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Abstract: Image inpainting infers the missing areas of a corrupted image according to the information
of the undamaged part. Many existing image inpainting methods can generate plausible inpainted
results from damaged images with the fast-developed deep-learning technology. However, they
still suffer from over-smoothed textures or textural distortion in the cases of complex textural
details or large damaged areas. To restore textures at a fine-grained level, we propose an image
inpainting method based on a hierarchical VQ-VAE with a vector credibility mechanism. It first
trains the hierarchical VQ-VAE with ground truth images to update two codebooks and to obtain
two corresponding vector collections containing information on ground truth images. The two vector
collections are fed to a decoder to generate the corresponding high-fidelity outputs. An encoder then
is trained with the corresponding damaged image. It generates vector collections approximating the
ground truth by the help of the prior knowledge provided by the codebooks. After that, the two
vector collections pass through the decoder from the hierarchical VQ-VAE to produce the inpainted
results. In addition, we apply a vector credibility mechanism to promote vector collections from
damaged images and approximate vector collections from ground truth images. To further improve
the inpainting result, we apply a refinement network, which uses residual blocks with different
dilation rates to acquire both global information and local textural details. Extensive experiments
conducted on several datasets demonstrate that our method outperforms the state-of-the-art ones.

Keywords: image inpainting; VQ-VAE; vector credibility; codebook

1. Introduction

Previous image inpainting methods have used a learning-free strategy, which can be
classified into two groups: diffusion-based approaches and patch-based approaches. The
diffusion-based approaches iteratively spread valid information from the outside of the
inpainting domain toward the inside based on partial differential equations and variational
methods. The patch-based approaches fill in the missing areas with patches from known
areas, and the patches should have the most similarity with surrounding known areas
of missing regions. However, these methods cannot restore semantic information and
complex textural details.

To acquire the semantic information of missing regions, many deep-learning-based
methods restore damaged areas using the learned data distribution and semantic informa-
tion through training on large-scale datasets. They use an encoder–decoder framework
to restore damaged regions. To obtain global information on images, some of them apply
attention-based modules or transformer blocks in their networks.

For further obtaining fine-grained inpainted results, many two-stage inpainting net-
works, multistage inpainting networks, or progressive inpainting frameworks are proposed.

Electronics 2024, 13, 1852. https://doi.org/10.3390/electronics13101852 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101852
https://doi.org/10.3390/electronics13101852
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4602-3550
https://doi.org/10.3390/electronics13101852
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101852?type=check_update&version=2


Electronics 2024, 13, 1852 2 of 17

Two-stage or multistage networks usually first produce coarse inpainted results; for exam-
ple, they first only restore structural information, edges, or images with a small receptive
field. Then, these intermediate results are used as input for the next stage to generate the
final result. Progressive inpainting approaches gradually reconstruct missing regions from
the boundary to the center of holes.

All the aforementioned learning-based methods use learned data distributions and
undamaged parts of images to reconstruct missing parts. However, for large damaged
areas or insufficient prior knowledge from existing parts, these methods cannot restore
satisfying results. To avoid degradation and better take advantage of prior knowledge
from ground truth images, we propose a hierarchical VQ-VAE-based image inpainting
method, which can take prior knowledge from ground truth images to promote the image
inpainting process. It first trains a hierarchical VQ-VAE with ground truth images to obtain
two codebooks and two vector collections. The two codebooks contain prior knowledge
from ground truth images, and the two vector collections pass through the decoder of the
hierarchical VQ-VAE to generate corresponding high-fidelity outputs. Then, we design an
encoder using corresponding damaged images as input to generate two vector collections
approximating the two vectors produced before with the help of the two codebooks to
generate the inpainted result through the decoder mentioned before. Finally, to further
enhance the inpainted result obtained by the hierarchical VQ-VAE, a multidilation-rate
inpainting module with different dilation rates is designed to use the output of the hier-
archical VQ-VAE as its input to acquire the final inpainted result. The damaged image
restored by the hierarchical VQ-VAE and multidilation-rate inpainting module in sequence
is shown in Figure 1. The main contributions of this work are as follows:

(1) We used ground truth images to train a hierarchical VQ-VAE-based network to update
two codebooks and obtain two vector collections, which can generate corresponding
high-fidelity outputs through a decoder. The codebooks contain global and local
information on ground truth images, so they can provide necessary information for
another encoder to restore images;

(2) We introduced a vector credibility mechanism to promote the encoder that uses
damaged images as input to generate two vector collections approximating the ones
from the ground truth images. Then, they are passed through the decoder to derive
inpainted images;

(3) We adopt a refinement network with residual blocks that use convolutional layers
with various dilation rates to further enhance the final output.
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Figure 1. Image inpainting examples. The first column is damaged images, the second column is
images inpainted by the hierarchical VQ-VAE, and the third is images refined by the multidilation-rate
inpainting module.

2. Related Works

Image inpainting has been a hot topic for more than twenty years and can be divided
into two classes: learning-based image inpainting and learning-free image inpainting. For
learning-based image inpainting, the technology predates the application of deep-learning
methods; previous image inpainting methods [1–4] used learning-free inpainting models.
However, these learning-free inpainting models cannot restore semantic information or
complex textures, and the current state-of-the-art image inpainting methods apply deep-
learning technology. Therefore, in this section, we will introduce and summarize learning-
based image inpainting methods.

2.1. Learning-Based Image Inpainting

In recent years, deep-learning methods have been widely used in image inpainting
themes, which can extract semantic information and textural details through training
on large-scale datasets and then use the learned information to restore damaged images.
Pathak et al. [5] first applied a deep-learning method for image inpainting. Pathak et al. [5]
utilized an encoder–decoder and trained it with adversarial loss and pixel-wise reconstruc-
tion loss. Iizuka et al. [6] introduced both local and global discriminators to improve the
method described in [5]. Liu et al. [7] designed a partial convolutional network to fill in ir-
regularly shaped holes, where the partial convolutional layers must contain one more valid
pixel. To acquire better inpainted results, they also applied L1 loss, perceptual loss, style
loss, and the total variation in the training process. Lian et al. [8] employed a dual-feature
encoder to obtain structural and textural features and then used skip connection to guide its
corresponding decoder to reconstruct the structural information and textural information.
Zeng et al. [9] designed a series of AOT blocks, which splits the kernel convolutional layer
into multiple sub-kernel layers with various dilation rates. Among them, the convolutional
layers with large receptive fields can acquire global information, and the convolutional
layers with small receptive fields can obtain local textural details.
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2.2. Transformer- or Attention-Based Image Inpainting

For obtaining global information and strengthening the relationship between distant
pixels and inpainting areas, some image inpainting themes [10–13] apply attention-based
inpainting models or transformer blocks [8,14–16] to gain global information on known
regions, which will be beneficial to the inpainted effect. Yang et al. [11] adopted an attention
mechanism to transform patches from known regions to unknown regions. This method
uses the local textural loss to ensure that each patch in the missing hole is similar to
its corresponding patch in known regions. Yu et al. [10] designed a generative network
with some contextual attention layers. The contextual attention layers substitute each
patch in the hole for weighted patches outside the hole, which take the similarity as the
weight value. Zhao et al. [17] utilized several transformer blocks as encoders and a CNN
as a decoder for blind image inpainting. The transformer blocks along with the cross-
layer dissimilarity prompt (CDP) obtain the global contextual information and identify
contaminated regions. The CNN utilizes the output of the previous transformer blocks
as input to further reconstruct the textural details. Liu et al. [18] employed an encoder
to convert masked images to non-overlapped patch tokens and then the UQ–transformer
handled the patch tokens and obtained the prediction from the codebook; finally, the
decoder obtained the final inpainting results. Miao et al. [16] employed an inpainting
transformer (ITrans) network to propose an encoder–decoder network together with global
and local transformers to inpaint damaged images. The global transformer propagated the
encoded global representation from the encoder to the decoder, and the local transform
extracted low-level textural details.

2.3. Multistage Image Inpainting

To generate fine-grained textural details, many image inpainting themes [19–21] adopt
two or more stages to inpaint damaged images. Nazeri et al. [22] used a Canny detector to
gain the edges of both damaged images and undamaged images and then an edge generator
used this edge information to produce the edges of damaged regions; finally, a completion
network obtained the final inpainted result based on the restored edges. Ren et al. [23] used
smoothed images without edges to train a structure reconstructor, which generated the
structures of the missing areas and then a texture generator employed the reconstructed
structures with an appearance flow to generate the final restored images. Huang et al. [24]
designed a two-stage approach based on a novel atrous pyramid transformer (APT) for
image inpainting. The inpainting method first uses several layers of APT blocks to restore
the semantic structures of images and then a dual spectral transform convolutional (DSTC)
module is applied to work together with the APT to infer the textural details of damaged
areas. Quan et al. [25] proposed a framework that decouples the inpainting process into
three stages. The framework first uses an encoder–decoder with a skip connection to
obtain a coarse inpainted result and then a shallow network with a small receptive field
to restore the local textures. Finally, a U-Net-like architecture with a large receptive field
obtains the final inpainted result. Some works [26–28] introduced progressive inpainting
themes. Zhang et al. [28] used four inpainting modules to fill in missing regions from
the boundary of the missing regions to the center. But it cannot restore irregular missing
regions. Guo et al. [26] used eight inpainting blocks with the same structure to inpaint
corrupted areas in sequence. Each inpainting block fills in a part of the missing areas,
and the output of a block is used as the input for the next block during the inpainting
process. Li et al. [27] used a series of RFR modules to iteratively fill in damaged areas and
update masks simultaneously and then compute the average output of these modules to
gain an intermediate output; finally, the intermediate output passed through a series of
convolutional layers to obtain the final result.

2.4. VQ-VAEs in Image Inpainting

Recently, VQ-VAEs have been widely used in image generation and image inpainting.
Van et al. [29] first proposed the VQ-VAE model and used it in image generation. They
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encoded ground truth images with an encoder and then quantized them to a vector col-
lection, which comprises a series of discrete vectors. Each vector is replaced by the most
similar one in a codebook. After all the vectors in the collection are replaced by the ones in
codebooks, the vector collection is passed through a decoder to obtain the corresponding
high-fidelity images. Van et al. [29] trained the encoder, the decoder, and the codebook
so that the codebook contained information on ground truth images and could be used
to generate high-fidelity images through the decoder. To acquire better generated results,
Razavi et al. [30] let ground truth images pass through two encoders in sequence, and the
quantized vectors were replaced by two codebooks in sequence. Then, the corresponding
two vector collections were merged together and passed through a decoder to gain the
corresponding high-fidelity images. Peng et al. [31] applied a VQ-VAE-based method for
image inpainting. They used ground truth images to train a VQ-VAE model and acquire
a codebook containing information on the ground truth images. Then, another VQ-VAE
model was used to inpaint damaged images, which used damaged images to produce
vector collections, and the vectors in the vector collection were replaced by the vectors in
the codebook according to the most similarity, the least similarity, and the kth similarity,
finally gaining k different vector collections. These collections passed through a decoder
to obtain k inpainted results. Zheng et al. [32] also trained a VQ-VAE with ground truth
images to obtain a codebook containing ground truth image information. Then, this method
passed a damaged image through another VQ-VAE encoder to generate a vector collection
and then replace the generated vector with the previously generated codebook; after that,
the replaced vector was inferred through a transformer. Finally, the decoder generated the
restored image.

3. Methodology

We propose an image inpainting framework based on a hierarchical VQ-VAE, and the
inpainting framework includes two submodules:

1. A hierarchical VQ-VAE inpainting module. As shown in Figure 2a, the ground
truth images pass through two encoders to gain two vector collections and two
codebooks. The vector collections are fed to a decoder to acquire corresponding
high-fidelity images. The two codebooks guide the corrupted image to generate two
vector collections approximating the previous image and then generate the restored
results through the decoder;

2. A multidilation-rate inpainting module. As shown in Figure 2b, this module comprises
an encoder–decoder framework and residual blocks containing convolutional layers
with various dilation rates.

In this section, we introduce the architecture of the VQ-VAE and then demonstrate
how the hierarchical VQ-VAE inpainting module inpaints damaged images and finally
explain how the multidilation-rate inpainting module further improves the result quality.

3.1. Vector-Quantized Variational Autoencoder (VQ-VAE)

As shown in Figure 2, our image inpainting framework is based on the VQ-VAE
model; therefore, we first introduce the architecture of the VQ-VAE. The architecture of the
VQ-VAE is shown in Figure 3 and is used in image generation, and we demonstrate it in
the following steps:

1. The ground truth images, denoted as G, are fed to an encoder and then flattened
into a vector collection, denoted as E(G), which comprises a series of 64-dimensional
vectors;

2. For each vector in E(G), we look up the most similar vector with it among all the
vectors in the codebook. Then, the vector in E(G) is replaced by the vector in the
codebook, as shown in Equation (1).

Q(G) = ek, k = argminj
∥∥E(G)− ej

∥∥
2 (1)
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3. After all the vectors in E(G) are replaced by the vectors in the codebook, E(G) becomes
another vector collection, denoted as Q(G). Q(G) is passed through a decoder to
obtain the high-fidelity images corresponding to the ground truth image, F.
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To let the VQ-VAE generate high-fidelity images, the encoder, the decoder, and the
codebook need to be trained; we define the loss function in Equation (2) to train the encoder
and decoder. In Equation (2), ∥F − G∥2

2 is used to train both the encoder and decoder,
and β∥sg(e)− E(G)∥2

2 is designed to train the encoder, which forces E(G) to approximate
the codebook, where the operator sg refers to the stop-gradient operation, and β is a
hyperparameter controlling the proportion of the loss function.

LVQ = ∥F − G∥2
2 + β∥sg(e)− E(G)∥2

2 (2)
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We also need to update the vectors of the codebook to let the codebook approximate
E(G). Instead of adopting the gradient back propagation and loss function, we use the
exponential moving average to update codebooks in every training iteration process, and it
can be described by the following equations, where n(t)

i denotes the number of vectors in

E(G) replaced by ei in the tth training iteration. ∑
N(t)

i
j E(G)

(t)
i, j denotes the sum of the vectors

in E(G) replaced by ei in the tth training iteration, and r = 0.99 is a decay parameter.

N(t)
i = rN(t−1)

i + (1 − r)n(t)
i , N(1)

i = n(1)
i , (3)

m(t)
i = rm(t−1)

i + (1 − r)∑n(t)
i

j E(G)
(t)
i, j, m(1)

i = ∑N(1)
i

j E(G)
(1)
i, j , (4)

e(t)i =
m(t)

i

N(t)
i

. (5)

3.2. Hierarchical VQ-VAE Inpainting Module

The process of the hierarchical VQ-VAE inpainting module about restoring corrupted
images can be divided into two steps: training the module with ground truth images and
training the module with damaged images. We will discuss it in the following two steps:

1. Training with ground truth images. The objectives for training the hierarchical VQ-
VAE inpainting module with ground truth images are image generation and updating
codebooks, which contain global and local information on ground truth images,
respectively. The hierarchical VQ-VAE training process is shown in Figure 2a, which
adopts a blue arrow and a black arrow to indicate this process. We discuss the
process as follows: The ground truth images, denoted as F1, are fed to EncoderA1,
to generate the intermediate output, Fmid1, and final output, E1F1. The vectors in
vector collection E1F1 are replaced by vectors in the codebook and then become
another vector collection, Q1, as mentioned in Section 3.1. Q1 and Fmid1 pass through
EncoderA2 to obtain vector collection Q2, like before. Q1 and Q2 contain the global
information and local details of ground truth images, respectively; they concatenate
together and pass through DecoderA to gain high-fidelity images, denoted as R1.
Finally, we train EncoderA1, EncoderA2, and DecoderA and update the codebooks so
that they can provide global and local information on ground truths;

2. Training with damaged images. As mentioned before, the vector collections, Q1
and Q2, can generate high-fidelity images, in which the differences with ground
truth images are hard to see. Therefore, we try to use damaged images as input to
generate two vector collections, which approximate Q1 and Q2, and these two vector
collections pass through DecoderA to obtain high-fidelity images as the inpainted
result. We design EncoderB1, which has a similar architecture with EncoderA1 and
uses damaged images as input, to generate the intermediate output, Fmid2, which
approximates Fmid1. Then, we design the loss function, as shown in Equation (6), to
train EncoderA1, forcing Fmid2 to approximate Fmid1, where Mmid denotes the mask,
M (0 for missing pixels; 1 otherwise), which is down-sampled 4 times, because Fmid1
and Fmid2 both do so. ⊙ denotes the Hadamard product as follows:

Lmid = ∥(Fmid1 − Fmid2)
⊙

Mmid∥1 + 8∥(Fmid1 − Fmid2)
⊙
(1 − Mmid)∥1. (6)

In addition, we design a series of transformer blocks to infer the vector collection
produced by EncoderB1 and let the inferred vector collection, E1F2, approximate E1F1, as
shown in Figure 2. We can utilize the L1 loss function in Equation (6), but without the mask
information, to train EncoderB1 and the transformer blocks to force Fmid2 to approximate
Fmid1. However, the effect after training is not so good; therefore, we design a vector
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credibility mechanism in the loss function to promote the Fmid2 approximation of Fmid1.
The vector credibility mechanism can be described as follows.

As shown in Figure 2, the training process of the VQ-VAE with ground truth images
forces the vectors in the vector collection and the codebook to be close to each other. After
the training process, a batch of ground truth images passes through the encoder to generate
a vector collection; for each vector in the vector collection, we look up the most similar
vector in the codebook to replace it and compute the distance between the vector in the
vector collection and the vector in the codebook. We use the maximal distance among the
vector collection as a threshold value, and the vector collection replaced by the codebook
vectors can represent the batch of ground truth images. After that, when damaged images
pass the VQ-VAE, if a vector from the damaged images is a longer distance than the
threshold away from the previously replaced vector collection (The vector that is the most
similar vector in the previously replaced vector collection is looked up, and the distance is
computed.), that vector can be regarded as being far away from the batch of ground truth
images, and we add a weight to the vector in the loss function to promote the closeness
of that vector to the vector from the ground truth images and vice versa. The details for
applying the vector credibility mentioned above to promote the E1F2 approximation of
E1F1 can be demonstrated in the following steps:

1. As shown in Figure 2, the ground truth images, F1, pass through EncoderA1 to
generate the vector collection, E1F1; meanwhile, the corresponding damaged images,
F2, pass through EncoderB1 to obtain the vector collection, E1F2. We denote Vi

A as
the ith vector in E1F1. For each Vi

A, we look up a vector, ej, which is the closest to
Vi

A in the codebook to take the place of it. We describe this process as follows in
Equation (7):

Vi
A = ej, j = argmink∥Vi

A − ek∥2. (7)

2. We define the L2 distance between Vi
A and ej as the distance between Vi

A and its
corresponding vector in the codebook, where ej is the most similar vector to Vi

A in all
the vectors in the codebook. We compute the maximal distance among all the vector
in vector collection E1F1 and then denote MaxDist as the maximal distance as follows
in Equation (8):

MaxDist = ∥Vk
A − ej∥2, k = argmaxi∥Vi

A − ej∥2. (8)

3. After all the vectors in E1F1 have been replaced by vectors in the codebook, E1F1

becomes another vector collection, Q1. We denote Vi
B as the ith vector in E1F2. For

each vector Vi
B in E1F2, we look up a vector, Qj

1, in Q1, which has the most similarity
with the vector Vi

B among all the vectors in Q1. We also define the L2 distance between
Vi

B and Qj
1 as the distance between Vi

B and Q1. The vector collection Q1 contains
information on ground truth images; therefore, if Vi

B is a long distance away from Q1,
Vi

B will have low credibility, and if Vi
B is a short distance away from Q1, Vi

B will have
high credibility. We let the vector in E1F2, which has a longer distance than MaxDist,
have a high weight in the loss function to promote that vector’s closeness to the
ground truth images. We design a vector collection, VW, as having the same weight
as E1F2. We denote VWi as the ith vector in VW. Each vector in VW is initialized as
follows in Equation (9):

VWi =

{
1, ∥ Vi

B − Qj
1∥2 > MaxDist

0, ∥ Vi
B − Qj

1∥2 ≤ MaxDist
. (9)

4. We define the loss function as follows in Equation (10), with a vector credibility
mechanism to force E1F2 to approximate E1F1:

LV = ∥E1F2 − E1F1∥2 + 8∥(E1F2 − E1F1)
⊙

VW∥2 (10)
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Equations (6) and (10) are loss functions to force Fmid2 to approximate Fmid1 and E1F2
to approximate E1F1. If E1F2 is close to E1F1 and they are both replaced by vectors in the
same codebook, the ground truth images and their corresponding damaged images will
obtain the same vector collection, Q1. Futhermore, if Fmid2 is close to Fmid1, the ground
truth images and their corresponding damaged images will gain the same vector collections,
Q1 and Q2. Finally, Q1 and Q2, generated by ground truth images or damaged images, pass
through DecoderA and will obtain the same results. From the above-mentioned analysis, if
we try to force E1F2 and Fmid2, which are generated by damaged images, to approximate the
corresponding E1F1 and Fmid1, which are produced by ground truth images, the damaged
images will obtain high-fidelity images as inpainted results through EncoderB1, EncoderA2,
and DecoderA2. In Figure 2, the red arrow and black arrow show the process to inpaint
damaged images.

There are two advantages in computing the loss of the vector collection between E1F2
and E1F1. First, although there still exist slight differences in the vectors in E1F2 and E1F1,
after training, sometimes, they may all be replaced by the same vectors in the codebook.
As a result, the slight differences between the vectors will be removed. Second, in the cases
of areas of large damaged regions and little-known information, the codebooks provide a
lot of prior information for image inpainting by virtue of their containment of information
on undamaged images, which is conducive to the reconstruction of damaged images.

3.3. Multidilation-Rate Inpainting Module

In Section 3.2, we forced E1F2 to approximate E1F1 and Fmid2 to approximate Fmid1.
However, there are still differences between E1F2 and E1F1 and between Fmid2 and Fmid1,
which cause blurriness or degradation in the result. In this section, we propose a multidilation-
rate inpainting module to solve this problem. The architecture of the multidilation-rate
inpainting module is shown in Figure 2b. It consists of an encoder, a decoder, and a stack of
multidilation-rate residual blocks. Each multidilation-rate residual block has convolutional
layers with various dilation rates. The overview of a multidilation-rate residual block is
shown in Figure 4. The input feature map is X, passing through four convolutional layers
with different dilation rates to generate four output feature maps with fewer channels. The
feature maps are concatenated as the new feature map, R(X), which has the same size
and number of channels as X. R(X) is passed through a convolutional layer and added
by X to form the final output, H(X). The convolutional layers in the residual block with
high dilation rates have a larger receptive field for global information. The ones with low
dilation rates concentrate on local details, which can relieve the blurriness caused by the
hierarchical VQ-VAE. Therefore, the multidilation-rate inpainting module can maintain
global information and structures from previous modules while maintaining clear textures.

3.4. Loss Functions

To define the loss functions, which are used to train the multidilation-rate inpainting
module, we denote Iin as input images, Iout as output images, Igt as ground truth images,
and M as a mask (0 for missing areas and 1 for known areas). We first define the Lhole loss
and Lvalid loss in Equations (11) and (12), respectively, where C, H, and W are the channel’s
size, the height, and the width of Igt.

Lhole =
∥
(
Iout − Igt

)⊙
(1 − M)∥1

C × H × W
(11)

Lvalid =
∥
(
Iout − Igt

)⊙
M∥1

C × H × W
(12)
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We define the perceptual loss, as shown in Equation (13), and define Icomp in Equation (14),
which set inpainted areas from Iout and others from Igt. In Equation (13), ϕi denotes feature
maps from the ith activation map of the ImageNet-pretrained VGG-19, and we set N = 5.

Lper =
N

∑
i=1

∥ϕi
(
Igt

)
− ϕi

(
Icomp

)
∥1 + ∥ϕi

(
Igt

)
− ϕi(Iout)∥1

Ci × Hi × Wi
(13)

Icomp = Iout
⊙
(1 − M) + Igt

⊙
M (14)

We further introduce the style loss, as shown in Equation (15), where G(·) denotes the
Gram matrix operation.

Lsty =
N

∑
i=1

∥G[ϕi(Igt)]− G[ϕi(Icomp)]∥1 + ∥G[ϕi(Igt)]− G[ϕi(Iout)]∥1

C3
i × Hi × Wi

(15)

We also used the TV loss as follows:

LTV = ∥Icomp(i, j + 1)− Icomp(i, j)∥1 + ∥Icomp(i + 1, j)− Icomp(i, j)∥1 (16)

The overall loss for the multidilation-rate inpainting module is as follows:

Ltotal = Lhole + Lvalid + Lper + Lsty + LTV. (17)

4. Experiments and Discussion

In this section, we will introduce the implementation details of our framework and
the mask generation process. Then, we will compare our method with four state-of-the-art
methods. Finally, we will discuss our ablation study.

4.1. Datasets and Implementation Details

Our network architecture is shown in Figure 2, and the number of transformer blocks
in Figure 2a is four. The number of multidilation-rate residual blocks in Figure 2b is eight.
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We use two NVIDIA RTX 3090s to train the network with 256× 256-sized images and masks
with a batch size equal to six. The model is optimized using an Adam optimizer with
β1 = 0 and β2 = 0.9 because the Adam optimizer combines the advantages of momentum
and RMSprop and because its effectiveness has been verified by a large number of deep
neural networks, especially transformers.

In this work, three public datasets, which are widely used for image inpainting tasks,
are adopted to evaluate the proposed model, including Places2 [33], CelebA [34], and
Paris StreetView [35]. In the hierarchical VQ-VAE inpainting module, the ground truth
and the corresponding damaged images are from the same image datasets; therefore, the
codebook generated by the ground truth images can provide useful information to restore
damaged images.

We design a program to draw masks with a certain proportion of the elements filled
with the integer 1 (integer 0 for damaged pixels and integer 1 for undamaged pixels). The
program first draws a mask image filled with the integer 1 and picks a pixel, P1, at random
to set it at 0. Then, the program chooses a pixel, P2, in four adjacencies of P1 to become 0;
after that, a pixel, P3, in the 4-neighborhood of P2, is also set at 0. We repeat this process
until the proportion of 0s reaches the threshold. We produce masks from proportions of 0s
from 10% to 60%. We generate 200 mask images for each certain proportion of 0s. Therefore,
we totally generate 200 × 51 = 10200 masks. We show some mask images in Figure 5.
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4.2. Comparisons
4.2.1. Qualitative Comparisons

We compare our method with four state-of-the-art methods developed in the last
4 years: FRRN [26], AOT [9], ITrans [16], and LG [25]. Figures 6–8 show the quantitative
comparisons of our method with four others for Places2, CelebA, and Paris StreetView.
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From the second row in Figure 6, our method can maintain more textural details of
the wall and windows than LG, AOT, and FRRN. In the first row in Figure 6, our method
obtains the object’s integrity better than AOT and ITrans. As shown in Figure 7, our method
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can obtain a better hair texture than FRRN, AOT, and ITrans. As shown in Figure 8, our
method can acquire the correct colors and textures of the grass and building better than the
other four methods.
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Figure 8. Comparison for Paris StreetView.

4.2.2. Quantitative Comparisons

We also compare our approach quantitatively, in terms of the structural similarity
index (SSIM) [36], peak signal-to-noise ratio (PSNR), Fréchet inception distance (FID) [37],
and learned perceptual image patch similarity (LPIPS) [38], with the four aforementioned
methods. Tables 1–3 give the quantitative results obtained with different ratios of irregular
masks for Paris StreetView, Places2, and CelebA, respectively. According to these data, our
method outperforms the other four methods.

Table 1. Quantitative comparison for Paris StreetView.

Metric Mask Ratio (%) FRRN AOT ITrans LG Ours

SSIM ↑

10–20 0.967 0.955 0.952 0.965 0.970
20–30 0.904 0.921 0.911 0.938 0.941
30–40 0.847 0.890 0.880 0.909 0.918
40–50 0.79 0.856 0.839 0.874 0.880
50–60 0.690 0.790 0.765 0.809 0.828

PSNR ↑

10–20 32.89 33.01 33.54 35.10 35.80
20–30 28.90 29.373 28.9 30.42 30.882
30–40 26.0 27.728 26.708 29.30 29.68
40–50 24.56 25.91 24.965 26.64 27.553
50–60 22.38 24.428 24.052 25.101 25.301

Mean L1 ↓

10–20 0.0065 0.0061 0.0055 0.0051 0.0049
20–30 0.0126 0.0105 0.0118 0.0090 0.0086
30–40 0.0206 0.0148 0.0173 0.0122 0.0117
40–50 0.0250 0.0208 0.0206 0.0182 0.0164
50–60 0.0361 0.0284 0.0287 0.027 0.024

FID ↓

10–20 17.751 25.252 30.31 17.14 17.04
20–30 48.18 36.081 55.65 32.43 30.058
30–40 58.18 70.73 80.86 71.41 68.48
40–50 90.38 90.14 88.627 86.50 55.90
50–60 115 102 98 95 85.58
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Table 1. Cont.

Metric Mask Ratio (%) FRRN AOT ITrans LG Ours

LPIPS ↓

10–20 0.022 0.028 0.030 0.018 0.013
20–30 0.077 0.042 0.074 0.0267 0.023
30–40 0.077 0.065 0.095 0.060 0.057
40–50 0.128 0.1 0.120 0.737 0.0592
50–60 0.145 0.128 0.128 0.0093 0.08875

↑ means the higher, the better; ↓ means the lower, the better.

Table 2. Quantitative comparison for Places2.

Metric Mask Ratio (%) FRRN AOT ITrans LG Ours

SSIM ↑

10–20 0.967 0.955 0.952 0.965 0.970
20–30 0.904 0.921 0.911 0.938 0.941
30–40 0.847 0.890 0.880 0.909 0.918
40–50 0.79 0.856 0.839 0.874 0.880
50–60 0.690 0.790 0.765 0.809 0.828

PSNR ↑

10–20 32.89 33.01 33.54 35.10 35.80
20–30 28.90 29.373 28.9 30.42 30.882
30–40 26.0 27.728 26.708 29.30 29.68
40–50 24.56 25.91 24.965 26.64 27.553
50–60 22.38 24.428 24.052 25.101 25.301

Mean L1 ↓

10–20 0.0065 0.0061 0.0055 0.0051 0.0049
20–30 0.0126 0.0105 0.0118 0.0090 0.0086
30–40 0.0206 0.0148 0.0173 0.0122 0.0117
40–50 0.0250 0.0208 0.0206 0.0182 0.0164
50–60 0.0361 0.0284 0.0287 0.027 0.024

FID ↓

10–20 17.751 25.252 30.31 17.14 17.04
20–30 48.18 36.081 55.65 32.43 30.058
30–40 58.18 70.73 80.86 71.41 68.48
40–50 90.38 90.14 88.627 86.50 55.90
50–60 115 102 98 95 85.58

LPIPS ↓

10–20 0.022 0.028 0.030 0.018 0.013
20–30 0.077 0.042 0.074 0.0267 0.023
30–40 0.077 0.065 0.095 0.060 0.057
40–50 0.128 0.1 0.120 0.737 0.0592
50–60 0.145 0.128 0.128 0.0093 0.08875

↑ means the higher, the better; ↓ means the lower, the better.

Table 3. Quantitative comparison for CelebA.

Metric Mask Ratio (%) FRRN AOT ITrans LG Ours

SSIM ↑

10–20 0.965 0.975 0.968 0.978 0.980
20–30 0.945 0.947 0.923 0.950 0.955
30–40 0.910 0.918 0.885 0.932 0.937
40–50 0.790 0.876 0.839 0.891 0.901
50–60 0.692 0.849 0.788 0.868 0.879

PSNR ↑

10–20 33.75 36.84 36.08 37.839 37.865
20–30 29.44 32.541 29.42 32.963 34.324
30–40 28.67 29.892 28.629 30.85 31.703
40–50 26.78 28.019 27.21 28.302 28.56
50–60 24.02 26.4 24.79 27.050 27.52

Mean L1 ↓

10–20 0.0068 0.0035 0.0043 0.0029 0.0027
20–30 0.0095 0.0069 0.0095 0.0067 0.0053
30–40 0.013 0.0110 0.0143 0.0088 0.0083
40–50 0.019 0.0151 0.0171 0.0140 0.0135
50–60 0.0234 0.0215 0.0230 0.0198 0.0181
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Table 3. Cont.

Metric Mask Ratio (%) FRRN AOT ITrans LG Ours

FID ↓

10–20 6.54 8.49 10.71 6.44 2.209
20–30 15.72 14.06 14.76 6.41 5.24
30–40 23.49 17.294 22.36 10.604 8.38
40–50 48.16 21.116 46.24 31.215 14.14
50–60 68 60.2 66.3 35.66 30.3

LPIPS ↓

10–20 0.019 0.0090 0.017 0.0050 0.0037
20–30 0.0195 0.0164 0.0189 0.0096 0.0077
30–40 0.0328 0.0261 0.0323 0.0179 0.0143
40–50 0.0845 0.0539 0.079 0.0517 0.0373
50–60 0.124 0.114 0.126 0.09 0.0729

↑ means the higher, the better; ↓ means the lower, the better.

4.3. Ablation Studies
4.3.1. Evaluating the Performance of Multidilation-Rate Inpainting Module

To evaluate the effectiveness of the multidilation-rate inpainting module in our net-
work, we design ablation studies, which compare only the hierarchical VQ-VAE and the
whole network. The quantitative comparisons are shown in Tables 4 and 5 in terms of the
PSNR and SSIM for Paris StreetView. The qualitative comparison is shown in Figure 9.
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2 0.903 28.67 0.0133 111.81 0.065 
1 0.903 28.80 0.0138 86.20 0.064 

{1, 2, 4, and 8} 0.918 29.68 0.0117 68.48 0.057 
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Figure 9. Comparison between the whole network and only the hierarchical VQ-VAE.

Table 4. Comparison between the whole network and only the hierarchical VQ-VAE in terms of PSRN.

Mask Ratio (%) 10–20 20–30 30–40 40–50

Whole Network 35.80 30.882 29.68 27.553
Only Hierarchical VQ-VAE 33.9 29.878 28.680 26.589

Table 5. Comparison between the whole network and only the hierarchical VQ-VAE in terms of SSIM.

Mask Ratio (%) 10–20 20–30 30–40 40–50

Whole Network 0.970 0.941 0.918 0.828
Only Hierarchical VQ-VAE 0.962 0.933 0.909 0.819
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4.3.2. Contribution of Different Dilation Rates in the Multidilation-Rate Residual Block

The multidilation-rate residual block with various dilation rates is a part of the
multidilation-rate inpainting module. The multidilation-rate residual block adopts convolu-
tional layers with dilation rates of 1, 2, 4, and 8 to acquire both global and local information
to restore damaged images. To evaluate the contribution of the combination of convolu-
tional layers with various dilation rates, we conducted four groups of ablation studies
at single dilation rates, which are 1, 2, 4, and 8. The four groups of ablation studies are
compared for our method, which combines dilation rates of 1, 2, 4, and 8 in residual blocks.
The comparison results are shown in Table 6 in terms of the mask ratio of 30–40% for Paris
StreetView. From Table 6, the combination of dilation rates 1, 2, 4, and 8 outperforms the
other four inpainting themes, which just adopt a single dilation rate.

Table 6. Comparison of our method with other methods, which adopt a single dilation rate. ↑ means
the higher, the better; ↓ means the lower, the better.

Dilation Rate SSIM ↑ PSNR ↑ L1 ↓ FID ↓ LPIPS ↓
8 0.902 28.09 0.0140 75.66 0.075

4 0.909 28.78 0.0129 99.09 0.073

2 0.903 28.67 0.0133 111.81 0.065

1 0.903 28.80 0.0138 86.20 0.064

{1, 2, 4, and 8} 0.918 29.68 0.0117 68.48 0.057

5. Conclusions

In this paper, we propose an image inpainting network architecture, which comprises
two modules: a hierarchical VQ-VAE module and a multidilation-rate inpainting mod-
ule. The hierarchical VQ-VAE module uses ground truth images as input to obtain two
codebooks and two vector collections through training. The vector collections are passed
through a decoder for high-fidelity outputs corresponding to the ground truth images.
Then, we design an encoder similar to the hierarchical VQ-VAE module, as well as a series
of transformer blocks to infer damaged images with the help of the two codebooks, and a
vector credibility mechanism to generate two vector collections approximating the afore-
mentioned ones. The collections obtain high-fidelity outputs as the inpainted result. To
relieve blurriness and to improve the final quality, we also designed a multidilation-rate
inpainting module. Extensive quantitative and qualitative comparisons demonstrate the
superiority of our approach in obtaining inpainting results.

Meanwhile, we also found some problems in the experiment. Our image inpainting
approach needs to adopt masks as a direction to indicate the damaged areas of corrupted
images. However, in many cases, it is difficult to accurately identify damaged areas, and
the process for indicating damaged areas of masks is time-consuming. At present, some
image inpainting methods do not require masks to restore damaged images, and these
methods are called “blind image inpainting”. In the future, we will improve our approach
to let inpainting themes obtain satisfactory inpainted results without masks.
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