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Abstract: This paper proposes an optimal beamforming strategy for a downlink multi-user multi-
input–multi-output (MIMO) dual-function radar communication (DFRC) system with dirty paper
coding (DPC) adopted at the transmitter. We aim to achieve the maximum weighted sum rate of
communicating users while adhering to a predetermined transmit covariance constraint for radar
performance assurance. To make the intended problem trackable, we leverage the equivalence of
the weighted sum rate and the weighted minimum mean squared error (MMSE) to reframe the
issue and devise a block coordinate descent (BCD) approach to iteratively calculate transmit and
receive beamforming solutions. Through this methodology, we demonstrate that the optimal receive
beamforming aligns with the traditional MMSE approach, whereas the optimal transmit beamforming
design can be cast into a quadratic optimization problem defined on a complex Stiefel manifold.
Based on the majorization–minimization (MM) method, an iterative algorithm is then developed
to compute the optimal transmit beamforming design by solving a series of orthogonal Procrustes
problems (OPPs) that admit closed-form optimal solutions. Numerical findings serve to validate the
efficacy of our scheme. It is demonstrated that our approach can achieve at least 73% higher spectral
efficiency than the existing methods in a high signal-to-noise ratio (SNR) regime.

Keywords: dual-functionradar communication; beamforming design; block coordinate descent

1. Introduction

Ideally suited for sixth-generation (6G) mobile communication systems, integrated
sensing and communication (ISAC) has gained growing attention due to its enormous
potential in overcoming spectrum congestion, saving hardware costs, and enhancing system
spectrum efficiency [1–4].

A joint design for the coexistence of radar and communication systems to achieve spec-
trum sharing has previously been used to enable ISAC in the same frequency band but on
different devices. In this approach, radar and communication systems exchange side infor-
mation for obtaining a beneficial cooperation. To this end, opportunistic spectrum sharing
might be a directly viable scheme where the communication systems become active only if
the spatial and spectral resources are not occupied by the radar [5]. However, this approach
does not allow two systems to work simultaneously. As a step forward, the authors of [6]
designed radar beamformers by taking the zero-forcing criterion, thus eliminating radar
interference with communications. More recent beamforming designs exploit optimization
tools to realize radar and communication coexistence. In [7,8], a radar beamformer and
a communication covariance matrix were jointly designed with the aim of optimizing
the signal-to-interference-plus-noise ratio (SINR) at the radar receiver under capacity and
power constraints on the communication side. In a comparable scenario, efforts were made
to robustly maximize radar detection probability in the presence of imperfect channel state
information in [9]. Considering a more realistic scenario with surveillance radars deployed
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in cluttered environments, the mutual information between the input and output of a
communication link [10] or communication energy efficiency [11] was optimized under
radar performance and power budget constraints, respectively. Although these coexistence
system designs seem an effective way to implement ISAC, they might entail extra expenses
for hardware and energy, along with augmented system complexity [12].

To enhance efficiency, an encouraging strategy for enabling ISAC involves the creation
of DFRC systems. These systems utilize identical signals for both target detection and
user communication concurrently, operating on a unified platform. However, given the
constrained resources of DFRC systems, ensuring or enhancing sensing and communication
performance simultaneously becomes challenging. Essentially, stringent performance
guarantees can only be afforded to one system, while the other system can only achieve a
best-effort performance level.

The majority of prior studies [12–18] have focused on enhancing radar functionality
while accommodating communication constraints through beamforming methodologies,
thereby shaping a communication-centric DFRC system. For instance, efforts have been
made to minimize errors in beampattern matching while guaranteeing a pre-defined level
of SINR for each communication user, as demonstrated in [12–14]. Under a similar com-
munication performance constraint, the optimization of the Cramér–Rao bound (CRB)
for target estimation was pursued to directly assess sensing capabilities in [15–17]. Ad-
ditionally, joint designs for transmit and receive beamforming were developed in [18] to
maximize the SINR at the radar receiver while meeting spectral efficiency requirements.
These communication-centric designs, however, prioritize communication performance
over sensing, so radar performance is much worse than it would be without communication
functions. In order to ensure better sensing performance, the authors of [19] designed
hybrid beamforming solutions to optimize the weighted sum of the communication spectral
efficiency and the radar beampattern matching errors. It is possible to achieve the desired
trade-off between communication and radar by adjusting the weight coefficients. Likewise,
in [20], the receive SINR at the radar and multi-user interference were combined into a
composite objective function, and the transmit and receive beamformers were designed
jointly. Some recent designs tried to optimize the communication performance subject to
the beampattern mismatch error constraint [21,22], which better preserved the sensing per-
formance. However, these designs [19–22] still somewhat weaken the sensing performance
compared with a separate radar without communication functions.

To avoid the performance loss of the radar, it is possible to incorporate communication
functions into pre-designed radar systems, leading to a radar-centric DFRC system. To-
wards this goal, some earlier studies have tried to embed communication information into
radar signals to achieve dual functionality. For example, by employing waveform diversity
and sidelobe control, information sequences were embedded into radar pulses in [23]. Nev-
ertheless, such information embedding designs cannot utilize the spatial diversity gains of
multi-input–multi-output (MIMO). As MIMO radar sensing strongly relies on the transmit
covariance of waveforms [24,25], some recent works optimized the communication perfor-
mance under the prescribed transmit covariance constraint for stringent sensing quality
assurance. Optimal transmit waveform/beamforming designs were proposed under the
instantaneous covariance constraint in [26] or under the average covariance constraint
in [27]. However, the approaches in [26,27] could not be extended to more general MIMO
DFRC systems that admit transmissions of multiple data streams for each communication
user. In view of this, our previous work [28] put forth efficient (linear) transmit and receive
beamforming designs to aid in maximizing user rates under the prescribed transmission
covariance constraint in MIMO DFRC systems.

The beamforming schemes in [28] can significantly improve the communication
(i.e., spectral efficiency) performance of DFRC systems while strictly preserving the radar
sensing performance. Yet, such a linear beamforming design cannot effectively eliminate
the inter-user interference and interference between radar and communication signals,
thereby hindering further improvements in the communication rates. To overcome this
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limitation, in this paper, we propose to adopt dirty paper coding (DPC) to perform effective
interference (pre-)cancellation at the transmitter (i.e., the base station) of downlink commu-
nications and address optimal beamforming designs for a DPC-based MIMO DFRC system
that detects several targets and communicates with a number of users simultaneously on
the same hardware platform.

The key contributions of this work are summarized as follows:

• We put forth novel beamforming design approaches to achieve the maximum weighted
communication sum rate with specified transmit covariance for a DPC-based MIMO
DFRC system.

• We reformulate the intended problem and develop a block coordinate descent (BCD)
method that calculates transmit and receive beamforming solutions in an alternating
manner by leveraging the connection between the weighted sum rate and the weighted
minimum mean squared error (MMSE).

• With this BCD approach, the optimal receive beamforming design can be obtained
in closed form, and the optimal transmit beamforming design can be cast into a
quadratic optimization problem defined on a complex Stiefel manifold. Based on the
majorization–minimization (MM) approach, an iterative algorithm is then developed
to compute the optimal transmit beamforming design by solving a series of orthogonal
Procrustes problems (OPPs) that admit closed-form optimal solutions.

The subsequent sections of this paper are structured as follows: Section 2 delineates
the system model. In Section 3, we introduce a proficient BCD algorithm aimed at attaining
a high-performance beamforming configuration. Section 4 presents simulation outcomes,
succeeded by the conclusions outlined in Section 5.

Notation: Boldface upper- and lowercases stand for matrices and vectors, respectively;
(·)T , (·)H , (·)−1, Tr(·), det(·), and || · ||F signify the transpose, conjugate transpose, inverse,
trace, determinant, and Frobenius norm of a matrix, respectively; for a symmetric matrix
A, A ⪰ 0 signifies that A is positive semi-definite; In stands for the n × n identity matrix;
Cn×m represents the set of n × m complex matrices; Re{·} stands for taking the real part of
a complex variable, while E{·} stands for taking ensemble expectation; CN (·, ·) represents
the complex normal distribution.

2. System Model

We explore a MIMO DFRC setup where a base station (BS) concurrently detects J
distant targets and communicates with K downlink users on the same hardware platform.
We use Figure 1 to illustrate the setup. The BS is outfitted with Ntx transmitting antennas,
while each user possesses Nrx (Nrx ⩽ Ntx) receiving antennas. We use Hk ∈ CNrx×Ntx to
represent the channel matrix between the BS and user k. We assume that the perfect channel
state information (CSI) is known both at the transmitting side and the receiving side.

Radar waveforms and communication symbols are precoded into the transmit
signal x(n):

x(n) = Fcc(n) + Frr(n), n = 0, 1, · · · , (1)

where c(n) = [cT
1 (n), · · · , cT

K(n)]
T encompasses D = d × K streams of information, un-

dergoing precoding through the utilization of the communication beamforming matrix
Fc = [F1, · · · , FK] ∈ CNtx×D. Here, Fk ∈ CNtx×d is designated as the beamforming matrix
for transmitting the (multi-stream) communication symbol vector ck(n) ∈ Cd to user k at
time n from the BS. For sensing purposes, a radar signal vector r(n), comprising (Ntx − D)
random symbols generated independently [27], is transmitted concurrently with c(n), and
it undergoes precoding using a radar beamforming matrix Fr ∈ CNtx×(Ntx−D).

It is assumed that the communication symbol vectors of different users are mutually
independent, which means that E{c(n)cH(n)} = ID. Additionally, it is also assumed
that the overall communication symbol vector is irrelevant to the radar signal vector, i.e.,
E{r(n)cH(n)} = 0(Ntx−D)×D.
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Figure 1. An illustration of the system model.

2.1. Sensing Performance Guarantee

For the signal model (1) under consideration, communication beamforming matrix
Fc can be used for the sensing purpose jointly with radar beamforming matrix Fr, since
it is perfectly known at the BS. We denote the overall Ntx × Ntx beamforming matrix by
F = [Fc, Fr]. The sensing performance of a MIMO radar is highly related to its transmit
beampattern, which depends on the covariance of transmit signals, i.e.,

Rx = E{x(n)xH(n)} = FFH = FcFH
c + FrFH

r . (2)

To better preserve the sensing performance, a desired transmit covariance matrix (Rdes)
should be designed in advance according to the specific application requirements [24].
Then, the transmit covariance is required to match the predetermined Rdes, as given by

FFH = Rdes. (3)

By enforcing this transmit covariance constraint on F, the sensing performance can
be guaranteed. From this constraint, we can observe the importance of introducing radar
waveforms precoded by Fr in such a DFRC system. To be specific, if Fr = 0, in other
words, only communication symbols are transmitted, the rank of Rx cannot exceed D with
Rx = FcFc

H . As a result, the prescribed Rdes whose rank is larger than D can never be
satisfied. With the introduced Fr, the degree of freedom (DoF) of Rx is equal to the number
of transmitting antennas, Ntx, and any prescribed Rdes can be met with an appropriate
combination of Fc and Fr.

It is noteworthy that the transmit covariance constraint (3) essentially imposes a
limitation on the power allocation for the transmit beamforming matrix (F). The overall
transmit power can be explicitly determined as P = Tr(FFH) = Tr(Rdes) under a particular
Rdes. In conventional beamforming optimization scenarios, the power allocation restriction
might manifest as Tr(FFH) ⩽ Pmax, where Pmax denotes the maximum allowable power
budget at the BS. In our DFRC system, as the radar always probes signals with the maximal
available power, we should always have Tr(FFH) = Pmax. Thus, the transmit power
constraint on F can be implicitly incorporated into constraint (3) for compactness.

2.2. DPC for Multi-User Communications

Although the transmit covariance constraint (3) strictly preserves the sensing perfor-
mance, it will, in turn, damage the performance of downlink multi-user communications.
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Specifically, to zero-force the interference from the other users’ signals and the radar signals,
the transmit beamforming matrix (F) should satisfy [29]

R0 = HFFHHH , (4)

where we have H = [HH
1 , · · · ,HH

K ]H and R0 is the block diagonal. Nevertheless, with
FFH = Rdes in (3), the term HFFHHH is fixed for the given channel matrix H and the pre-
designed transmit covariance Rdes , making it hard to meet (4). As a result, the interference
cannot be pre-canceled effectively by the linear transmit beamforming design of F.

To further improve the communication performance, we resort to the non-linear
precoding technology, i.e., DPC, to eliminate the interference arising from the other users’
signals and the radar signals at the transmitter. From an information-theoretic perspective,
if the transmitter is aware of the interference, the capacity of an additive white Gaussian
noise (AWGN) channel in the presence of the interference is equal to that of an AWGN
channel without interference [30]. The key to this interesting result is the use of DPC,
which can effectively pre-cancel all the known mutual interference among the multiple data
streams. Based on the principles of DPC, we can serially encode first the radar signals and
then the communication users’ signals. After encoding radar signal r(n), the signal of each
user is encoded in reverse order, i.e., from the K-th user to the first user. In this way, when
performing DPC for the k-th user’s signal ck(n), the signals r(n) and ck+1(n), · · · , cK(n)
have already been encoded, while c1(n), · · · , ck−1(n) have not. Thus, the interference
from the radar signals and users (k + 1), · · · , K is known, and the interference from users
1, · · · , (k − 1) is unknown at the transmitter. The signal received by user k is written as

ȳk(n) = HkFkck(n)︸ ︷︷ ︸
desired signal

+ Hk ∑
i<k

Fici(n)︸ ︷︷ ︸
effective interference

+ Hk ∑
i>k

Fici(n)︸ ︷︷ ︸
known interference

+ HkFrr(n)︸ ︷︷ ︸
known interference

+ nk(n)︸ ︷︷ ︸
effective interference

, (5)

where nk(n) ∈ CNrx represents AWGN with zero mean and covariance matrix σ2INrx . The
noise is assumed to be irrelevant to radar and communication signals. With the help of
DPC, the known interference, i.e., the third and fourth terms on the right-hand side (RHS)
of (5), can be eliminated at the receiver of user k. Thus, the effective received signal at user
k consists of only the desired signal and the effective noise, as given by

yk(n) = HkFkck(n) + Hk ∑
i<k

Fici(n) + nk(n). (6)

By using a linear reception beamforming matrix labeled Gk ∈ CNrx×d, the signal approxi-
mation at user k can be represented as

ĉk(n) = GH
k yk(n). (7)

To evaluate the performance of downlink communications, the weighted sum rate
is selected as the performance metric. For the DPC-based MIMO DFRC system under
consideration, the weighted sum rate can be denoted by

C =
K

∑
k=1

ωkCk, (8)

where weight ωk is utilized to indicate the priority of user k in our system. Based on the
signal model (6), the achievable rate (Ck) of k-th user can be calculated as

Ck = log det(Id + FH
k HH

k (σ2INrx + ∑
i<k

HkFiFH
i HH

k )−1HkFk). (9)
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Our goal is to design the Fc and Fr that achieve the maximum weighted sum rate
in (8) subject to the transmit covariance constraint (3) to guarantee the sensing performance
preferentially.

3. Proposed Beamforming Design

Based on objective (8) and constraint (3), we wish to solve the following optimiza-
tion problem:

max
F

K

∑
k=1

ωk log det(Id + FH
k HH

k (σ2INrx + ∑
i<k

HkFiFH
i HH

k )
−1

HkFk) (10a)

s.t. FFH = Rdes. (10b)

Note that as explained in Section 2, the transmit power budget constraint has been incor-
porated into Rdes in (10b). Clearly, problem (10) exhibits non-convexity arising from its
non-convex objective and quadratic equality constraint. In what follows, we put forth a
BCD-type algorithm to solve this problem.

3.1. Problem Reformulation

To facilitate an efficient solver for (10), we transform the non-convex objective (10b)
into an equivalent form based on the relation between the weighted sum rate and the
weighted MMSE. This is performed by first using G = [G1, . . . , GK] to collect all receive
beamforming matrices of all downlink users. The MSE matrix of k-th user can be written as

Ek(G, F) = E{(ĉk(t)− ck(t))(ĉk(t)− ck(t))H}
= Id − 2 Re{GH

k HkFk}+ ∑
i⩽k

GH
k HkFiFH

i HH
k Gk + σ2GH

k Gk. (11)

The original problem can then be reformulated into a matrix weighted sum–MSE problem:

min
F,G,W

K

∑
k=1

ωk(Tr(WkEk)− log det(Wk)) (12a)

s.t. FFH = Rdes, (12b)

where we introduce the weight matrices Wk ⪰ 0, ∀k, as auxiliary optimization variables.
It is observed that (12) consists of variables F, G, and W. The equivalence between prob-
lems (10) and (12) can be established by the introduced lemma [31,32].

Lemma 1. The optimal transmit beamforming solutions (F∗) to the problems in (10) and (12)
coincide. Furthermore, F∗ stands as a stationary point solution for (10) only if it constitutes a
stationary point solution (F∗, G∗, W∗) for (12).

Based on Lemma 1, a BCD-type method can be readily developed as follows.

3.2. BCD Method

Since the optimization variables in (12) are composed of F, G, and W, we may optimize
them in an alternating manner. The whole procedure includes the following steps.

(1) Optimizing G with fixed F and W
Solving Gk for (12) is equivalent to minimizing Tr(WkEk). Here, the positive semi-

definite Wk only serves as a coefficient matrix. Hence, minimizing Tr(WkEk) is equivalent
to minimizing Tr(Ek). Given F in (11), it is clear that the MMSE receive beamformer should
be adopted by user k, i.e.,

Gmmse
k = (∑

i⩽k
HkFiFiHH

k + σ2INrx)
−1HkFk, ∀k. (13)
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(2) Optimizing W with fixed F and G
By substituting (13) into (11), the MSE matrix of user k now becomes

Emmse
k = Id − FH

k HH
k (∑

i⩽k
HkFiFiHH

k + σ2INrx)
−1HkFk. (14)

With fixed F and G, we have an unconstrained convex problem regarding W, to which the
optimal solution is

W∗
k = (Emmse

k )−1, ∀k. (15)

This is obtained based on the first-order optimality condition of Wk.
(3) Optimizing F with fixed W and G
The most challenging phase of the suggested BCD strategy to tackle (12) involves

the optimization of the transmit beamforming matrix, F. The subproblem for F can be
written as

min
F

K

∑
k=1

ωk[Tr(WkGH
k Hk ∑

i⩽k
FiFH

i HH
k Gk)− 2 Re{Tr(WkGH

k HkFk)}] (16a)

s.t. FFH = Rdes. (16b)

Obviously, (16) is a non-convex problem stemming from the quadratic equality constraint
in (16b). Unlike (13) and (15), a closed-form optimal solution cannot be derived for (16). In
what follows, we put forward an iterative algorithm to resolve this problem efficiently.

3.3. Optimization of Transmit Beamforming Matrix F

To solve (16), we first transform it into a quadratic problem defined on a complex
Stiefel manifold. There is indeed inherent orthogonality among the transmit beamforming
vectors due to the transmit covariance constraint in (16b). To see it, Cholesky decomposition
is applied to Rdes, i.e.,

Rdes = LLH , (17)

where L ∈ CNtx×Ntx is a lower triangular matrix.
We substitute (17) into (16b) and then rewrite (16b) as

L−1FFHL−H = INtx . (18)

With F̃ = L−1F and H̃k = HkL for brevity of notation, we can equivalently rewrite (16) as

min
F̃

K

∑
k=1

ωk[Tr(WkGH
k H̃k ∑

i⩽k
F̃iF̃H

i H̃H
k Gk)− 2 Re{Tr(WkGH

k H̃kF̃k)}] (19a)

s.t. F̃F̃H = INtx . (19b)

Given F̃ = [F̃c, F̃r], we can obtain F̃H
c F̃c = ID and F̃H

r F̃r = INtx−D. Additionally, it is ob-
served that objective (19a) is only a function of F̃c and that F̃r only contributes to meet
constraint (19b). This is because the radar signals would not interfere with communi-
cation signals due to the use of DPC at the transmitter. For this reason, we can replace
constraint (19b) with F̃H

c F̃c = ID by taking F̃c as the optimization variable, instead of F̃.
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We can also perform the following rearrangements on (19a)

K

∑
k=1

ωk[Tr(WkGH
k H̃k ∑

i⩽k
F̃iF̃H

i H̃H
k Gk)− 2 Re{Tr(WkGH

k H̃kF̃k)}] (20a)

=
K

∑
k=1

Tr(ωkWkGH
k H̃k ∑

i⩽k
F̃iF̃H

i H̃H
k Gk)−

K

∑
k=1

2 Re{Tr(ωkWkGH
k H̃kF̃k)} (20b)

(a)
=

K

∑
k=1

Tr(∑
i⩽k

F̃H
i ωkH̃H

k GkWkGH
k H̃kF̃i)−

K

∑
k=1

2 Re{Tr(ωkWkGH
k H̃kF̃k)} (20c)

(b)
=

K

∑
k=1

Tr(F̃H
k (

K

∑
i=k

ωiH̃H
i GiWiGH

i H̃i)F̃k)−
K

∑
k=1

2 Re{Tr(ωkWkGH
k H̃kF̃k)}, (20d)

where (a) is based on Tr(AB) = Tr(BA) and (b) is obtained through polynomial rearrange-
ments of the first term in (20c).

We define Mk =
K
∑

i=k
ωiH̃H

i GiWiGH
i H̃i and Nk = ωkWkGH

k H̃k in (20); we can then

equivalently rewrite (16) as

min
F̃c

K

∑
k=1

Tr(F̃H
k MkF̃k)−

K

∑
k=1

2 Re{Tr(NkF̃k)} (21a)

s.t. F̃H
c F̃c = ID. (21b)

Notice that (21) is a quadratic problem defined on a complex Stiefel manifold, according
to the non-convex orthogonality constraint in (21b). Although (21) is non-convex, an MM
optimization approach can be employed to solve it iteratively by tackling a series of OPPs,
with a closed-form solution per iteration.

To be specific, each iteration of the MM approach involves two procedures [33]:
(i) (majorization) finding a surrogate function that provides a local upper bound to the
objective function and (ii) (minimization) minimizing the surrogate function. By selecting
an appropriate surrogate function, solving the original difficult problem can be replaced by
solving a sequence of approximate problems that are easy to deal with. In the context of
this paper, we can find a linear surrogate function for (21a) at each iteration of MM and
transform each approximate problem per iteration into an OPP, resulting in a closed-form,
globally optimal solution. The details are as follows.

First, we construct the surrogate function as follows: By denoting the current local point
in the t-th iteration as F̃t

c and defining (21a) as f (F̃c), we have the following proposition.

Proposition 1. f (F̃c) is upper-bounded by a linear function g(F̃c|F̃t
c) at F̃t

c , as given by

f (F̃c) ⩽ g(F̃c|F̃t
c) ≜

K

∑
k=1

2 Re{Tr(F̃H
k KkF̃t

k)} −
K

∑
k=1

2 Re{Tr(F̃H
k NH

k )}+ const, (22)

where Kk ≜ Mk − λmax
k INtx and λmax

k is the largest eigenvalue of Mk. We use “const” to represent
a constant term. Additionally, the equality is achieved at F̃t

c.

Proof. Since the second term of f (F̃c), i.e., −
K
∑

k=1
2 Re{Tr(NkF̃k)}, is linear, we only need

to construct a surrogate function for the first term of f (F̃c), i.e.,
K
∑

k=1
Tr(F̃H

k MkF̃k). Since

Tr(F̃H
k MkF̃k) is convex with respect to F̃k, it cannot be readily upper-bounded by using its

first-order Taylor’s expansion. Thus, we perform the following reformulations:
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Tr(F̃H
k MkF̃k) = Tr(F̃H

k (Mk − λmax
k I)F̃k) + Tr(F̃H

k (λmax
k I)F̃k) (23a)

(a)
= Tr(F̃H

k KkF̃k) + λmax
k d, (23b)

where (a) is based on Kk ≜ Mk − λmax
k INtx and Tr(F̃H

k F̃k) = d as implied by (21b).
Since Kk is now a negative semi-definite matrix, the term Tr(F̃H

k KkF̃k) is concave over
F̃k. Thus, it is upper-bounded by its first-order Taylor’s expansion, as given by

Tr(F̃H
k KkF̃k) ⩽ 2 Re{Tr(F̃H

k KkF̃t
k)}+ const, (24)

where the equality is taken at F̃t
c.

Then, we have

f (F̃c) =
K

∑
k=1

Tr(F̃H
k MkF̃k)−

K

∑
k=1

2 Re{Tr(F̃H
k NH

k )} (25a)

(a)
=

K

∑
k=1

Tr(F̃H
k KkF̃k)−

K

∑
k=1

2 Re{Tr(F̃H
k NH

k )}+ const (25b)

(b)
⩽

K

∑
k=1

2 Re{Tr(F̃H
k KkF̃t

k)} −
K

∑
k=1

2 Re{Tr(F̃H
k NH

k )}+ const (25c)

= g(F̃c|F̃t
c). (25d)

where (a) is based on (23) and (b) holds due to (24). The proposition then readily follows.

Based on Proposition 1, problem (21) is transformed into an approximate problem at
point F̃t

c in the t-th iteration with the objective replaced by g(F̃c|F̃t
c), i.e.,

min
F̃c

K

∑
k=1

2 Re{Tr(F̃H
k KkF̃t

k)} −
K

∑
k=1

2 Re{Tr(F̃H
k NH

k )}+ const (26a)

s.t. F̃H
c F̃c = ID. (26b)

For (26a), we drop the constant term and perform the following rearrangements:

K

∑
k=1

Re{Tr(F̃H
k KkF̃t

k)} −
K

∑
k=1

Re{Tr(F̃H
k NH

k )}

=
K

∑
k=1

Re{Tr(F̃H
k (KkF̃t

k − NH
k ))}

= Re{Tr(F̃H
c [K1F̃t

1 − NH
1 , · · · , KK F̃t

K − NH
K ])}.

(27)

By defining Q = [−K1F̃t
1 + NH

1 , · · · ,−KK F̃t
K + NH

K ] and turning minimization into maxi-
mization, problem (26) can be rewritten as

max
F̃c

Re{Tr(F̃H
c Q)} (28a)

s.t. F̃H
c F̃c = ID. (28b)

Interestingly, while problem (28) remains non-convex, it has an equivalent OPP reformula-
tion as affirmed by the lemma below.
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Lemma 2. Problem (28) can be equivalently transformed into the following OPP:

min
F̃c

||Q − F̃c||2F (29a)

s.t. F̃H
c F̃c = ID. (29b)

Proof. Notice that

||Q − F̃c||2F = Tr(QHQ + F̃H
c F̃c − 2 Re{F̃H

c Q}). (30)

In (30), Q is fixed in each iteration, and Tr(QHQ) is thus a constant. Additionally, we also
have Tr(F̃H

c F̃c) = D by constraint (29b). It then readily follows that the majorization of
Re{Tr(F̃H

c Q)} is equivalent to the minimization of ||Q − F̃c||2F.

Referring to Proposition 7 of [34], problem (29) indeed has a closed-form, globally
optimal solution. To be specific, we perform SVD on matrix Q, i.e., Q = UQΣQVH

Q , where
ΣQ collects the eigenvalues of Q along its diagonal in descending order. Then, we can
achieve the unique optimal solution for (29), as given by

F̃∗
c = UQ(1 : D)VH

Q , (31)

where UQ(1 : D) consists of the first D columns of UQ.
Note that the optimal F̃∗

c is also the optimal solution for (26) based on the equivalence
between (26) and (29). Having obtained the optimal F̃∗

c for (26), at the t-th iteration, we can
update the current local point as

F̃t+1
c = F̃∗

c , (32)

and repeat the process.
The convergence of the proposed MM algorithm can be guaranteed, since the whole

procedure generates a sequence {F̃t
c}∞

t=0 that monotonically decreases the objective value
of f (F̃c) in (21a), i.e.,

f (F̃t+1
c ) ⩽ g(F̃t+1

c |F̃t
c) ⩽ g(F̃t

c|F̃t
c) = f (F̃t

c), (33)

and f (F̃c) is lower-bounded over a compact feasible set. Upon convergence, the optimal
radar beamforming matrix, F̃∗

r , should be projected into the null space of F̃∗
c by con-

straint (19b). Based on the SVD of Q = [−K1F̃∗
1 + NH

1 , · · · ,−KK F̃∗
K + NH

K ], it can be readily
inferred that

F̃∗
r = UQ(D + 1 : Ntx), (34)

where UQ(D + 1 : Ntx) consists of the last (Ntx − D) column vectors of UQ. Then, we have
F̃∗ = [F̃∗

c , F̃∗
r ], which, in turn, leads to F∗ = LF̃∗. As the F̃∗

c obtained by the MM method is a
stationary point solution for problem (21) [35], F∗ is also a stationary point for the original
subproblem (16) by the equivalence between the problems in (16) and (21).

3.4. Analysis of Overall Algorithm

The overall BCD procedure for solving (12) is formally described in Algorithm 1.

Algorithm 1 The proposed BCD algorithm for solving (12).

1: Initialize F = L.
2: Repeat
3: Given F, obtain Gk by (13), ∀k.
4: Given F and G, obtain Wk by (15) , ∀k.
5: Given G and W, obtain F̃ using MM approach and update F = LF̃.
6: Until convergence.
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The convergence of Algorithm 1 can be guaranteed, since each iteration decreases objec-
tive (12a) with a lower bound resulting from (12b). Additionally, objective (12a) is differentiable
and the constraint set that can be decoupled among F, G, and W with independent subprob-
lems in (12). It readily follows from [36] that BCD-based Algorithm 1 certainly converges
to at least a stationary point (F∗, G∗, W∗) of problem (12). By the equivalence between
problems (10) and (12) established in Lemma 2, we immediately deduce that the corre-
sponding F∗ at point (F∗, G∗, W∗) is also a stationary point for the original problem (10).

With the optimal transmit beamforming matrix F∗ obtained by Algorithm 1, to achieve
the corresponding maximum rate at user k, the optimal receive beamforming matrix should
adopt the classic MMSE form, as given by (cf. (13))

Gmmse
k = (∑

i⩽k
HkFiFiHH

k + σ2INrx)
−1HkFk. (35)

For the subproblem at each step of the proposed BCD algorithm, we either obtain a
closed-form solution (cf. (13) or (15)) or iteratively solve it by using the MM method with a
closed-form solution available per iteration. This leads to fast convergence to a high-quality
beamforming design, as also verified numerically in Section 4.

The complexity of the proposed BCD is dominated by the optimization of F based
on the MM method, i.e., Step 5 in Algorithm 1. Each iteration of MM for computing the
optimal F only involves an SVD of Q and matrix multiplications. Hence, the per-iteration
complexity of MM is O(NtxD2). Let us suppose that the numbers of iterations before
convergence of the MM method and the overall BCD are T1 and T2, respectively. The
overall complexity of BCD-based Algorithm 1 is O(T2T1NtxD2). As a result, BCD-based
Algorithm 1 has (low) polynomial-time computational complexity.

One limitation of the proposed approach is that the implementation of the DPC scheme
at the transmitter could increase the complexity of multi-user MIMO DFRC systems to some
extent. Additionally, compared with the previous work [28], which admits a closed-form
solution for globally optimal transmit beamforming, we adopt the MM method to optimize
transmit beamforming F iteratively, leading to extra computational complexity.

4. Numerical Results

A Monte Carlo simulation is performed to assess the proposed scheme. Let us suppose
that the BS and the communicating users are both equipped with uniform linear arrays with
even antenna spacing. The spacing between adjacent antennas is set to half wavelength.
By default, there are Ntx = 16 antennas at the BS. Let us assume that the same number of
receiving antennas is used for radar echo signals. Channel fading model Hk, ∀k, is based on
Rayleigh fading; in other words, each element in Hk obeys the standard complex Gaussian
distribution CN (0, 1). The BS performs full-power transmissions with the total transmit
power budget being P, and the transmit signal-to-noise-ratio (SNR) is defined as P/σ2.

For the purpose of sensing, we suppose that the radar system detects J = 3 targets
of interest with angles of θ1 = −60◦, θ2 = 0◦, and θ3 = 60◦. We can design the prescribed
transmit covariance matrix (Rdes) by solving a classic least-squares problem to minimize the
mismatch errors between the designed radar beampattern and the ideal radar beampattern,
as in [24]. The ideal beampattern (P̃d(θ)) composed of three main beams with a beam width
of ∆ = 9◦ each is given by

P̃d(θ) =

{
1, if θj − ∆/2 ⩽ θ ⩽ θj + ∆/2, j = 1, 2, 3;
0, otherwise.

The designed radar beampattern is illustrated in Figure 2 with Ntx = 16.
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Figure 2. Designed transmit beampattern for the radar.

To compare with “Proposed BCD” solution yielded by Algorithm 1, we introduce the
following benchmark schemes:

• Dual program [27]: DPC is also utilized for the sum rate maximization by using
the downlink–uplink duality scheme, which can achieve a globally optimal solution.
Nevertheless, this scheme only applies to multi-input–single-output (MISO) systems,
supporting transmissions of the single data stream to each user. To ensure a fair
comparison, when each user possesses multiple receiving antennas, the row with
the largest 2-norm in the corresponding channel matrix is selected for implementing
this scheme.

• Without DPC [28]: Here, beamforming designs are put forth for MIMO DFRC systems
without DPC at the transmitter. A BCD-type method is used to optimize the sum rate
of communication users.

• Cholesky: The transmission beamforming matrix is designated as F = L, where L
is derived through Cholesky decomposition applied to Rdes, as defined in (17). It is
worth mentioning that L also acts as the starting point in our proposed BCD approach.

Let us suppose that there exist K = 4 users, each equipped with Nrx = 2 receiving
antennas. Unless otherwise specified, it is assumed that each user has the same priority
in the system, i.e., ωk = 1, ∀k. The BS transmits d = 2 data streams to each user. Figure 3
illustrates the spectral efficiency (the achievable sum rate under the unit bandwidth) of
various beamforming strategies across different transmit SNRs. The results demonstrate the
notable superiority of the proposed BCD scheme over alternative benchmark approaches.
To be specific, the proposed design performs much better (e.g., 128% higher spectral
efficiency at a 30 dB SNR) than the scheme in [28] without DPC at the transmitter, especially
in a high SNR regime. Since the transmit beamforming matrix is confined by the transmit
covariance constraint in (3), the interference from the other users’ signals and the radar
signals cannot be zero-forced effectively if DPC is not performed at the transmitter, which
then limits the achievable data rate of each user.
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Figure 3. Spectral efficiency versus transmit SNR under different schemes.

On the contrary, utilizing DPC at the transmitter enables interference cancellation
even within the confines of the transmit covariance constraint, resulting in significantly
enhanced overall spectral efficiency. In comparison with the “dual program”, which only
accommodates d = 1 data stream for each user, our proposed BCD solution can achieve
a minimum of 73% higher spectral efficiency. This validates the efficacy of our approach
in leveraging MIMO transmissions to augment communication capacity through the joint
design of transmit and receive beamforming. Intriguingly, when we execute the proposed
algorithm with d = 1, the attained spectral efficiency closely matches the globally optimal
performance obtained by the “dual program”, suggesting that our scheme may offer a
near-optimal beamforming solution in multi-user scenarios. Moreover, the notable contrast
in performance, exemplified by approximately a 20-fold increase in spectral efficiency at a
30 dB SNR, between our suggested BCD approach and Cholesky decomposition highlights
the considerable advantages stemming from our BCD iterations.

Figure 4 plots spectral efficiency against the number of users under different schemes,
where we set Nrx = 2 and SNR = 20 dB. It is shown that the proposed BCD scheme obtains
the best performance. As the number of users increases in the DFRC system, we observe
that the overall spectral efficiency improves more if DPC is adopted at the transmitter.
This is due to the fact that the transmit beamforming matrix is confined by the transmit
covariance constraint, and the interference among different users cannot be eliminated
effectively by linear precoding technology. Hence, when more users are introduced into the
system, the interference imposed on other users increases significantly, leading to worse
performance than the DPC-based scheme.

Figure 5 illustrates spectral efficiency at varying transmit SNRs alongside diverse con-
figurations of transmitting and receiving antennas. Enhanced spectral efficiency is observed
when each user is outfitted with additional receiving antennas, owing to the provision of
heightened diversity gain. Nevertheless, in the absence of DPC at the transmitter, spectral
efficiency experiences only marginal augmentation with an escalation in the number of
transmitting antennas, particularly notable when Nrx = 2. This phenomenon stems from
the transmit covariance constraint hindering the effective utilization of the supplementary
degrees of freedom introduced by an expanded number of transmitting antennas. Con-
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versely, for the DPC-based DFRC system, discernible enhancements in communication
performance are apparent with an increase in either transmitting or receiving antennas.
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Figure 4. Spectral efficiency versus number of users under different schemes.
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Figure 5. Spectral efficiency versus transmit SNR with different numbers of transmitting and receiv-
ing antennas.

Figure 6 shows the convergence behavior of the proposed algorithm (Algorithm 1)
under different transmit SNRs with d = 2, K = 4, and Nrx = 2. It is evident that the
proposed BCD scheme converges within only a few iterations, especially in a low SNR
regime. To be specific, when SNR = 10 dB or 20 dB, the algorithm converges within about
ten iterations. When SNR = 30 dB, as much as 85% of the converged spectral efficiency can
be obtained after ten iterations.
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Figure 6. Convergence behavior of Algorithm 1 with Ntx = 16, d = 2, K = 4, and Nrx = 2.

5. Conclusions

Under a prescribed transmit covariance constraint, we developed the optimal beam-
forming design for MIMO DFRC systems that use DPC. A new BCD-type algorithm was
employed to iteratively compute the transmit beamforming and the receive beamform-
ing solutions. Under this approach, the optimal receive beamforming aligned with the
classic MMSE approach, and the optimal transmit beamforming was obtained by solving
a quadratic optimization problem defined on a complex Stiefel manifold. The overall
algorithm converged fast to a high-quality beamforming design with low computational
complexity. Simulation results demonstrated the superiority of the proposed scheme over
the existing benchmarks, with at least 73% higher spectral efficiency in a high-SNR regime.
It was also shown that a minimum of 85% of the converged spectral efficiency could be
obtained after ten iterations.
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6G sixth generation
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DFRC dual-function radar communication
MIMO multi-input–multi-output
MISO multi-input–single output
BS base station
SINR signal-to-interference-plus-noise ratio



Electronics 2024, 13, 1846 16 of 17

SNR signal-to-noise ratio
CRB Cramér–Rao bound
DoF degree of freedom
MSE mean square error
BCD block coordinate descent
MM majorization–minimization
SVD singular value decomposition
CSI channel state information
AWGN additive white Gaussian noise
GBC Gaussian broadcast channel
DPC dirty paper coding
OPP orthogonal Procrustes problems
RHS right-hand side
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