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Abstract: An interleaved high voltage gain DC-DC converter with winding-cross-coupled inductors
(WCCIs) and voltage multiplier cells is proposed for photovoltaic systems. The converter config-
uration is based on the interleaved boost converter integrating the diode-capacitor clamp circuits,
the winding-cross-coupled inductors, and voltage multiplier cells to increase the voltage gain and
reduce the semiconductor voltage stresses. The equal current sharing of two phases is achieved
with the help of the winding-cross-coupled inductors. The converter achieves high voltage gain
while operating at a proper duty ratio. The low-voltage-rated MOSFETs with low on-resistance are
available to reduce the conduction losses due to the low switch voltage stress. The leakage energy of
the coupled inductors is recycled such that the voltage spikes on the power switches are avoided.
The input current ripple is decreased due to the interleaved operation. The operating principle and
steady-state analysis of the proposed converter are proposed in detail. The design guidelines of
the proposed converter are given. In addition, the closed-loop controlled system of the proposed
converter is designed to diminish the effect of the variations in input voltage and load on the output
voltage. Finally, the experimental results of a 1000 W converter prototype with 36 V input and 400 V
output are given to validate the theoretical analysis and the converter performance.

Keywords: interleaved high voltage gain converter; winding-cross-coupled inductor; voltage
multiplier cell

1. Introduction

Due to the global warming problem, the reduction in greenhouse gas emissions is
one of the most significant methods. Renewable energy power systems have become
increasingly important to achieve the goal of net zero emissions. Renewable energy sources
such as photovoltaic (PV) and fuel cells often play a central role in distributed systems.

There are two kinds of PV grid-connected systems [1,2], as shown in Figure 1. The
PV system with a high-voltage DC bus is shown in Figure 1a. Each PV module connects a
high step-up DC-DC converter to the high-voltage DC bus and then it uses a single inverter
to convert the DC power to the AC grid. Figure 1b shows a PV grid-connected system
without a high-voltage DC bus. Each PV module is connected to the AC grid via a high
step-up DC-DC converter and a DC-AC inverter. The output voltage of a PV module
is generally 20–50 V and it cannot provide enough DC voltage for generating AC line
voltage. If the AC grid voltage is 220 Vac, a 380/760 V DC bus voltage is required for the
full-bridge/half-bridge inverter. Therefore, the high voltage gain DC-DC converters are
needed in the PV systems to connect the PV modules with the high-voltage DC bus due
to the low voltage generated by the PV modules. Then, an inverter is used to convert the
voltage of the DC bus to the AC grid. In addition, the high voltage gain DC-DC converters
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are also used in data centers and electric vehicles [3,4]. Consequently, the high voltage gain
DC-DC converter is a topic worthy of study.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 18 
 

 

to the low voltage generated by the PV modules. Then, an inverter is used to convert the 

voltage of the DC bus to the AC grid. In addition, the high voltage gain DC-DC converters 

are also used in data centers and electric vehicles [3,4]. Consequently, the high voltage 

gain DC-DC converter is a topic worthy of study. 

 
(a) 

 
(b) 

Figure 1. A PV grid-connected system. (a) With high voltage DC bus; (b) Without high voltage DC 

bus. 

A conventional boost DC-DC converter can provide high voltage gain with an ex-

treme duty ratio theoretically. However, the voltage gain is practically limited due to the 

parasitic effect. A boost DC-DC converter with extreme duty ratio operation will lead to 

a large current ripple, severe diode reverse-recovery problem, and high switching losses 

[5]. Furthermore, the high voltage stress on the switch and the diode results in large con-

duction losses and switching losses. These problems are the main limitations of conven-

tional boost converters for high-voltage gain applications. The isolated converter topolo-

gies like the flyback DC-DC converter can achieve high voltage gain by selecting the high 

turns ratio of the transformer. However, the leakage inductance can cause high voltage 

spike such that a high-voltage-rated switch is needed. In order to overcome the limitations 

and problems, the high voltage gain DC-DC converters have become one of the research 

topics in the field of power electronics in the recent years. Many high voltage gain DC-DC 

converter topologies have been proposed in the literature. 

The research review of the high step-up DC-DC converters and voltage-boost tech-

niques are presented in [5–7], which are very worthy of reference. The coupled inductor 

technique is a common method for high voltage gain DC-DC converters [8–11]. The turns 

ratio of the coupled inductor can be used as a design freedom of the voltage gain. The 

High

Step-up 

DC-DC

Converter

High

Step-up 

DC-DC

Converter

High

Step-up 

DC-DC

Converter

20-50 V 380/760 VDC

+ -

DC-AC

Inverter

High

Step-up 

DC-DC

Converter

DC-AC

Inverter

High

Step-up 

DC-DC

Converter

DC-AC

Inverter

High

Step-up 

DC-DC

Converter

DC-AC

Inverter

20-50 V

Figure 1. A PV grid-connected system. (a) With high voltage DC bus; (b) Without high voltage
DC bus.

A conventional boost DC-DC converter can provide high voltage gain with an extreme
duty ratio theoretically. However, the voltage gain is practically limited due to the parasitic
effect. A boost DC-DC converter with extreme duty ratio operation will lead to a large
current ripple, severe diode reverse-recovery problem, and high switching losses [5].
Furthermore, the high voltage stress on the switch and the diode results in large conduction
losses and switching losses. These problems are the main limitations of conventional boost
converters for high-voltage gain applications. The isolated converter topologies like the
flyback DC-DC converter can achieve high voltage gain by selecting the high turns ratio of
the transformer. However, the leakage inductance can cause high voltage spike such that a
high-voltage-rated switch is needed. In order to overcome the limitations and problems,
the high voltage gain DC-DC converters have become one of the research topics in the
field of power electronics in the recent years. Many high voltage gain DC-DC converter
topologies have been proposed in the literature.

The research review of the high step-up DC-DC converters and voltage-boost tech-
niques are presented in [5–7], which are very worthy of reference. The coupled inductor
technique is a common method for high voltage gain DC-DC converters [8–11]. The turns
ratio of the coupled inductor can be used as a design freedom of the voltage gain. The
switched inductor and switched capacitor technologies [12–14] are employed to achieve
high voltage gain. It has the advantages of simple circuit configuration and low voltage
stress on the switch and diode. The interleaved high step-up DC-DC converters with
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voltage multiplier cells, composed of the coupled inductor, diode, and capacitor, are pro-
posed in [15,16], which can achieve high voltage gain without operating at an extreme duty
ratio. In order to reduce the switching losses, high step-up converters with zero-voltage
switching performance are proposed to reduce the switching losses [17–20]; however, the
converter has more power switches and the driving circuit is more complex. The winding-
cross-coupled inductor technique for the high voltage gain converter has been proposed
in [21–24]. The performance comparison is made in this article.

A novel interleaved high voltage gain DC-DC converter with winding-cross-coupled
inductors and voltage multiplier cells is proposed in this article. The proposed converter is
suitable for the requirement in the PV grid-connected systems. The features of the proposed
converter are as follows:

(1) The high voltage gain can be achieved without working at an extreme duty ratio;
(2) The voltage stresses on the semiconductor devices are low such that the low-voltage-

rated MOSFETs with low on-resistance Rds(on) and diodes with low forward voltage
drop can be selected to reduce the conduction losses;

(3) The input current ripple is reduced by the interleaved operation;
(4) The diode reverse-recovery problem is alleviated due to the leakage inductances of

the coupled inductors;
(5) The leakage energy of the coupled inductors is recycled such that the voltage spikes

are avoided during the switch turned-off transient.

The proposed converter with these features is suitable for the applications of high
voltage gain, high efficiency, and high power. A 1000 W laboratory prototype with 36 V
input and 400 V output is implemented. The experimental results are provided to validate
the performance of the proposed converter.

2. Converter Configuration and Operation Principles

The configuration of the proposed high voltage gain DC-DC converter with two phases
is shown in Figure 2, where S1 and S2 are the power switches with the parasitic capacitors
CS1 and CS2, respectively; C1 and C2 are the clamp capacitors; C3 and C4 are the switched
capacitors; C5 and C6 are the voltage-doubler capacitors; Co is the output capacitor; D1 and
D2 are the clamp diodes; D3 and D4 are the switched diodes; D5 and D6 are the voltage-
doubler diodes; and D7 and D8 are the output diodes. There are two winding-cross-coupled
inductors (WCCIs) in the proposed converter. The coupling reference of the WCCIs is
denoted by “∗” and “•”. The primary winding of each WCCI with n1 turns is used as
the filter inductor. The secondary winding with n2 turns couples to the inductor in its
phase and the tertiary winding with n3 turns couples to the inductor in another phase. The
voltage multiplier cell (VMC) consists of two diodes and two capacitors together with the
secondary winding and the tertiary winding in series, which is used to increase the voltage
gain and reduce the semiconductor voltage stresses.
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The circuit model of the coupled inductor is presented as a combination of an ideal
transformer, a magnetizing inductance, and two leakage inductances. Lm1 and Lm2 are the
magnetizing inductances; Lk1 and Lk2 are the leakage inductances in the primary windings
of WCCIs; Ls1 is the summation of the leakage inductances in the secondary winding of
WCCI I and the tertiary winding of WCCI 2; and Ls2 is the summation of the leakage
inductances in the tertiary winding of WCCI 1 and the secondary winding of WCCI 2. The
equivalent circuit of the proposed converter is shown in Figure 3.
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The switches S1 and S2 operate in the interleaved mode with 180◦ phase shift and the
same duty ratio. The duty ratio is greater than 0.5 to obtain high voltage gain. The parallel
input configuration with interleaved operation reduces the input ripple current.

In this article, assuming that the coil turns n3 is equal to n2, the turns ratio is defined
as n = n2/n1 = n3/n1 for the two WCCIs. When the proposed converter is operated in the
continuous conduction mode (CCM), the steady-state waveforms of the proposed converter
are shown in Figure 4.
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There are 10 operational stages in one switching period and the equivalent circuits for
each stage are shown in Figure 5. Due to the symmetrical structure, only five operational
stages are chosen to analyze.
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Figure 5. Operational stages of the proposed converter.

Stage 1 [t0 − t1]: As shown in Figure 5a, the switch S1 is turned OFF at t = t0, while
the switch S2 remains in the ON-state and all the diodes are in the OFF-state. The current
of leakage inductance Lk1 starts to charge the parasitic capacitance CS1 of switch S1. The
drain–source voltage vds1 of the switch S1 increases from zero linearly due to the very small
value of CS1. The voltage relationship is

vds1(t) = vCs1(t0) +
1

Cs1

∫ t

t0

iCs1(t) dt ∼=
iLk1(t0)

Cs1
(t − t0) (1)

Stage 2 [t1 − t2]: As shown in Figure 5b, the switch S1 is in the OFF-state and the switch
S2 is in the ON-state. When the drain–source voltage vds1 increases to reach the voltage
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of the clamp capacitor C2 at t = t1, the clamp diode D1 starts to conduct and the voltage
stress on the switch S1 is clamped at the voltage VC2. The clamp capacitor C2 is charged by
the leakage current iLk1. The reverse-biased voltage of the output diode D7 decreases. The
clamp capacitor voltage is

VC2(t) = VC2(t1) +
1

C2

∫ t

t1

iC2(t) dt ∼= VC2(t1) +
1

C2

∫ t

t1

iLk1(t) dt (2)

Stage 3 [t2 − t3]: As shown in Figure 5c, the switch S1 remains in the OFF-state and S2
remains in the ON-state. The reverse-biased voltage of the output diode D7 decreases to
zero and it begins to conduct at t = t2. The current rising rate of the diode D7 is controlled
by the leakage inductances Ls1 and Lk1. As the current through the diode D7 increases, the
current through the diode D1 decreases. In this stage, the clamp capacitor C1, the secondary
winding of WCCI 1, and the tertiary winding of WCCI 2 as well as the voltage-doubler
capacitor C5 play as voltage sources, which are in series to enlarge the output voltage. Part
of the leakage current iLk1 flows to charge clamp capacitor C2 through diode D1 and switch
S2. Part of the leakage current iLk1 delivers to the output side through the clamp capacitor
C1, the windings of WCCI 1 and WCCI 2, voltage-doubler capacitor C5, and output diode
D7. The input voltage source, coupled inductors, and capacitors C1 and C5 are in series to
transfer energy to the output load. Moreover, the switched capacitor C4 is discharged to
voltage-doubler capacitor C6 through diode D6 and the windings of WCCI 1 and WCCI 2
in the second phase. The current relationships are given by

iLm1 = iLk1 + in1 (3)

iLk1 = iD1 + iC1 = iD1 + iD7 (4)

in1 =
n2

n1
iD3 +

n3

n1
iD6 (5)

iS2 = iLk2 + iD1 (6)

The energy stored in the magnetizing inductance Lm1 transfers to switched capacitor
C3 through the WCCIs in its phase and to voltage-doubler capacitor C6 through the WCCIs
in another phase.

Stage 4 [t3 − t4]: As shown in Figure 5d, the switch S1 is turned on at t = t3 and the
switch S2 remains in ON-state, while diodes D1, D2, D4, D5, D7, and D8 are reverse-biased.
The current through leakage inductance Lk1 increases very quickly. The energy stored in
magnetizing inductance Lm1 still transfers to the voltage multiplier cells when the condition
iLk1 < iLm1 is satisfied. Currents iD3 and iD6 decrease and their current falling rates are
controlled by the leakage inductances.

Stage 5 [t4 − t5]: As shown in Figure 5e, switches S1 and S2 are both in the ON-state.
When the leakage current iLk1 increases and reaches iLm1 at t = t5, i.e., iLk1 = iLm1, the
energy transfer of magnetizing inductance ends. All the diodes are reverse-biased. The
magnetizing inductances Lm1 and Lm2 as well as the leakage inductances Lk1 and Lk2 are
linearly charged by the input voltage. The current relationships are given by

iLk1(t) = iLk1(t4) +
Vin

Lm1 + Lk1
(t − t4) (7)

iLk2(t) = iLk2(t4) +
Vin

Lm2 + Lk2
(t − t4) (8)

This stage ends when the switch S2 is turned OFF at t = t5. Due to the symmetrical
structure, a similar operation proceeds in the next five stages.

3. Steady-State Analysis

To simplify the steady-state analysis of the proposed converter, the switches and
diodes are assumed to be ideal. The leakage inductances are neglected. All capacitors
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are large enough, so the voltages on the capacitors are considered to be constant in one
switching period. Due to the symmetrical structure of the converter circuit, it is feasible
to consider the values of relevant components to be equal such as Lm1 = Lm2, C1 = C2,
C3 = C4, and C5 = C6. Only stages 3, 5, 8, and 10 are considered in the steady-state analysis
because the time transitions of stages 1, 2, 4, 6, 7, and 9 are significantly short.

3.1. Voltage Gain Derivation

Applying the volt-second balance principle to the magnetizing inductances Lm1 and
Lm2, the voltages on the clamp capacitors C1 and C2 can be derived from

VC1 = VC2 =
1

1 − D
Vin (9)

where D is the duty ratio. The voltages on the switched capacitors and the voltage-doubler
capacitors can be derived from the KVLs around the loops of the equivalent circuits of
Stage 3 and Stage 8, respectively.

VC3 = VII
n3 − VI

n2 = nVin − n(Vin − VC2) =
n

1 − D
Vin (10)

VC4 = VI
n3 − VII

n2 = nVin − n(Vin − VC1) =
n

1 − D
Vin (11)

VC6 = VC4 + VII
n2 − VI

n3 =
2n

1 − D
Vin (12)

VC5 = VC3 + VI
n2 − VII

n3 =
2n

1 − D
Vin (13)

The output voltage can be derived from the KVL around the loop of the equivalent
circuit of Stage 3 and Equations (9)–(13)

Vo = VC5 + VC3 + VC1 + VC2 =
3n + 2
1 − D

Vin (14)

Consequently, the voltage gain is given as below

Vo

Vin
=

3n + 2
1 − D

(15)

It is clear that there are two degrees of freedom to design the voltage gain: duty ratio
and turns ratio of the winding-cross-coupled inductor (WCCI). The relation curves of
voltage gain versus the duty ratio and the turns ratio of WCCI are shown in Figure 6. If
the duty ratio is 0.6, the voltage gain is 12.5 with turns ratio n = 1. Therefore, the proposed
converter can achieve high voltage gain with a proper duty ratio.
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3.2. Voltage Stresses on Semiconductors

Based on the operation principles and the results of Equations (9)–(13), the voltage
stresses on the switches and the diodes can be derived as

VS1 = VS2 =
1

1 − D
Vin =

1
3n + 2

Vo (16)

VD1 = VD2 =
2

1 − D
Vin =

2
3n + 2

Vo (17)

VD3 = VD4 = VD5 = VD6 =
2n

1 − D
Vin =

2n
3n + 2

Vo (18)

VD7 = VD8 =
2n + 1
1 − D

Vin =
2n + 1
3n + 2

Vo (19)

It can be seen from Equations (16)–(19) that the voltage stresses on the switches and
diodes are determined by the turn ratio of the WCCIs and the output voltage. The switch
voltage stress decreases as the turn ratio n increases. The switch voltage stress is only one-fifth
of the output voltage with n = 1. The low-voltage-rated MOSFETs with low Rds(on) can be
adopted to reduce the conduction losses compared with the conventional boost converter.
The relation curves between the normalized voltage stress ratio and the turns ratio are shown
in Figure 7. It can be seen that the voltage stress ratio of diodes D1 and D2 decreases with
the increase in the turns ratio. The voltage stress ratio of diodes D3~D8 increases with the
increase in turns ratio. Their maximum voltage stress ratio approaches 0.67. Therefore, the
diode voltage stress always remains lower than the output voltage. The low-voltage-rated
diodes with low forward voltage drop can be adopted to reduce the conduction losses.
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3.3. Performance Comparison

The performance comparison between the proposed converter and the existing con-
verters [21–24] is shown in Table 1. The voltage gain of the proposed converter is the
highest and the voltage stress on the switches is the lowest. The highest voltage stress on
the diodes of the proposed converter is lower than that of the converters in [21,22,24].

Table 1. Converter performance comparison.

High Voltage Gain Converter Converter in
[21]

Converter in
[22]

Converter in
[23]

Converter in
[24]

Proposed
Converter

Voltage gain 2n+2
1−D

3n+1
1−D

2n+2
1−D

2n+2
1−D

3n+2
1−D

Voltage stress Vo
2n+2

Vo
3n+1

Vo
2n+2

Vo
2n+2

Vo
3n+2

Maximum diode
voltage stress

(2n+1)Vo
2n+2

2nVo
3n+1

(2n+1)Vo
2n+2

(2n+1)Vo
2n+2

(2n+1)Vo
3n+2
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Table 1. Cont.

High Voltage Gain Converter Converter in
[21]

Converter in
[22]

Converter in
[23]

Converter in
[24]

Proposed
Converter

Number of switches 2 2 2 2 2
Number of diodes 6 8 6 6 8

Number of capacitors 5 7 5 5 7
Number of coupled inductor 2 2 2 2 2

Voltage gain
n = 1, D= 0.6 10 10 10 10 12.5

4. Converter Design Guidelines
4.1. WCCIs Turns Ratio Design

The turns ratio design is important because it determines the voltage gain of the proposed
converter and the voltage stresses of semiconductors. An appropriate turns ratio can be
designed according to the Equation (15) if a proper duty ratio is selected, which is given by

n =
(1 − D)Vo

3Vin
− 2

3
(20)

Once the turns ratio is designed, the voltage stresses on the switches and the diodes
can be determined from the Equations (16)–(19).

4.2. Magnetizing Inductance Design

The magnetizing inductance of the coupled inductor is designed to operate in CCM and
ripple current consideration. Let ILm denote the average current through the magnetizing
inductor and ∆iLm denotes its ripple current, then the condition of CCM operation is given by

ILm − 1
2

∆iLm > 0 (21)

Based on the operation principles, the magnetizing inductances of WCCIs can be
calculated as

Lm >
D(1 − D)2Ro

(3 n + 1)2 fs
(22)

where fs is the switching frequency.

4.3. Capacitor Design

The capacitances are designed to suppress the voltage ripple to an acceptable level. The
rated voltage of each capacitor can be obtained from Equations (9)–(13). Once the ripple voltage
ratio ∆VC/VC is determined, the selections of the corresponding capacitors are given by

C1 =
3n + 2

2Ro fs(∆VC1/VC1)
, C2 =

3n + 2
2Ro fs(∆VC2/VC2)

(23)

C3 =
3n + 2

2nRo fs(∆VC3/VC3)
, C4 =

3n + 2
2nRo fs(∆VC4/VC4)

(24)

C5 =
3n + 2

4nRo fs(∆VC5/VC5)
, C6 =

3n + 2
4nRo fs(∆VC6/VC6)

(25)

The output capacitor selection is obtained as

Co =
2D − 1

Ro fs(∆VCo/VCo)
(26)
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5. Closed-Loop Controller Design

In order to diminish the effect of the variations in input voltage and load on the
output voltage, there are some reported controllers used in the closed-loop controlled
system design, such as sliding-mode control [25,26], model predictive control [27], and
voltage dual-loop control [28]. However, the implementation of these control methods is
more complicated. In this paper, a voltage-mode control method is used and designed
for the closed-loop controlled system to keep a regulated output voltage in spite of the
variations in the input voltage and output load. The control method is popular and low
cost by using the pulse-width modulated controller integrated circuit (PWM IC). The block
diagram of the closed-loop control system is shown in Figure 8, where C(s) is the controller
transfer function; 1/VP is the pulse-width modulator gain; VP is the amplitude of sawtooth
waveform in the PWM circuit; P(s) is the duty ratio-to-output transfer function of the
proposed converter; and K is the feedback gain of sensing output voltage.
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Figure 8. Diagram of the feedback control system.

The frequency response analyzer NF FRA51602 is employed to measure the Bode plot
from the control signal ṽctrl to the sensing output voltage signal Kṽo at the operating point
of the converter prototype. The measured Bode plot is shown in Figure 9 in a red line.
Then, the curve-fitting method by the MATLAB R2021a software is used to establish the
control-to-sensing output transfer function of G(s), where

G(s) =
Kṽo(s)
ṽctrl(s)

=
K
Vp

P(s) (27)
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The small-signal transfer function by the curve-fitting method is obtained as

G(s) =
0.023572 × (s + 6000)(s + 24000)(9400 − s)

(s + 17050)(s2 + 1945.6s + 2310400)
(28)

The Bode plot of the measured result (in red line) together with the Bode plot of
the transfer function G(s) (in blue line) are shown in Figure 9. It can be seen that good
agreement of the curves up to the frequency 3 × 104 rad/ sec has been obtained. Therefore,
the transfer function G(s) is feasible to be used in the controller design.

A Type III controller is designed based on the K factor approach [29] in this article,
which is widely used in the control loop for the power converter. Especially, it is employed
for the controlled plant that has a big phase lag around the gain crossover frequency. The
controller circuit, known as the Type III amplifier, is shown in Figure 10 and its small-signal
transfer function can be written in the following form.

ṽctrl(s)
Kṽo(s)

= −R1 + R3

R1R3C2

(
s + 1

R2C1

)(
s + 1

(R1+R3)C3

)
s
(

s + 1
R2C1C2/(C1+C2)

)(
s + 1

R3C3

) (29)

Electronics 2024, 13, x FOR PEER REVIEW 12 of 18 
 

 

The Bode plot of the measured result (in red line) together with the Bode plot of the 

transfer function ( )G s  (in blue line) are shown in Figure 9. It can be seen that good agree-

ment of the curves up to the frequency 43 10 rad/ sec  has been obtained. Therefore, the 

transfer function ( )G s  is feasible to be used in the controller design. 

 

Figure 9. Comparison of frequency responses. 

A Type III controller is designed based on the K factor approach [29] in this article, 

which is widely used in the control loop for the power converter. Especially, it is em-

ployed for the controlled plant that has a big phase lag around the gain crossover fre-

quency. The controller circuit, known as the Type III amplifier, is shown in Figure 10 and 

its small-signal transfer function can be written in the following form. 

2 1 1 3 31 3

1 3 2

2 1 2 1 2 3 3

1 1
+

( + )( )

( ) 1 1
+

/( )

ctrl

o

s s
R C R R Cv s R R

Kv s R R C
s s s

R C C C C R C

  
+   

+   
= −

  
+   

+  

 (29) 

 

Figure 10. Type III amplifier. 

Assuming 2 1C C  and 3 1R R , then 

-40

-30

-20

-10

0

M
a

g
n

it
u

d
e

 (
d

B
)

 

 

10
1

10
2

10
3

10
4

10
5

-225

-180

-135

-90

-45

0

P
h

a
s
e

 (
d

e
g

)

 

 

Bode Diagram

Frequency  (rad/sec)

curve fitting

measurement

curve fitting

measurement

refV

oKv
1R

3R
2R

3C
1C

2C

+

−

ctrl
v

+

−

Figure 10. Type III amplifier.

Assuming C2 ≪ C1 and R3 ≪ R1, then

ṽctrl(s)
Kṽo(s)

≈ − 1
R3C2

(
s + 1

R2C1

)(
s + 1

R1C3

)
s
(

s + 1
R2C2

)(
s + 1

R3C3

) (30)

The controller has three poles and two zeros, including one pole at the origin. From
a viewpoint, it consists of an integrator and two sets of phase leaders. The integrator is
helpful to achieve zero steady-state errors for the constant reference input. The phase leader
can provide the required phase boost to maintain a reasonable phase margin and to make
the control system stable. In order to meet the specifications of a gain crossover frequency
of 1 kHz and phase margin of more than 50◦, the controller is designed as

C(s) = 350000 × (s + 1399)(s + 1361)
s(s + 27040)(s + 28570)

(31)

The six passive components of the Type III amplifier are implemented with R1 =
100 kΩ, R2 = 330 kΩ, R3 = 7.2 kΩ, C1 = 1.8 nF, C2 = 0.13 nF, and C3 = 5.9 nF.

The Bode plots of the open-loop transfer function TOL(s) =C(s)G(s) , the controller
C(s), and the plant G(s) are shown in Figure 11. It can be seen that the control system
has a 1 kHz gain crossover frequency and a 57◦ phase margin. The controller provides a
maximum phase boost at the crossover frequency.
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6. Experimental Results

A 1000 W laboratory prototype with an input voltage of 36 V and an output voltage
of 400 V is implemented for performance verification. The PWM IC TL494 is used in the
prototype, which is low-cost and easy to compensate. The reliability of the control system
is improved. The parameters of the converter prototype are shown in Table 2. The primary,
secondary, and tertiary winding are made of 20 turns. The powder core CH467125 is used
in the winding-cross-coupled inductors. The following experimental waveforms shown in
Figures 12–15 are measured at a full-load condition.

The experimental waveforms of the gate signals vgs1 and vgs2 and the drain-to-source
voltages vds1 and vds2 of the switches are shown in Figure 12a. It is verified that the converter
achieves high voltage gain over 11 times without an extreme duty ratio. The switch voltage
stress is about 80 V, which is only one-fifth of the output voltage and agrees with the
analysis results of Equation (16). Consequently, the low-voltage-rated MOSFETs with low
Rds(on) can be adopted to reduce the conduction losses. The experimental waveforms of
the input current iin and the leakage currents iLk1 and iLk2 are shown in Figure 12b. The
average currents of iLk1 and iLk2 are almost equal with the help of winding-cross-coupled
inductors and converter configuration. The input current is equally shared in two phases
such that the device current stresses are reduced. Furthermore, the leakage current ripples
are 20.53 A and the input current ripple is only 3.6 A. The input current ripple is greatly
reduced owing to the interleaved operation.

Table 2. Parameters of the converter prototype.

Components Parameters

Switching frequency fs 40 kHz
Turns ratio of coupled inductor n 1
Magnetizing inductances Lm1, Lm2 140 µH
Leakage inductances Lk1, Lk2 0.6 µH
Clamp capacitors C1, C2 22 µF
Switched capacitors C3, C4 22 µF
Voltage-doubler capacitors C5, C6 22 µF
Output capacitor Co 32 µF
Switches S1, S2 IRFP4227
Diodes D1, D2, D3, D4, D5, D6 MBR20200CT
Diodes D7, D8 STTH3003CW
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The experimental waveforms of the voltage and current on the clamp diodes and the
output diodes are demonstrated in Figure 13a,b. The reverse recovery problem of each
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diode is alleviated due to the existence of leakage inductances. Furthermore, the voltage
stress on the clamp diodes D1 and D2 is about 160 V and that on the output diodes D7 and
D8 is 240 V, which is much lower than the output voltage and consistent with the analysis
results of Equations (17) and (19).

The voltage waveforms of the clamp capacitors C1 and C2, the switched capacitors C3
and C4, and the voltage-doubler capacitors C5 and C6, are shown in Figure 14. The voltages
VC1, VC2, VC3, and VC4 are about 80 V and the voltages VC5 and VC6 are about 160 V, which
are consistent with the analysis results of Equations (9)–(13).

The experimental waveforms of the output voltage and the output current under the
step load variation between 500 W and 1000 W are illustrated in Figure 15a. Furthermore,
the experimental waveforms of the output voltage and the input voltage variation between
36 V and 42 V are shown in Figure 15b. It can be seen that the transient voltage ripple of
the output voltage is very small. The output voltage regulation performance is excellent
because the controller in the closed-loop control system is well-designed.

The experimental conversion efficiency at different loads is measured by the power
analyzer HIOKI 3390 (HIOKI E.E. Corporation, Nagano, Japan), as shown in Figure 16. The
maximum efficiency is 97.40% at 200 W. The efficiency of 90.40% is achieved at a 1000 W
full-load. The results show that the proposed converter has an efficiency higher than 90%
for the overall load conditions.
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It is worth mentioning that the thermal management of power converters has gained
significant attention due to high power density and reliability considerations [30,31]. Cool-
ing technologies have been a research area in the power electronic converter [32]. Therefore,
thermal management is a topic worthy of further research in the future.

7. Conclusions

A new interleaved high voltage gain DC-DC converter with winding-cross-coupled in-
ductors and voltage multiplier cells is proposed for photovoltaic systems in this article. The
operation principles, steady-state analysis, closed-loop controller design, and experimental
verifications of the proposed converter are presented in detail. The high voltage gain can
be achieved for the proposed converter with a proper duty ratio operation. The switch
voltage stress is low such that the low-voltage-rated MOSFETs with low on-resistance can
be adopted to reduce the conduction losses. Moreover, the diode voltage stress is low such
that the diodes with low forward voltage drop can be adopted to reduce the conduction
losses. The interleaved operation reduces the input current ripple. The clamp circuit can
clamp the switch voltage stress and recycle the leakage energy such that the switch turned-
off voltage spike can be avoided. The winding-cross-coupled inductor is helpful in making
the current auto-balance of two phases. In addition, a feedback controller is designed to
diminish the effect of the input voltage and load variations on the output voltage. Finally,
a 1000 W converter prototype is implemented and the experimental results are given to
validate the converter performance and the theoretical analysis. The proposed converter
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can clearly meet the requirements of high voltage gain and high-efficiency conversion of
photovoltaic systems.
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