduling and stable operation of power systems.

Keywords: photovoltaic power forecasting; gated recurrent units; minimum envelope entropy; VMD
decomposition; TCN

1. Introduction

As fossil energy is restricted by resource reserves and environmental problems, it has
become a consensus of global development to vigorously develop and efficiently utilize
renewable energy [1,2]. Because of data released by the national energy administration, for
solar power generation in China, the installed capacity is about 650 million kilowatts as of
the end of February 2024—a year-on-year increase of 56.9%. In the future, the proportion
of new energy installations will continue to increase, and the photovoltaic and other new
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energy industries will need to develop rapidly. It not only provides strong guarantees for
energy security but also injects new impetus into economic growth and the achievement of
carbon peaking and carbon neutrality goals.

However, photovoltaic power is distinguished by its unpredictability and instability,
posing significant disruptions to the regular functioning of extensive grid-connected solar
photovoltaic systems and presenting considerable hurdles to the power grid’s quality and
stability [3–5]. This fluctuation or intermittency is caused by several factors, i.e., humidity,
air pressure, irradiance, and temperature. When the meteorological factors change, large
power fluctuations at the power supply side are produced in the power system, bringing
operation risks to the active power balance and frequency regulation and affecting the
economy of the power system [6–8]. Thus, to alleviate the problem, accurate prediction
of PV power as the key technology is present. Meanwhile, it supplies guidance for unit
commitment, thereby reducing the power generation cost and strengthening the compet-
itiveness of photovoltaic energy in the electricity market. Hence, reliable photovoltaic
forecasting technology of the power system is crucial for the economical and safe operation
and photovoltaic field management.

Currently, numerous studied on photovoltaic power forecasting have been carried
out, and the forecasting approaches have been presented as time series [9–11], neural net-
works [12–14], support vector machines [15,16], Markov chain [17,18] and a combination
of corresponding methods [19–21]. As the scale of power plants continues to expand, the
amount of data produced by power plants has also exploded. In fact, due to the quantity
and quality of the source data of power plants, the traditional neural network photovoltaic
power forecasting model is restricted by not considering environmental factors [22], thereby
lacking reasonable utilization of complex sequence information. In addition, considering
the nonlinear change in photovoltaic power and multiple environment sequence infor-
mation, the convergence rate of the model slows down and overfitting appears with the
increase in network input variables [23–25]. At the same time, the accuracy of photovoltaic
power forecasting is also affected by time-varying factors [26,27]. Therefore, to guarantee
the feasibility of photovoltaic power forecasting, it is beneficial to fully analyze the impact
of environmental factors on the modeling of photovoltaic power forecasting. Moreover, the
long short-term memory (LSTM) network, as referenced in the literature [28,29], represents
a type of deep neural network. Within the framework of deep learning models, the LSTM
network stands out for its exceptional proficiency in addressing issues related to time series
forecasting, attributable to its distinctive architectural design. But, the LSTM architecture is
characterized by a higher parameter count compared to the GRU architecture. Specifically,
LSTM incorporates a greater number of gating units and parameters, resulting in increased
model complexity and computational demands. This elevated parameterization in LSTM
models may consequently lead to escalated training and inference costs. GRU has been
identified as a well-suited solution for managing and predicting the challenges associated
with extended time intervals and temporal delays within time series data. Its efficacy in
addressing such issues has led to widespread adoption across various industrial processes.
In addition, time series modeling has been studied and explored in terms of photovoltaic
power forecasting [30]. However, GRU network performance is greatly affected by pa-
rameters, and whether the model parameters are reasonable has a great influence on the
forecasting results [31,32].

Moreover, due to some random factors such as weather, there are many uncertainties
in the actual photovoltaic sequence. In addition, the photovoltaic power has non-stationary
and nonlinear characteristics, and a single forecasting model is insufficient to satisfy fore-
casting accuracy requirements. The hybrid forecasting model with a decomposition algo-
rithm effectively reduces the original photovoltaic sequence characteristics and has better
forecasting performance. There are familiar decomposition approaches which include the
variational mode, empirical mode [33], and wavelet decomposition [34]. Nevertheless,
the selection of base functions and thresholds is depended on the WD effect. EMD and
its derived methods lack a mathematical theoretical foundation due to endpoint effects.
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VMD can effectively suppress noise and is regarded as the most effective decomposition
technique. Nevertheless, intrinsic mode functions (IMFs) and the number of modes of
VMD have a remarkable effect on the decomposition effect.

The above methods provide inspiration and motivation for the proposed forecasting
strategy in this paper. However, the actual photovoltaic power is greatly interfered by the
external environment and has the characteristics of instability and obvious intermittent
fluctuation [35,36]. In addition, there are differences in photovoltaic power forecasting
models under different environments, and a single model cannot meet the actual production
needs. Moreover, the forecasting accuracy is directly affected by whether the selection of
forecasting model parameter is reasonable. Therefore, a novel hierarchical VMD-TCN-GRU
multi-head attention mechanism for photovoltaic power forecasting is present in this paper.
The main innovation points of this article are as follows:

(1) To decompose photovoltaic power, the variational mode decomposition method is
used. Meanwhile, the optimal mode and penalty factor are searched based on the
minimum envelope entropy to enhance the adaptability of the variational mode
decomposition algorithm.

(2) Different TCN-GRU models are constructed for different PV modal components
decomposed via the improved variational mode decomposition algorithm, and the
main environmental factors, for example, atmospheric pressure, air temperature, solar
irradiance, and component temperature, are considered as TCN-GRU model inputs.

(3) According to the SSA, the hidden layer neural element number, training frequency,
and learning rate parameters that have a significant impact on network performance
were optimized. The forecasting results under multiple photovoltaic modes are
integrated to obtain better photovoltaic power forecasting. Finally, for the proposed
forecasting strategy, the photovoltaic power of the actual power plant is applied to
illustrate the feasibility.

The remaining parts of this article include Section 2, which is dedicated to the de-
tailed exposition of the methodology employed in our study, elucidating the theoretical
framework and computational techniques utilized in our research investigation. Section 3
comprehensively describes the simulation results derived from the application of the
proposed methodology, presenting empirical data and analysis to support our research
findings. In Section 4, a rigorous discussion is conducted to evaluate and interpret the sig-
nificance of the obtained results, thereby validating the rationality of our research approach
and its implications for the field of study. Finally, the conclusions drawn from our research
endeavor are summarized in Section 5, encapsulating the key findings, implications, and
potential avenues for future research exploration.

2. Materials and Methods
2.1. TCN Network

The TCN represents a convolutional neural network architecture tailored for ad-
dressing time-series problems, integrating dilated causal convolution (DCC) and residual
connection (RC) mechanisms. This architecture effectively captures the interdependencies
between data points, facilitating subsequent predictions.

Dilated convolution, a key component of TCN, expands the receptive field by selec-
tively skipping portions of the input. By adjusting the dilation factor, dilated convolution
modulates the size of the receptive field, enabling the network to flexibly control the histor-
ical information incorporated into the output. In the context of one-dimensional sequential
data x ∈ Rn and filters f : {0, 1, · · · , k− 1} → R , the convolutional kernel, characterized
by filter coefficients k and dilation factor d, extends the receptive field. The operation of
dilated convolution is expressed as follows:
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F(x) =
k−1

∑
i=0

f (i) · xs−d·i (1)

where d denotes the dilation factor; s− d · i represents historical data in the input sequence;
and k stands for the filter coefficient [37].

The dilated causal convolution, as illustrated in Figure 1, reveals that the receptive field
size of a point Yt in the output sequence is modulated via k and d. Importantly, the output
at a given point is influenced solely by the preceding historical data. The TCN architecture
employed in this study utilizes dilated causal convolutions with dilation factors d set to
1, 2, 4, and 8 and a filter coefficient k of 3, as depicted in Figure 2. By flexibly adjusting
the receptive field, the model comprehensively considers temporal features within the
power data. Tailoring the memory length of output nodes based on varying input time
scales effectively addresses the issue of historical data neglect observed in traditional
methods. This adaptability proves advantageous, particularly in the context of short-term
photovoltaic forecasting.
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Figure 1. Structure diagram of dilated causal convolution network.

The residual connection has been demonstrated as an effective approach in train-
ing deep neural networks, enabling the network to propagate information across layers.
The construction of a residual block to replace a single convolutional layer is depicted
in the following Figure 2. A residual block comprises two convolutional layers and non-
linear mapping, with WeightNorm and Dropout incorporated at each layer for network
regularization.
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2.2. TCN-GRU

The traditional GRU network architecture represents a specialized form of recurrent
neural network (RNN) models, offering an optimized alternative based on the LSTM
network structure. While maintaining comparable network accuracy, the GRU achieves
simplification of unit complexity by adjusting the structures of the input gate, forget gate,
and output gate within the LSTM computational framework. Notably, the integration of
the LSTM forget gate and input gate into a unified update gate contributes to a reduction
in the model’s learning and training duration, enhancing overall computational efficiency.
In the GRU unit structure, the reset gate regulates the proportion of historical moment
memory values entering the output gate, while the update gate determines the quantity
of retained historical moment memory information, thereby governing the state update
of the hidden layer. The unit structure is illustrated in Figure 3. This optimization in unit
architecture exemplifies the GRU’s ability to streamline computational complexity while
preserving the essential memory dynamics, showcasing its potential for expedited learning
and improved operational efficiency compared to conventional LSTM models.
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The expressions for each gate function are as follows:

rt = σ(Urht−1 + Wrxt + br), (2)

zt = σ(Uzht−1 + Wzxt + bz), (3)

ĥt = tanh[Whxt + Uh(rt ⊙ ht−1) + bh], (4)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt−1 (5)

where ht−1 represents the model’s output at the previous time step; xt denotes the input at
time t; σ(·) signifies the activation function, typically modeled as the sigmoid function; rt
and zt denote the reset gate and update gate, respectively; ht signifies the state output of the
model at time t; W and U represent weight matrices; tanh denotes the hyperbolic tangent
function; ⊙ represents the Hadamard product between two matrices; and b signifies the
bias terms for each input [38].

In the temporal convolutional network, the application of DCC allows TCN to possess
a larger receptive field with fewer layers, enabling it to process longer historical data. The
DCC utilizes an activation function and undergoes weight normalization and regularization
operations. Meanwhile, the RC ensures stability in TCN by employing skip connections
from the input to the output, especially in deeper TCN architectures.

The gated recurrent unit, distinct from traditional RNNs, introduces changes to the
hidden layer architecture, incorporating memory cells, an update gate, and related gates.
GRU determines when to update memory cells with candidate values through the update
gate. Compared to one-dimensional convolutional neural networks (CNNs), TCN, due to
its use of DCC and RC, can process longer historical data with increased stability. Therefore,
TCN is selected for high-dimensional feature extraction from input data. For time series
prediction, GRU demonstrates performance almost equivalent to LSTM but with faster
training speeds, justifying its selection for sequence prediction tasks. In summary, this
paper proposes a PV power prediction framework, VMD-TCN-GRU, based on VMD and
incorporating TCN and GRU components. The workflow involves initial data preprocessing
steps such as data cleaning and standardization, followed by the application of VMD
decomposition to the processed data. Subsequently, the individual VMD modes are input
into TCN residual blocks for high-dimensional feature extraction. Finally, the output from
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the TCN residual blocks is fed into the GRU network for prediction, yielding the final
forecast results.

2.3. Multi Head Attention Mechanism

While the GRU demonstrates excellent performance in sequence prediction tasks,
it is not immune to the issue of error accumulation. Photovoltaic power data, being
continuous over time, are subject to considerable uncertainty due to external environmental
factors and unforeseen events. The impact of abrupt data changes amplifies errors over
multiple time steps during training, leading to suboptimal prediction outcomes. Attention
mechanisms, capable of adaptively capturing global dependencies within the data, offer the
advantage of focusing not only on the information at the current position in the sequence
but also on information at other positions. However, attention mechanisms necessitate
the computation of weight relationships between each sequence, leading to significant
computational resource requirements, especially when dealing with long sequences.

To address these challenges, this paper introduces a novel structure called a multi-head
attention gated recurrent unit (MAGRU), combining the strengths of GRU and multi-head
attention mechanisms. The MAGRU structure is presented in Figure 4. In this approach, a
sliding window is introduced at the position of the GRU output hidden state ht, aggregating
the information from the preceding m time steps into a new sequence. Here, h denotes
the dimensionality of the hidden state ht. Subsequently, multiple sets of learnable weight
matrices WQ

i , WK
i , and WV

i ∈ Rh×d are introduced for each head, serving as Query, Key, and
Value matrices, respectively, where i represents the group index, and d is the dimensionality
of the attention mechanism. The calculations for the Query, Key, and Value matrices are
formulated as follows [39]:

Qi = HWq, Ki = HWk, Vi = HWv (6)
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For each hidden state at time step t, use the Query, Key, and Value matrices to calculate
its attention weight. The formula is as follows:

Attentioni(Qi, Ki, Vi) = softmax(
QiKT

i√
da

)Vi (7)

where
√

da is used to scale the size of the inner product and avoid the input of the softmax
function being too large or too small [40]. Concatenate the output vectors of multiple
attention heads to obtain matrix Z:

Z = concat(Attention1, . . . , Attentioni). (8)
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Perform a linear transformation on matrix Z to obtain attention score output hatt as follows:

hatt = Z ·W ∈ Rm×h (9)

where W is a learnable weight matrix. hatt will participate in training as the hidden state of
the input for the next time step GRU [41].

Finally, the obtained output is passed on to a feedforward neural network FNN to
adjust its dimension and obtain the temporal feature HT ∈ RQ×N×D of PV power data.

2.4. Forecasting Modeling Based on Improved TCN-GRU

Since the actual photovoltaic power system is characterized by instability and in-
termittent fluctuations, to guarantee the precision and feasibility for photovoltaic power
forecasting, an improved TCN-GRU network forecasting framework is proposed, as shown
in Figure 5. Firstly, the photovoltaic power is decomposed using VMD, and the penalty
factor and decomposition mode number of VMD are determined according to the mini-
mum envelope entropy principle. Subsequently, daily environmental data and photovoltaic
power data are utilized as TCN-GRU network inputs. In addition, the TCN-GRU is es-
tablished for photovoltaic power forecasting under different modal components, and the
network parameters are optimized using the SSA algorithm. Finally, to obtain final pho-
tovoltaic power forecasting, the forecasting results of the SSA-TCN-GRU model under
different modal components are reconstructed.
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Figure 5. The framework of improved TCN-GRU network forecasting.

2.5. Improved Variational Modal Decomposition
2.5.1. Preliminary of VMD

The original photovoltaic power sequence is decomposed to obtain the separation of
stationary series and non-stationary series, reduce the randomness and non-stationary of
photovoltaic power, and decrease the interference in the forecasting process. The VMD
represents a variational approach rooted in the amalgamation of frequency mixing, Hilbert
transform, and classical Wiener filter methodologies. Distinguished by its non-recursive
nature and adaptive signal processing capabilities, VMD emerges as a robust method for
addressing signal decomposition challenges. Thus, original photovoltaic power signal
f (t) is decomposed through the VMD algorithm into k discrete photovoltaic power mode
uk(t), that is, the signal is decomposed into a limited number of mode components with
different IMFs. Compared to empirical mode decomposition, the endpoint effects and
modal aliasing problems are overcome using the VMD method.

The specific construction steps are present as follows:

1. For each mode function, through Hilbert transform, the analytic signal uk(t) is ob-

tained to acquire its unilateral spectrum [δ(t) + j
πt ] ∗ uk(t);
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2. The frequency spectrum for each mode uk(t) is modulated to the corresponding

base band [(δ(t) + j
πt ) ∗ uk(t)]e−jωkt by mixing the exponential terms e−jωkt of its

corresponding center frequency ωk;
3. Through the Gaussian smoothness of the demodulation signal, for each mode signal,

the bandwidth is estimated, and the constrained variational problem is obtained.

The extended Lagrange expression is as follows [42]:
min

{uk},{ωk}

{
∑k

k=1 ∥∂t

[(
δ(t) + 1

πt

)
∗ uk(t)

]
e−jωkt∥

2

2

}
s.t.∑

k
uk = f

. (10)

By introducing Lagrange multiplication operator λ and quadratic penalty factor α, an
augmented Lagrange expression is present whereby the constrained variation is converted
to the unconstrained one, as follows:

L({uk}, {ωk}, λ) = α∑
k
∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt∥

2

2

+∥ f (t)−∑
k

uu(t)∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 . (11)

The solution of each mode function is as follows:

ûn+1
k (ω) =

f̂ (ω)− ∑
i ̸=k

ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 . (12)

The solution of the center frequency for each mode is as follows:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
. (13)

λ is updated as follows:

λ̂n+1
k (ω)← λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
. (14)

Determine whether the termination condition is met.

∑
k
∥ûn+1

k − ûn
k ∥

2
2

/
∥ûn

k ∥
2
2 < ε. (15)

The specific flow of the VMD algorithm is shown in Algorithm 1. Compared to EMD,
VMD has a strict mathematical model and often has better robustness in dealing with noise.
VMD not only effectively decomposes various harmonics but also does not consider the
relative amplitude between harmonics and the distance between their respective center
frequencies during mode separation. Moreover, the VMD method has high decomposi-
tion accuracy, fewer decomposition layers and no mode aliasing [43]. For photovoltaic
power, it can be used as an effective means to accurately decompose the various frequency
components, which is conducive to photovoltaic power forecasting under unstable and
intermittent fluctuation conditions.
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Algorithm 1 The process of the VMD algorithm.

Complete Optimization of VMD
Initialize

{
û1

k
}

,
{

ω1
k
}

,
{

λ̂1
k
}

, n← 0
Repeat
n← n + 1
for k = 1: K do
Update ûk for all ω ≥ 0:

ûn+1
k (ω)←

f̂ (ω)−∑
i<k

ûn+1
i (ω)−∑

i>k
ûn

i (ω)+ λ̂n (ω)
2

1+2α(ω−ωn
k )

2

Update ωk:

ωn+1
k =

∫ ∞
0 ω|ûn+1

k (ω)|2dω∫ ∞
0 |ûn+1

k (ω)|2dω

end for
Dual ascent for all ω ≥ 0:

λ̂n+1
k (ω)← λ̂n(ω) + τ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

)
Until convergence: ∑

k
∥ûn+1

k − ûn
k ∥

2
2

/
∥ûn

k ∥
2
2 < ε

2.5.2. VMD with Minimum Envelope Entropy

In fact, decomposition mode number k has a certain degree of impact on the decom-
position effect of VMD. Moreover, in multiple IMFs, mode overlap occurs when the same
component appears if the k is big. On the contrary, in the same IMF, there are multiple
components. So far, the empirical value has been used by most mode classification studies.
To solve this problem, envelope entropy is introduced to search for the optimal mode
number k and equilibrium factor, and an improved VMD is proposed. The detailed steps
for IVMD are presented:

Step 1: Input the signal x(i) (i = 1, 2, . . . , N) into IVMD model.
Step 2: Initialize parameters; let k = 2. In addition, IVMD is performed.
Step 3: Calculate the envelope entropy, which is represented as Equation (16), and de-

termine whether it meets the condition of minimum envelope entropy under the condition
of meeting the error limit. 

Ep = −
N
∑

i=1
pi logpi

pi = a(i)/
N
∑

i=1
a(i)

(16)

where the entropy value of pi is the envelope entropy Ep, and N is the number of sampling
points. Decomposed using VMD after Hilbert demodulation, a(i) is the envelope signal of
k mode components; pi is the probability distribution sequence [44].

Step 4: Stop decomposition and obtain k when the condition is reached. Otherwise,
k = k + 1, until the condition is satisfied.

2.6. GRU Optimization Using SSA

The forecasting performance according to the GRU network is greatly affected by its
parameters. To fully demonstrate the effectiveness of GRU, a GRU model is established for
each mode component, respectively. In addition, the number of hidden layer neurons is
optimized through the SSA, training times, and the learning rate for GRU network model
parameters. The SSA originates from the anti-capture and foraging behavior.

(1) The position Xt+1
i,j of the founder is updated as follows:

Xt+1
i,j =

{
Xt

i,j exp(−i/α · itermax) , R2 < ST

Xt
i,j + Q · L , R2 ≥ ST

(17)
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where itermax represent the maximum number of iterations and t denotes the current
iteration number. The position of the ith sparrow in dimension j is represented by
Xt

i,j; the range of j is {1, 2, · · · , d}. Additionally, ST ∈ [0.5, 1] and R2 ∈ [0, 1] refer to
the security threshold and alarm value, respectively. A random number α ∈ (0, 1] is
utilized in the algorithm, and L(1× d) is a complete matrix with all elements equal
to 1. A normally distributed random number, denoted as Q, signifies the absence
of predators, prompting the finder to engage in wide-area search mode when the
condition R2 < ST is met. Conversely, if there is impending danger R2 > ST, all
sparrows swiftly relocate to alternative safe locations [45].

(2) The position of the joiner sparrow is expressed as follows:

Xt+1
i,j =

 Q · exp
(
(Xworst − Xt

i,j)/i2
)

, i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L, others
(18)

where Xworst denotes the global worst position, Xp represents the optimal position
of the current discoverer, and a 1xd matrix A is defined with elements randomly
assigned 1 or −1: A+ = AT(AAT)−1. The condition where i > n/2 indicates that the
participant with poor fitness is at a heightened risk of starvation [46].

(3) Assuming that 10%–20% of the sparrow population perceives danger and promptly
relocates to a safe area, the guard position Xt+1

i,j is determined as follows:

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣, fi > fg

Xt
i,j + K ·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

)
, fi = fg

(19)

where β follows a normal distribution with mean 0 and variance 1, representing
a random number for the step control parameter. Other variables include Xbest as
the global optimal position; K ∈ [−1, 1] as the step control parameter, denoting
the direction of sparrow movement; fg as the global optimal fitness value; fi as
the fitness value of individual sparrows at the current step; and fw as the global
worst fitness value. To prevent division by zero, ε is introduced as a minimum
constant. In addition, sparrows located at the edges of the population face increased
vulnerability to predators when fi > fg. Conversely, sparrows positioned in the
middle of the population effectively communicate the awareness of danger to other
sparrows, thereby reducing the risk of predation under the condition fi = fg [47].

In the context of optimizing the parameters of a GRU using the SSA, a systematic
procedure is outlined as follows:

Step 1: Initialization of parameters
The initial steps involve setting up the number of iterations, determining the ratio of

predators within the population, and initializing the population size.
Step 2: Fitness evaluation and sorting
Subsequently, the fitness value of each individual sparrow is computed, and the

population is sorted in descending order based on their fitness values.
Step 3: Update of discoverer’s location
The position of the discoverer, representing the sparrow with the optimal fitness value,

is then updated according to the SSA algorithm.
Step 4: Update of joiner’s location
Similarly, the location of the joiner, denoting a sparrow seeking to improve its fitness

by joining the discoverer, is adjusted based on the algorithm’s principles.
Step 5: Update of vigilant position
The vigilant position, indicating a sparrow aware of potential danger, is updated in

accordance with the algorithm’s specifications.
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Step 6: Fitness calculation and position update
The fitness value of the sparrows is recalculated, and their positions are updated

iteratively to enhance the optimization process.
Step 7: If the stop conditions is met, the command output is displayed. Otherwise,

repeat Step 2 to Step 6.

2.7. IVMD-SSA-TCN-GRU-Based Photovoltaic Power Forecasting Strategy

Since the intermittent fluctuation and instability characteristics for photovoltaic power,
the photovoltaic power time series are firstly decomposed into different modes, and then
a TCN-GRU model optimized using the SSA is established for each mode. Furthermore,
the forecasting results for each mode are integrated to achieve power forecasting. Figure 6
presents the flowchart of the IVMD-SSA-TCN-GRU photovoltaic power forecast, and the
specific forecasting steps are demonstrated as follows.
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Step 1: Select the environment information as the model input.
Step 2: Use the IVMD method to decompose the original photovoltaic power sequence

and obtain the k components.
Step 3: Firstly, set the parameter range (number of learning rate η, training times E,

and hidden layer neurons H), search range of sparrow population size N, and maximum
number of iterations M. Moreover, set the mean square error as an objective function for
the optimization algorithm. Furthermore, set up the coupling model of SSA-TCN-GRU.

Step 4: Establish SSA-TCN-GRU forecasting models for each component and obtain k
forecasting models.

Step 5: Add the corresponding forecasted values of k forecasting models to obtain the
forecasting result of photovoltaic power.
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3. Results

To illustrate the feasibility of the photovoltaic power forecasting strategy proposed
for a photovoltaic power station in China, the historical photovoltaic power data are used
for case study analysis. Photovoltaic datasets with different weather conditions (sunny,
cloudy, and rainy) were selected with 864 samples, of which the first 605 were used for
training and the last 259 were used for forecasting. The sampling interval was 5min, and
the installed capacity of the photovoltaic field was 603 MW.

3.1. Data Processing

Since PV power and meteorological data contain outliers and missing values, the data
error interference affects the accuracy of the models. Therefore, data reconciliation was
used to clean the data, eliminate outliers, and fill in missing values [48,49].

Due to the difference in dimensionality of data for different variables, the data were
standardized to ensure normal calculation.

x̃(i) =
x(i)− xmin

xmax − xmin
(20)

where x(i) is the sample of the original photovoltaic sequence or meteorological sequence;
x̃(i) represents the normalized processed sequences, which are in [0, 1]; and for the sample
data, xmax and xmin are the maximum and minimum value of the sample data, respectively.

3.2. Evaluation Index of Forecasting Model

As forecasting evaluation indexes, MAE and RMSE are utilized to quantitatively
analyze the forecasting performance and generalization ability of the model.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (21)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (22)

where N is the testing sample; yi is the true data of photovoltaic power; ŷi is the forecasting
result of photovoltaic power; and for the actual photovoltaic power, y is the average value.

3.3. Simulation Analysis

In addition, air temperature, irradiance, air pressure, and module temperature as well
as historical photovoltaic power are determined as the IVMD-TCN-GRU forecasting model
inputs. For predetermined parameters K and α, to solve the problem in the traditional
VMD algorithm, an adaptive IVMD algorithm is proposed based on envelope entropy.
Moreover, the non-stationary and nonlinear characteristics are decomposed for photovoltaic
power. Figure 7 illustrates the iterative process of envelope entropy values under different
weather conditions, and the optimal parameter combination and corresponding minimum
envelope entropy obtained from this are shown in Table 1. The decomposition results of
photovoltaic power corresponding to the optimal K value under various weather conditions
are shown in Figure 8. The IMF indicates that sub modes are obtained after photovoltaic
power decomposition. The different modes after VMD decomposition not only have
stronger stationarity, but also maintain the trend characteristics of original photovoltaic
data well. Considering the chaotic nature of photovoltaic weather processes and the
nonlinear relationship between photovoltaic weather and output photovoltaic power, TCN-
GRU photovoltaic power forecasting models are established for each mode component
decomposed using IVMD. In addition, to acquire the forecasted photovoltaic power, the
forecasted output of each model is added. The five hyperparameters of the model are
determined, that is, the number of hidden layers is 1, the dimension of the input layer is
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24, the time step of the input layer is 10, the dimension of the output variable is 1, and the
dimension of each hidden layer is 10. Finally, Figure 9 presents the experimental results of
photovoltaic power prediction based on IVMD-TCN-GRU.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 26 
 

 

 
(a) (b) 

 
(c) 

Figure 7. Envelope entropy iteration process. (a) Envelope entropy on sunny days. (b) Envelope 
entropy on cloudy days. (c) Envelope entropy on rainy days. 

Table 1. The optimal parameters of IVMD. 

Weather Types Minimum Envelope Entropy K α 
Sunny day 4.6712 3 925 
Cloudy day 5.5301 6 59 
Rainy day 5.4925 7 93 

 

Figure 7. Envelope entropy iteration process. (a) Envelope entropy on sunny days. (b) Envelope
entropy on cloudy days. (c) Envelope entropy on rainy days.

Table 1. The optimal parameters of IVMD.

Weather Types Minimum Envelope Entropy K α

Sunny day 4.6712 3 925
Cloudy day 5.5301 6 59
Rainy day 5.4925 7 93



Electronics 2024, 13, 1837 15 of 25

Electronics 2024, 13, x FOR PEER REVIEW 16 of 26 
 

 

0 200 400 600 800
8

10
12

IM
F1

0 200 400 600 800
−10

0
10
20
30

IM
F2

0 200 400 600 800
−1.2
−0.6

0.0
0.6
1.2

IM
F3

 
(a) 

0 200 400 600 800
0

10
20
30
40
50

IM
F1

0 200 400 600 800
−8
−4

0
4

IM
F2

0 200 400 600 800
−4
−2

0
2
4

IM
F3

0 200 400 600 800
−3

0

3

IM
F4

0 200 400 600 800
−4
−2

0
2
4

IM
F5

0 200 400 600 800
−3
−2
−1

0
1
2
3

IM
F6

 
(b) 

Figure 8. Cont.



Electronics 2024, 13, 1837 16 of 25

Electronics 2024, 13, x FOR PEER REVIEW 17 of 26 

0 200 400 600 800
0

10
20
30
40

IM
F1

0 200 400 600 800
−8
−4

0
4
8

IM
F2

0 200 400 600 800
−8
−4

0
4
8

IM
F3

0 200 400 600 800
−6
−4
−2

0
2
4
6

IM
F4

0 200 400 600 800
−6
−4
−2

0
2
4
6

IM
F5

0 200 400 600 800
−2

0
2
4

IM
F6

0 200 400 600 800
−4
−2

0
2
4

IM
F7

(c)

Figure 8. Photovoltaic power in IVMD decomposition. (a) Photovoltaic power IVMD decomposition 
on sunny days. (b) Photovoltaic power IVMD decomposition on cloudy days. (c) Photovoltaic 
power IVMD decomposition on rainy days. 

Figure 8. Photovoltaic power in IVMD decomposition. (a) Photovoltaic power IVMD decomposition
on sunny days. (b) Photovoltaic power IVMD decomposition on cloudy days. (c) Photovoltaic power
IVMD decomposition on rainy days.

Taking photovoltaic power in sunny days as an example, the comparative experimental
results of TCN-GRU, IVMD-TCN-GRU, and IVMD-SSA-TCN-GRU are shown in Figure 10.
In addition, in Table 2, RMSE, MAE, time consumption are evaluated to quantitatively
compare the performance for each model. It can be observed that, in comparison with TCN-
GRU, RMSE and MAE of the IVMD-SSA-TCN-GRU forecasting strategy are reduced by
34.1% and 36.3%, respectively. This is because non-stationary and nonlinear characteristics
of photovoltaic power are weakened by photovoltaic power decomposition. Compared
with the IVMD-TCN-GRU model, RMSE and MAE decrease by 16.7% and 5.2%, respectively.
Because the optimal parameter combination is matched using the SSA for the TCN-GRU
network, it can better preserve the original information when processing high-dimensional
data, reduce the original data sequence complexity, alleviate the time delay characteristics
and the fluctuation range. It can achieve higher accuracy than other single methods. In
general, the IVMD-SSA-TCN-GRU forecasting model shows stronger forecasting ability
and higher forecasting accuracy.
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Figure 9. IVMD-TCN-GRU forecasting results. (a) Comparison diagram on sunny days. (b) Compari-
son diagram on cloudy days. (c) Comparison diagram on rainy days.

Table 2. Forecasting errors of the IVMD-SSA-TCN-GRU method.

Evaluation Indexes TCN-GRU IVMD-TCN-GRU IVMD-SSA-TCN-GRU

RMSE 1.7479 1.3832 1.152
MAE 1.4819 0.9968 0.94461
Time 0.0141 0.0132 0.0047
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Moreover, the EMD-SSA-TCN-GRU and IVMD-SSA-Elman models are used as com-
parisons to verify the superiority under the conditions of cloudy and rainy days with large
fluctuations in photovoltaic power. Figure 11 shows the forecasting results with cloudy
conditions; under rainy conditions, the forecasting results are illustrated in Figure 12. The
performance indexes of the different approaches are exhibited in Table 3. The proposed
forecasting model has certain improvement in both RMSE and MAE, verifying the good ef-
fect of preserving environmental characteristics on photovoltaic weather type classification
and model establishment. Meanwhile, VMD is applied to decompose photovoltaic power,
and a forecasting model is set up for each mode before reconstruction, reducing amount of
data and shortening the forecasting time. The proposed model has stronger forecasting
ability and higher forecasting accuracy compared with other models. Moreover, compared
with the EMD-SSA-TCN-GRU forecasting model, for the IVMD-SSA-TCN-GRU forecasting
model, RMSE and MAE are reduced by 37.1% and 27.8%. The reason is that IVMD has
better decomposition performance and is more suitable for decomposing and forecasting
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photovoltaic power. Compared with IVMD-SSA-Elman, RMSE and MAE declined by 55.1%
and 54.5%, respectively; due to issues when dealing with time series problems, the TCN-
GRU network has better performance. Table 4 presents the performance metrics of the novel
method proposed in this study alongside the approaches WOA-BiLSTM-Attention [50],
LSTM-TCN [51], and CNN-GRU [52] in scenarios characterized by rainy conditions and
substantial fluctuations in photovoltaic power generation. Our findings reveal that the
proposed method outperforms the existing techniques in terms of predictive accuracy and
dependability, as evidenced by the lower MAE and RMSE values obtained by our model.
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Table 3. The forecasting errors of different models.

Weather
Type Model MAE RMSE

Sunny day
IVMD-SSA-Elman 2.32 4.17

EMD-SSA-TCN-GRU 2.17 3.76
IVMD-SSA-TCN-GRU 1.98 3.41

Cloudy day
IVMD-SSA-Elman 3.07 4.84

EMD-SSA-TCN-GRU 2.74 4.82
IVMD-SSA-TCN-GRU 2.71 4.66

Rainy day
IVMD-SSA-Elman 5.01 8.15

EMD-SSA-TCN-GRU 3.16 5.82
IVMD-SSA-TCN-GRU 2.28 3.66
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Table 4. The forecasting errors of different models on rainy days.

Method MAE RMSE

IVMD-SSA-TCN-GRU 2.28 3.66
WOA-BiLSTM-Attention 2.45 3.73

LSTM-TCN 2.56 3.91
CNN-GRU 2.71 4.14

4. Discussion

The present study introduces a novel hierarchical approach to photovoltaic power
forecasting that integrates IVMD into the TCN-GRU framework, further enhanced by a
multi-head attention mechanism. This integration aims to tackle the inherent complexities
and variabilities in PV power generation, which are significantly influenced by environ-
mental factors. Our findings underscore the effectiveness of combining advanced signal
processing techniques with deep learning models to improve the accuracy of PV power
forecasts, which are crucial for the efficient management and integration of solar energy
into the power grid.

The use of IVMD, optimized using the SSA, for the decomposition of PV power data
marks a significant advancement in the preprocessing stage of forecasting [53–55]. This
methodological choice allows for a refined extraction of the intrinsic modes within the
power generation data, facilitating a more detailed and accurate analysis of the power
output fluctuations. The optimization of the modal components and penalty factors through
the SSA not only enhances the decomposition process but also tailors it specifically to the
characteristics of the PV power data, thereby maximizing the relevance and efficiency of
the subsequent forecasting model.

The core of our forecasting model combines the strengths of TCN and GRU, augmented
with a multi-head attention mechanism [56–58]. This design leverages the TCN’s capability
to extract local feature patterns within time series data and the GRU’s proficiency in
capturing long-term dependencies, addressing two critical aspects of time series forecasting.
The addition of a multi-head attention mechanism further elevates the model’s performance
by enabling a dynamic focus on the most relevant features across the time series, thereby
improving the accuracy and reliability of the forecasts. This integration not only harnesses
the individual strengths of these components but also mitigates their limitations, illustrating
the synergistic potential of hybrid modeling approaches in complex forecasting tasks.

Incorporating environmental factors into the model represents a holistic approach
to forecasting, acknowledging the significant impact of external variables on PV power
output. This inclusion ensures that the model captures not only the internal dynamics of
the time series data but also the influence of external conditions, providing a comprehen-
sive framework for forecasting. The empirical validation of the model using real-world
data from a PV station demonstrates its superior performance compared to traditional
forecasting methods, highlighting its practical significance and potential impact on the
energy sector.

However, the sophistication and computational demands of our proposed model
pose challenges for real-time application and scalability. Future research could focus on
optimizing the model’s efficiency and exploring the feasibility of real-time forecasting,
potentially broadening its applicability and utility in operational settings. Moreover, in-
vestigating the model’s performance across diverse geographical locations and under
varying environmental conditions would be invaluable, further affirming its robustness
and adaptability. Firstly, integrating multiple components, such as the IVMD, TCN, and
GRU, requires careful design and optimization to ensure the seamless functioning of the
overall architecture. Coordinating the interactions between these components and fine-
tuning hyperparameters can be a non-trivial task that demands computational resources
and expertise. Moreover, validating the performance of the proposed model involves ad-
dressing issues related to data quality, model interpretability, and generalizability. Ensuring
the robustness of the model across different datasets, geographic locations, and weather
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conditions requires rigorous testing and validation procedures. Additionally, interpreting
the results of the forecasting model and identifying the factors influencing its predictions
can be challenging, especially when dealing with complex neural network architectures
and attention mechanisms. Furthermore, the scalability and computational efficiency of the
proposed model may present practical challenges, particularly when deploying the fore-
casting system in real-world applications with stringent latency and resource constraints.
Optimizing the algorithm for efficient inference and deployment on various platforms
while maintaining high forecasting accuracy is a critical consideration in operationalizing
the proposed approach.

In conclusion, this study contributes a significant advancement to the field of PV power
forecasting by proposing a comprehensive and integrative model that adeptly addresses
the complexities of solar power generation. The innovative combination of IVMD, TCN-
GRU, and a multi-head attention mechanism not only showcases the potential of hybrid
models in enhancing forecast accuracy but also sets a foundation for future research aimed
at optimizing and expanding the applicability of advanced forecasting techniques in the
renewable energy sector.

5. Conclusions

In this study, we proposed a novel hierarchical forecasting model for PV power based
on a multi-head attention mechanism integrated with VMD, TCN, and GRU. Through
extensive experimentation and validation using real-world PV power data, we have drawn
several important conclusions regarding the effectiveness and applicability of our pro-
posed model.

(1) Our results demonstrate that the integration of VMD, TCN, GRU, and a multi-head
attention mechanism significantly improves the accuracy and reliability of PV power
forecasting compared to traditional methods. By leveraging VMD for signal decom-
position and TCN-GRU for dynamic time series modeling, our model effectively
captures both local temporal features and long-term dependencies in the data, leading
to more precise predictions.

(2) The incorporation of a multi-head attention mechanism enables our model to exploit
global contextual information in the time series data, further enhancing its forecasting
performance. The attention mechanism allows the model to dynamically weigh the
importance of different input features, thereby improving the utilization of relevant
information for prediction.

(3) The optimization of VMD parameters using the SSA and the fine-tuning of GRU
parameters contribute to the overall effectiveness of our proposed model. The opti-
mization process ensures that the model is able to adapt to the specific characteristics
of the input data, thereby improving its generalization capability and robustness.

Overall, our study highlights the importance of incorporating advanced machine
learning techniques and considering environmental factors in PV power forecasting. The
proposed hierarchical VMD-TCN-GRU multi-head attention mechanism offers a promising
solution for accurately predicting PV power output, which is essential for optimizing
the operation and management of solar energy systems. This research contributes to the
advancement of PV power forecasting methodologies and provides valuable insights for
researchers and practitioners in the field of renewable energy forecasting. The proposed
model holds significant potential for facilitating the integration of solar energy into the
power grid and supporting the transition towards a sustainable energy future.
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