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Abstract: Microelectronics and electronic products are integral to our increasingly connected world,
facing constant challenges in terms of quality, security, and provenance. As technology advances
and becomes more complex, the demand for automated solutions to verify the quality and origin of
components assembled on printed circuit boards (PCBs) is skyrocketing. This paper proposes an in-
novative approach to detecting and classifying microelectronic components with impressive accuracy
and reliability, paving the way for a more efficient and safer electronics industry. Our approach intro-
duces significant advancements by integrating optical and X-ray imaging, overcoming the limitations
of traditional methods that rely on a single imaging modality. This method uses a novel data fusion
technique that enhances feature visibility and detectability across various component types, crucial
for densely packed PCBs. By leveraging the WaferCaps capsule network, our system improves spatial
hierarchy and dynamic routing capabilities, leading to robust and accurate classifications. We employ
decision-level fusion across multiple classifiers trained on different representations—optical, X-ray,
and fused images—enhancing accuracy by synergistically combining their predictive strengths. This
comprehensive method directly addresses challenges surrounding concurrency, reliability, availability,
and resolution in component identification. Through extensive experiments, we demonstrate that
our approach not only significantly improves classification metrics but also enhances the learning
and identification processes of PCB components, achieving a remarkable total accuracy of 95.2%.
Our findings offer a substantial contribution to the ongoing development of reliable and accurate
automatic inspection solutions in the electronics manufacturing sector.

Keywords: PCB components recognition; capsule networks; convolutional neural networks; data
fusion; WaferCaps; image classification

1. Introduction

Recent years have seen a growing demand for placing electronic components and
integrated circuits (ICs) on printed circuit boards (PCBs) with greater density and precision.
This trend has been driven by rapid advancements in electronic products such as digital
cameras, televisions, and other cutting-edge devices [1,2]. As a result, electronic assembly
lines play a critical role in manufacturing these products with the utmost accuracy and
efficiency. It is of paramount importance that electronic components and ICs are assembled
in strict accordance with the designated class and location on the PCBs. Consequently,
the positioning and integration of these components must not only be precise but also
optimized to meet the escalating demands and ensure seamless operation across production
lines [3]. A bill of materials (BoM) refers to a detailed roster of raw materials, components,
and instructions utilized for the manufacturing, repairing, or construction of a product.
BoMs are typically organized in a hierarchical structure, with the finished product listed at
the top and the individual materials and components listed below. Within the BoM, various
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components such as resistors, capacitors, ICs, ports, connectors, and more are included.
BoMs serve multiple purposes, including electronic board inspection, quality assurance,
security, and technical auditing [4,5]. Utilizing computer vision in automatic optical
inspection (AOI) can result in cost reduction and improved accuracy when inspecting
electronic components and performing ICs positioning tasks. Additionally, it aids in
the prevention of various flaws, including missing interposition, component switching,
incorrect polarity, and lead lift [6]. AOI can be performed using conventional image sensor
devices (e.g., charged coupled device (CCD)) and constant illumination settings (e.g., non-
environmental light) for inspecting surface features or X-rays for internal features that
are not visible. Both techniques have advantages and drawbacks that are summarized in
Table 1 [1].

Table 1. Summary of quality monitoring approaches used in industrial inspection.

Inspection
Method Description Advantages Limitations

X-ray

A standard X-ray inspection system
is composed of three main elements:
an X-ray tube as the source,
an X-ray detector, and a fixture that
holds and manages the position of
the component being inspected.
The X-ray source emits X-rays that
pass through the object, while the
receiver captures the transmitted
energy. By analyzing the
transmitted energy, the internal
characteristics of the inspected
component can be identified.

• Very efficient for detecting in-
ner features.

• The X-ray inspection results
are not significantly influenced
by the shape and surface
conditions [7].

• Traditional X-ray methods
have the potential to cause
damage.

• Micro-level inspections typi-
cally exhibit a relatively low
resolution.

• The processing time is lengthy,
typically on the order of hours.

Image sensor
(e.g., CCD)

Detects surface features according
to human visual perception.

• Among all quality monitoring
approaches, it is considered the
least expensive, relatively sim-
ple, and most frequently used.

• Regarded as a non-contact and
non-destructive method.

• Capable of identifying surface
features and defects.

• AOI helps to reduce time and im-
prove the accuracy of detection.

• Not efficient for inner features.
• Need for constant light and

illumination settings.

As can be seen from Table 1, each technique can acquire different types of information.
Therefore, for maintaining the advantages of both, image fusion techniques can be used.
Image fusion involves merging the information from multiple images to create a single
image. The resulting image contains more comprehensive information compared to any
of the individual images being combined [8]. In this study, we propose combining optical
and X-ray images for better identification of PCB components and ICs. The combined
images are then sent to the inspection algorithm for identifying which component is which.
Standard image-processing techniques such as template matching and rule-based classifiers
are still used as detection algorithms for PCB component identification. However, with the
rapid development of computational powers and GPU, the door is now wide open for
using many powerful methods such as deep learning (DL). DL techniques can meet the
requirement of high demand on production by performing detection and inspection on
a real-time basis [6]. Furthermore, it can save a lot of time by performing the feature
extraction within their hidden layers, instead of performing hand-crafted feature extraction
as in the case of conventional image processing and machine learning tools. In this study,
we propose a data fusion approach followed by capsule neural network WaferCaps [9] for
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identifying, recognizing, and classifying the five different groups of components of PCBs:
chips, connectors, ports, two-solders, and other components.

2. Related Work

A variety of studies have utilized X-ray and AOI techniques for PCB component detec-
tion, leveraging advanced algorithms to aid the recognition and detection process. In this
section, we will review some of these articles and list the main contributions of our research.
Wu et al. [10] used Normalized Cross-Correlation (NCC) analysis to detect component
misplacement in PCBs. They also proposed an accelerated particle swarm optimization
(AS-PSO) to conduct the search process and speed up the detection process. This study
achieved a recognition rate of 100%, although only resistors were tested and no other com-
ponents were included. Li et al. [11] proposed an improved algorithm based on YOLO-v3
for PCB electronic component detection. In order to improve the recognition of components,
they combined a real PCB picture with a virtual PCB picture accompanied by synthesized
data. Experimental results indicate that the improved YOLO-v3 algorithm can achieve
a mean average precision (mAP) of 93.07%. However, the improved YOLO-v3 was not
efficient in identifying some components such as resistors and capacitors. Schmidt et al. [12]
proposed an X-ray imaging system for solder joint inspection in surface mount technology
(SMT) electronics production using a convolutional neural network (CNN). They used 2D
grayscale images to feed the CNN classifier. The results indicated a significant reduction in
the false call rate. However, there is still a dependency on the selection of the appropriate
focus level of the image files made by the machine, which requires further development
of the proposed solution. Wenwei Zhao et al. [13] underscored the value of combining
human-interpretable computer vision algorithms—such as those analyzing color, shape,
and texture features—with machine learning approaches to reduce the dependency on
large datasets and improve the explainability of the models. The results of the study indi-
cated that color features are promising for the detection of PCB components. In parallel
to advancements in PCB component recognition, Huanjie Tao et al. [14] developed novel
data augmentation techniques to address the challenges of data scarcity in surface defect
inspection. A notable approach involves an erasing-inpainting-based data augmentation
method using a denoising diffusion probabilistic model (DDPM), which generates diverse
training images from a limited number of samples. This technique mirrors our efforts in
PCB assurance, where acquiring extensive defect-specific data can be challenging due to
the rapid evolution of PCB technologies. By adapting such innovative data augmentation
methods, the PCB component detection models can benefit from enhanced training effi-
ciency and improved generalization capabilities, similar to their successful application in
generalized surface defect inspection. Huanjie Tao et al. [15] also introduced the attention
multi-hierarchical feature fusion network (AMHNet) designed to improve defect recog-
nition on steel surfaces by effectively fusing multi-level features and enhancing relevant
details through a novel gating mechanism. Extensive testing demonstrated that attention
multi-hierarchical feature fusion networks set new benchmarks in accuracy and AUC,
achieving state-of-the-art results in defect recognition.

3. Methodology

The methodology of this study is crafted to address the intricate challenges of recog-
nizing and classifying components on densely packed printed circuit boards (PCBs), where
traditional single-modality imaging techniques fall short. By innovatively integrating opti-
cal and X-ray imaging, our approach not only enhances the visibility of both surface and
hidden component features but also overcomes the typical limitations—such as the optical
method’s restricted view of internal component structures and the X-ray’s lower resolution
for surface details. This dual-modality fusion, facilitated by our advanced data fusion tech-
nique, allows for a more detailed and comprehensive dataset, essential for high-accuracy
classification. Furthermore, the deployment of the WaferCaps capsule network introduces
a significant advancement over traditional convolutional neural networks (CNNs) by lever-
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aging its superior capabilities in maintaining spatial hierarchies and utilizing dynamic
routing, which enhances the accuracy and reliability of the classification outcomes.

3.1. Image Fusion

The physical limitations of imaging sensors can make it difficult to obtain uniformly
good images from a scene. The fusion of images represents one possible solution to this
problem. Through this technique, a perfect image of a scene can be created by combining
multiple samples that each provide complementary information about the scene. In this
paper, images of the same electronic PCB are combined using X-rays and optical images.
Through this process, salient and relevant information from hidden parts of images ac-
quired by an X-ray machine (for instance, inside a chip) is fused with details from optical
images [16].

The fusion of images takes place on three levels: at the pixel level, at the feature
level, and at the decision level. In pixel-level image fusion techniques, input images can
be processed directly for further computer processing. The feature level techniques for
image fusion involve the extraction of relevant features, such as pixels, textures, or edges,
and blending them together to generate supplementary merged features. In decision level
fusion, multiple classifiers combine their decisions into a single one that describes the
activity that occurred [17]. A variety of fusion methods can be categorized into two groups:
traditional algorithms (spatial and frequency domain techniques) and deep learning-based
methods [18]. In spite of the high performance of traditional fusion methods, they have
some disadvantages. A major problem is that fusion performance heavily depends on the
extraction and selection of features, and there is no universal method for obtaining features.
To address these drawbacks, deep learning-based fusion methods have been developed.
In these fusion methods, deep learning is employed to extract deep representations of the
information provided by the source images. Various fusion strategies have been proposed
in order to reconstruct the fused image. The fusion strategy can also be designed with deep
learning. In this paper, we employ the innovative fusion method proposed by Jingwen
Zhou et al. [16] that is presented for infrared and visible image fusion based on the VGG-19
model. In this method, unlike Li et al.’s proposed approach in [19], the source image does
not need to be split into basic and detailed parts. This decomposition makes the fusion
process too complex and leads to the incomplete extraction of details and salient targets.
The Jingwen fusion method uses grayscale images as inputs. Therefore, because the optical
images are in color in this research, the IHS (intensity, hue, and saturation) transform is
applied for transforming the optical images from RGB (red, green, and blue) to the IHS
color space [20]. In the IHS space, intensity indicates the spectral brightness, hue repre-
sents the wavelength, and saturation reflects the spectrum’s purity. Through the Jingwen
fusion method, the intensity component of the optical image is combined with the X-ray
image and then the updated intensity, along with the hue and saturation, is converted
back into RGB color space. The result of this process is a fused color image. Figure 1
displays the architecture of the whole fusion process. Instead of decomposing images into
high and low frequencies, optical images and X-ray images feed into VGG-19 for layer-
by-layer feature extraction. In X-ray images, hidden targets are usually visible because
of the imaging characteristics of the technique. Optical cameras usually capture more
surface details, but the targets are often covered by other objects and there is also no way to
see inside the components. With its superior classification and location capability, VGG-
19 is well suited to the fusion task because it can extract detailed features and salient targets.
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Figure 1. Image fusion approach.

3.2. VGG-19 Network: Features Extraction, Processing, and Reconstruction

VGG-19 is a CNN (convolutional neural network) for which over a million images
from the ImageNet database have been used to train. This network is composed of 19
layers and has the capacity to classify images into one thousand object categories. There-
fore, the network has learned affluent representations of features for a variety of images.
The proposed fusion method by Jingwen entails five layers that are used to extract detailed
features and salient targets.

The first two selected convolutional layers are conv1_1 and conv1_2 of VGG-19,
which are mainly responsible for extracting details and edges and then must be retained.
The third selected layer is conv2_1, which mainly extracts the edges in the picture. Conv3_1,
the fourth selected layer, is used to extract the image’s prominent targets. The last retained
layer is conv4_1, which mainly extracts the salient targets. Using L1-norm and average
operators, activity level maps ( Ci∗

a ) are derived from the extracted features and targets.
Weight maps ( Wi∗

a ) are generated using the SoftMax function and upsampling operator.
The X-ray and intensity components of the optical images are then convolved with five
different weight maps to produce candidates for fusion. In this section, the final fused
image is formed by using the maximum strategy to combine the five candidate fused
images. Figure 1 demonstrates the process of feature processing. As a result of the L1-norm,
intuitive images are translated into objective data distributions, and the average operator
ensures robustness to misregistration of the images.

The average operator of the final activity level map (Ci∗
a ) is shown in Equation (1):

Ci∗
a (x, y) =

∑r
v=−r ∑r

w=−r ||xi,1:N
a (x + v, y + w)||1

(2r + 1)2 (1)

where xi,1:N
a (x, y) is an N-dimensional vector of the feature maps of the input image a

(since we fuse two input images then a ∈ 1, 2), which derived from the i-th convolutional
layer. In the i-th layer, N indicates the maximum number of channels. The parameter r
represents the size of the average operator and according to [16], it is set to 1. Based on the
final activity level map (Ci∗

a ), an initial weight map is calculated by utilizing the SoftMax
function. Equation (2) indicates that all weight map values fall within the range [0, 1]:

Wi∗
a (x, y) =

Ci∗
a (x, y)

∑K
n=1 Ci∗

a (x, y)
(2)

where i denotes the convolutional layer number (i ∈ 1, 2, 3, 4, 5) and K shows the number
of activity level maps, whose value is 2 since source images contain X-rays and optical
images. In VGG-19, the pooling operator reduces the size of the feature maps gradually
via subsampling with a stride of two. Due to this, the size of the feature maps in different
convolutional layer groups is 1/(2a−1) of the original image.
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As soon as the initial weight maps are obtained (Wi∗
a ), they are up-sampled to ensure

that they are in proportion to the source image. In Equation (3), the final weight map has
the same dimensions as the source image:

Wi∗
a (x + p, y + q) = Wi∗

a (x, y) p, q ∈ {0, 1, . . . , (2a−1 − 1)} (3)

Eventually, based on Equation (4), each pixel of all five competitor fusion images is
determined to be the maximum value as the final result in the fusion image [16]:

F(x, y) = max

[
K

∑
n=1

Wi∗
n (x, y)× In(x, y)|i ∈ {1, 2, 3, 4, 5}

]
(4)

where In(x, y) are the source images and K is the number of source images. Figure 2 depicts
an example of a chip component optical and X-ray images and the resulting fused image.

(a) (b) (c)

Figure 2. An example of a chip component: (a) optical image, (b) X-ray image, (c) fused image.

3.3. WaferCaps

Many computer vision tasks have extensively utilized convolutional neural networks
(CNNs) [21]. Although CNNs have shown remarkable performance in many classification
tasks, they still have some drawbacks. One of these drawbacks is the use of pooling layers
in CNNs. Pooling layers have an advantage in decreasing the computation requirements
by shrinking the sizes of the feature maps during the feed-forward process; however, this
comes with the cost of losing many vital features that could be important in the learning
process. Additionally, CNNs have limitations in accurately identifying the spatial location
of the inspected feature within an image [22].

The capsule network (CapsNet) is a newly proposed neural network that is employed
in classification tasks and can overcome the previous drawbacks of CNNs. It was devel-
oped in 2017 by Sabour et al. [23] and it was implemented primitively to classify MNIST
handwritten digits dataset. CapsNet stands apart from conventional CNNs due to two
primary factors: dynamic routing and layer-based squashing [24]. Feature detectors with
scalar output are replaced with capsules with vector output in CapsNets. Furthermore,
CapsNets use the routing-by-agreement concept instead of pooling layers. In CapsNet,
each capsule consists of multiple neurons, where each neuron represents specific features
in different regions of an image. This approach enables the recognition of the entire image
by considering its individual parts [25].

The initial layer of CapsNet employs a convolutional layer similar to CNNs, but sub-
sequent layers differ in structure. In the second layer, known as PrimaryCaps, each of the
32 capsules possesses an activity vector ui to encode spatial information through instantia-
tion parameters. The output of ui is then transmitted to the subsequent layer, DigitCaps,
where each of the 16 capsules per digit class receives ui and performs matrix multiplication
with the weight matrix Wij. This computation yields the prediction vector ûj|i, which
signifies the contribution of capsule i in PrimaryCaps to capsule j in DigitCaps as indicated
by Equation (5):

ûj|i = Wijui (5)

Subsequently, the predictions undergo multiplication with a coefficient known as the
coupling coefficient c, which signifies the level of agreement between capsules as depicted
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in the equation. Consequently, the value of the coefficient c is updated iteratively through
an iterative process, giving rise to what is commonly referred to as “Dynamic Routing”.
This process is determined by utilizing a routing Softmax function, where the initial logits
bij represent the logarithmic prior probabilities of coupling capsule i in PrimaryCaps with
capsule j in DigitCaps. These operations can be exemplified through Equations (6)–(9):

aij = sj · ûj|i (6)

bij = bij + aij (7)

cij =
exp (bij)

∑k exp (bij)
(8)

sj = ∑
i

cijûj|i (9)

In this context, sj represents the weighted sum computed to derive the candidates for
the squashing function vj. The role of the squashing operation is to generate a normalized
vector from the collection of neurons present within the capsule. The activation function
employed for this purpose can be described by Equation (10):

vj =
∥sj∥2

1 + ∥sj∥2 ·
sj

∥sj∥
(10)

To facilitate the classification process, a margin loss function is established. This
function assesses the loss term derived from the output vector of DigitCaps, aiding in
determining the correspondence between the chosen digit capsule and the actual target
value of class k. The mathematical representation of the margin loss function can be
observed in Equation (11):

Lk = Tk max
(
0, m+ − ∥vk∥

)2
+

λ(1− Tk)max
(
0, ∥vk∥ −m−

)2
(11)

Here, the label Tk is used to indicate the presence (“1”) or absence (“0”) of class k.
The hyper-parameters of the model, denoted as m+, m−, and λ, hold specific values: m+ is
set to 0.9, m− is set to 0.1, and λ is set to 0.5.

The original CapsNet performed well in classifying the MNIST dataset with 99%;
however, it did not provide high accuracy with more complex images such as the CIFAR-10
dataset. Therefore, in this study, we propose a modified version of CapsNet known as
WaferCaps that was originally proposed in [9] to classify semiconductor wafer defects and
was also used in [26] to classify optoelectronic wafer defects. The structure of WaferCaps is
shown in Figure 3 and Table 2. WaferCaps, in comparison to CapsNet, incorporates an ad-
ditional two convolutional layers with larger kernel sizes, enabling a more effective feature
extraction procedure. Additionally, dropout layers are introduced after each convolutional
layer to mitigate overfitting.

Table 2. Layers of the proposed WaferCaps.

Layer Type Input Size Kernel
Size/Stride Activation Dropout Output

Size

1 conv1 [128,128,3] 15/1 ReLU Yes

2 conv2 [50,50,256] 15/1 ReLU Yes [36,36,512]

3 conv3 [36,36,512] 15/1 ReLU Yes [22,22,1024]

4 PrimCaps [22,22,1024] 9/2 ReLU No [4,4,8,128]
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Table 2. Cont.

Layer Type Input Size Kernel
Size/Stride Activation Dropout Output

Size

5 WBMCaps [4,4,8,128] - Squash No [16,5]

6 FC [16,5] - Softmax No [5]

WBMCaps

Classification

(50, 50, 256)

conv1

(36, 36, 512)

conv2

(22, 22, 1024)

conv3

Caps1 (4,4,8)

Primary Caps

Caps2 (4,4,8)

Caps128 (4,4,8)

d
(1)
1

d
(1)
2

d
(1)
3

d
(2)
1 d

(3)
1 d

(16)
1

d
(16)
8

Chips

Connectors

Two Solders
(128, 128, 3)
Input Image

Figure 3. WaferCaps architecture.

3.4. Decision Fusion

The concept of decision fusion refers to a method of combining data from different
classifiers into a single decision about the activity that made up the dataset that was merged.
It has been shown in many studies that a decision fusion approach has a significant effect
on classification accuracy.

A given classification problem may be classified differently by different classification
techniques. Using decision fusion, multiple classifiers are integrated into a common
explanation of an event and a variety of rules can be integrated in a fully flexible manner.
The accuracy of classification can be improved through decision fusion.

Decision fusion techniques can be divided into several types based on their architec-
ture: serial decision, parallel decision and hybrid decision fusion. In serial decision fusion,
classifiers are arranged one after another, and their outputs are fed into the next classifier.
In parallel decision fusion, several classifiers perform classification simultaneously in par-
allel, then combine their results. Hybrid decision fusion is a hierarchy-based classification
process [27].

In this study, three WaferCaps-based networks are combined to accomplish a parallel
decision fusion process. According to Figure 4, these parallel processes use optical, X-ray,
and fused images to provide a final decision. Algorithm 1 shows a general view of this
process. As will be seen from the results, some networks are able to accurately predict the
class of components with a higher probability than others. Therefore, integrating these
three networks improves the accuracy of detecting the class of components. Accordingly,
the decision fusion approach will lead to an increase in the accuracy of the final classification
of all classes. The combined and fused classifier is composed of a selection rule and three
individual classifiers.

Three WaferCaps-based classifiers based on three different training datasets are laid
out in the first layer. The three training datasets are composed of optical, X-ray, and fused
images. In the second layer, selection methods are applied to the outputs of the individual
classifiers in order to produce a final classification result. Every classifier produces outputs
that represent the probability of each component. In percentage terms, the decimal numbers
between 0 and 1 represent confidence levels.
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In the first layers of classifiers, OP, XP, and FP represent the probability of the predicted
class of components, and OC, XC, and FC represent predicted classes by networks that
are trained based on X-ray, optical, and fused images, respectively. In the second layer,
Algorithm 1 describes the selection rules. The application of these rules to the output of the
three classifiers results in a high level of accuracy due to the blending of the advantages of
all three classifiers. Trial and error are used to determine the thresholds.

Algorithm 2 succinctly encapsulates the entirety of the methodology in a structured
pseudocode format. This algorithm presents all steps of our approach in a unified sequence,
ensuring that the logic and operations are clearly delineated and easily interpretable.

Figure 4. Decision fusion-based classification method.

Algorithm 1 Selection rules.

1: procedure SELECTION(OC, XC, FC, OP, XP, FP)
▷ Oc, Xc, and Fc represent predicted classes by the networks trained on optical, X-ray,

and fused images, respectively. Op, Xp, Fp represent the corresponding probabilities of
the predicted classes.

2: if (OP > 0.80) AND (XP > 0.80) AND (FP > 0.80) then
3: predictedClassLabel← classProbabilities[max(OP, XP, FP)]

▷ Assume that ‘classProbabilities’ is a dictionary linking probabilities to class labels
4: else if (XC ̸= OC) AND (FC ̸= OC) AND (OP < 0.90) AND (XP < 0.90) then
5: predictedClassLabel← FC
6: else if (XC ̸= OC) AND (FC ̸= OC) AND (XP > 0.85) then
7: predictedClassLabel← XC
8: else
9: predictedClassLabel← OC

10: end if
11: return predictedClassLabel
12: end procedure
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Algorithm 2 PCB component classification.

1: procedure PCB_COMPONENT_CLASSIFICATION
2: optical Image← CAPTUREOPTICALIMAGE
3: xrayImage← CAPTUREXRAYIMAGE
4: optical IHS← CONVERTTOIHS(optical Image)
5: IHS f usedImage← FUSEIMAGES(optical IHS, xrayImage,′ VGG− 19′)
6: f usedImage← CONVERTTORGB(IHS f usedImage)
7: opticalComponents← COMPONENTEXTRACTION(optical Image)
8: xrayComponents← COMPONENTEXTRACTION(xrayImage)
9: f usedComponents← COMPONENTEXTRACTION( f usedImage)

10: opticalClass← CLASSIFY(opticalComponents,′Wa f erCaps′)
11: xrayClass← CLASSIFY(xrayComponents,′Wa f erCaps′)
12: f usedClass← CLASSIFY( f usedComponents,′Wa f erCaps′)
13: f inalDecision← DECISIONFUSION(opticalClass, xrayClass, f usedClass)
14: return f inalDecision
15: end procedure
16: function CAPTUREOPTICALIMAGE
17: // Capture optical image using a camera setup
18: end function
19: function CAPTUREXRAYIMAGE
20: // Capture X-ray image using X-ray equipment
21: end function
22: function CONVERTTOIHS(image)
23: // Convert RGB image to IHS color space
24: end function
25: function FUSEIMAGES(opticalIHS, xrayImage, method)
26: // Apply image fusion algorithm on intensity component of IHS optical image and X-ray

image
27: end function
28: function CONVERTTORGB(image)
29: // Convert IHS image back to RGB color space after fusion
30: end function
31: function COMPONENTEXTRACTION(image)
32: // Extract components from the image (Single-component images have been extracted from

the PCB images and labelled already)
33: end function
34: function CLASSIFY(image, method)
35: // Classification process using the specified method (e.g., WaferCaps)
36: end function
37: function DECISIONFUSION(opticalClass, xrayClass, fusedClass)
38: // Final decision is made based on Algorithm 1.
39: end function

4. Experimental Results
4.1. Experiments Environment and Devices

In this research, we build an image acquisition system that takes pictures from devices
using X-ray imaging and an optical camera. For component detection and recognition that
require high resolution and quality, the acquired images are suitable. In order to provide
constant illumination, the optical system is enclosed in a tent that controls outside light.
As a background, various colored papers are employed to help devices stand out from the
background. For instance, red colored papers are used when the PCB base is black. In this
research, we have 100 various circuit boards that range in size from 70 mm × 50 mm to
350 mm × 250 mm. The acquisition system includes a professional camera ‘Allied Vision
ALVIUM 1800U-2050C-CH-C’ with two high-resolution lenses with two focal lengths of
35 mm and also 12 mm (KOWA LM35SC and KOWA LM12SC), which are mounted above
distances of 42.6 cm and 62 cm for lenses 35 mm and 34 cm and 45 cm for lenses 12 mm.



Electronics 2024, 13, 1863 11 of 18

These four postures of lenses and camera positions guarantee that small and large PCBs
(such as mainboards) are fully visible in a single image with high spatial resolution. All
optical images have a resolution of 5496 (H) × 3672 (V) pixels. During optical image
acquisition, the PCBs are sampled in two different exposures, one high and one low, which
are controlled internally by the camera software. With these two different exposures, we
can both increase our dataset size and have a more accurate interpretation of different
components with different materials. An X-ray machine is one of the best ways to inspect
the quality of electronic boards. The SCANNA mailroom X-ray machine (SCANMAX
225) with an additive high-resolution panel (80 Micron) offers a spacious scan area of
56 cm × 42 cm, which is large enough to accommodate most PCBs and includes its own
control and analysis software. The X-ray images are made up of 3840 (H)× 3072 (V) pixels.
We assume in this paper that the images to be fused have been registered correctly and
that sufficient single-component images have been extracted from the PCB images. We
process data in RGB format according to five classes: chips, connectors, two solders, ports,
and others. Training, validation, and test data are separated into three categories. There
are 4000 components images per class in total. The training dataset has 15,000 samples,
whereas the validation and test datasets each contain 2500 samples.

4.2. Evaluation Criteria

This section evaluates how well our proposed fused image classification performs
in comparison to using non-fused images. Several metrics were used in our evaluation,
including confusion matrices, accuracy, precision, F1-score, and recall. Examining the
confusion matrix involves studying the outcome predictions for a classification issue.
As a result, it illustrates the ways in which a classification model makes mistakes when
making predictions. The accuracy determines the number of pictures (components) that
are correctly classified. Precision refers to the calculation of the proportion of correctly
identified positive samples out of the total number of positive samples. Sensitivity measures
the proportion of correctly classified positive samples to all samples in a given class. In
the F1-score, the harmonic mean of a classifier’s precision and sensitivity is integrated into
one metric:

Accuracy =
TP + TN

TN + FN + TP + FP
(12)

Precision =
TP

TP + FP
(13)

Sensitivity =
TP

FN + TP
(14)

F1− score = 2× Precision× Sensitivity
Precision + Sensitivity

(15)

where TP is the value of the true positive, FP is the false positive, TN is the true negative,
and FN is the false negative.

4.3. Ablation Study on Input Image Scenarios

To substantiate the efficacy of our innovative approach, we conducted ablation studies
focusing on three distinct models corresponding to different imaging inputs: optical only,
X-ray only, and fused images. This investigation aimed to delineate the contribution of
each imaging modality to the overall performance of the component recognition system.

(A) Optical images only:

Initially, we trained and evaluated a model using only optical images. This scenario
focuses on assessing the capability of the WaferCaps model to classify components based
on visible light imaging, which typically captures the external surface features of the com-
ponents.
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(B) X-ray images only:

Subsequently, a separate model was developed using only X-ray images. X-ray imag-
ing provides internal views of the components, which are crucial for identifying embedded
or obscured features not visible in optical imaging.

(C) Fused Images:

Finally, we utilized a model that combines both optical and X-ray images through
our novel fusion technique. This model aims to leverage the complementary information
available from both imaging types, potentially enhancing the model’s ability to accurately
classify a wider range of component types under various conditions.

For each scenario, we trained the models using the same network architecture and
hyperparameters to ensure a fair comparison. The models were then evaluated based
on their classification accuracy, precision, recall, and F1-score, with particular attention
paid to the improvements observed in the fused image scenario. The results in Table 3
demonstrate that while the models trained on optical-only and X-ray-only images per-
formed commendably, the fused image model exhibited superior performance, confirming
our hypothesis that the integration of multiple imaging modalities enhances the system’s
overall effectiveness. Specifically, the fused image model showed significant improvements
in detecting components with complex internal structures or those partially obscured in
optical images.

Figure 5 presents the confusion matrices for the three input image scenarios utilized
in our study. Each matrix provides a visual representation of the classification accuracy
and misclassifications made by the WaferCaps model under different imaging conditions.
This ablation study not only underscores the benefits of our image and decision fusion
approach but also highlights the robustness of the WaferCaps architecture in handling
diverse imaging inputs. These findings are critical, as they validate the design choices
made in our methodology and provide a clear justification for the adoption of fused images
in PCB component recognition tasks.

Table 3. Comparative performance of WaferCaps model classification across different imaging scenarios.

Dataset Metric Chips Connectors Others Ports Two Solders

Optical images Recall 0.938 0.942 0.868 0.926 0.962
Precision 0.956 0.935 0.863 0.965 0.921
F1-score 0.947 0.938 0.865 0.945 0.941

X-ray images Recall 0.932 0.944 0.7 0.952 0.938
Precision 0.949 0.99 0.803 0.969 0.775
F1-score 0.94 0.966 0.748 0.961 0.849

Fused images Recall 0.938 0.926 0.876 0.922 0.958
Precision 0.971 0.957 0.82 0.968 0.916
F1-score 0.954 0.941 0.847 0.945 0.936

4.4. Comparative Analysis of Deep Learning Models Using Fused Images and Decision Fusion

In order to verify the effectiveness of the proposed approach, we first train and evaluate
three different models with three input image groups: optical, X-ray, and fused images. The
presented approach is compared with significant popular algorithms such as ResNet-50,
Inception-V3, and MLP that are trained from scratch. The results of the classification of
WaferCaps and three other different classifiers on optical images only can be identified
in the confusion matrix of Figure 6 and metrics in Table 4. It can be observed that recall
metrics for the chips and ports components are notable in both Inception-v1 and MLP;
however, WaferCaps achieved higher overall accuracy with 92.7% than the other classifiers.
In the second place, Inception-v3 is seen with 87.4% overall accuracy. Figure 7 and the
metrics in Table 5 show the performance of classifiers on X-ray images only. Comparing
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the four networks, WaferCaps achieved the highest level of accuracy with 89.3%, followed
by ResNet-50 with 88.4%, then Inception-v3 with 84.9%, and finally MLP with 80.4%.
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Figure 5. Confusion matrices for optical, X-ray, and fused image classifications using Wafer-
Caps model. (a) Optical images; (b) X-ray images; (c) Fused images.

Table 4. Evaluative metrics for assessing test data from optical datasets across various deep learn-
ing models.

Model Metric Chips Connectors Others Ports Two Solders

WaferCaps Recall 0.938 0.942 0.868 0.926 0.962
Precision 0.956 0.935 0.863 0.965 0.921
F1-score 0.947 0.938 0.865 0.945 0.941

ResNet-50 Recall 0.918 0.83 0.732 0.898 0.898
Precision 0.871 0.8 0.775 0.868 0.966
F1-score 0.894 0.815 0.753 0.883 0.931

Inception-v3 Recall 0.98 0.886 0.774 0.852 0.876
Precision 0.939 0.807 0.74 0.962 0.946
F1-score 0.959 0.845 0.757 0.903 0.91

MLP Recall 0.894 0.806 0.702 0.978 0.864
Precision 0.822 0.852 0.785 0.957 0.823
F1-score 0.856 0.828 0.741 0.967 0.843
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Figure 6. Confusion matrices for the optical dataset using different DL networks. (a) WaferCaps;
(b) ResNet-50; (c) Inception-v3; (d) MLP.

Table 5. Evaluation of X-ray dataset test data for different deep learning models using metrics.

Model Metric Chips Connectors Others Ports Two Solders

WaferCaps Recall 0.932 0.944 0.7 0.952 0.938
Precision 0.949 0.99 0.803 0.969 0.775
F1-score 0.94 0.966 0.748 0.961 0.849

ResNet-50 Recall 0.884 0.892 0.754 0.852 0.936
Precision 0.989 0.933 0.709 0.986 0.836
F1-score 0.933 0.912 0.731 0.968 0.883

Inception-v3 Recall 0.87 0.944 0.536 0.926 0.97
Precision 0.962 0.973 0.795 0.957 0.655
F1-score 0.913 0.958 0.64 0.941 0.782

MLP Recall 0.868 0.856 0.528 0.924 0.842
Precision 0.921 0.868 0.675 0.945 0.642
F1-score 0.894 0.862 0.593 0.934 0.728
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Figure 7. Confusion matrices for the X-ray dataset using different DL networks. (a) WaferCaps;
(b) ResNet-50; (c) Inception-v3; (d) MLP.

Table 6 and Figure 8 illustrate the metrics and confusion matrices of four classifiers
using fused images as inputs. Based on the results, WaferCaps classifies with an overall
accuracy of 92.4%, which is the highest among all classifiers. The comparison of the results
of Tables 4–6 shows that the WaferCaps classification method performs better on all three
optical, X-ray, and fused datasets.

Table 6. Measures for evaluating test data for various deep learning models based on a fused dataset.

Model Metric Chips Connectors Others Ports Two Solders

WaferCaps Recall 0.938 0.926 0.876 0.922 0.958
Precision 0.971 0.957 0.82 0.968 0.916
F1-score 0.954 0.941 0.847 0.945 0.936

ResNet-50 Recall 0.914 0.858 0.868 0.904 0.934
Precision 0.912 0.947 0.781 0.944 0.914
F1-score 0.913 0.9 0.822 0.923 0.924

Inception-v3 Recall 0.914 0.89 0.736 0.924 0.95
Precision 0.849 0.916 0.872 0.887 0.892
F1-score 0.881 0.903 0.798 0.905 0.92

MLP Recall 0.834 0.854 0.816 0.926 0.912
Precision 0.95 0.91 0.756 0.937 0.819
F1-score 0.888 0.88 0.785 0.932 0.863
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Figure 8. Confusion matrices for the fused dataset using different DL networks. (a) WaferCaps;
(b) ResNet-50; (c) Inception-v3; (d) MLP.

However, using only one of these classifiers does not provide better results. Studying
the results shows that the recall (sensitivity) of the WaferCaps classifier for optical images
of two-solder components is higher than for X-ray and fused images. Also, in the port
components classification, the results on X-ray images show superior sensitivity. Therefore,
it can be expected that the decision fusion of these three classifiers can achieve much better
outcomes as shown in Figure 9 and Table 7.
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Figure 9. Confusion matrix for the decision fusion approach using WaferCaps.
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Table 7. Metrics for evaluating the test data of the decision fusion approach.

Model Metric Chips Connectors Others Ports Two Solders

WaferCaps Recall 0.978 0.96 0.874 0.974 0.976
(Decision Precision 0.972 0.982 0.907 0.994 0.91
Fusion) F1-score 0.975 0.971 0.89 0.984 0.942

5. Conclusions

This study aimed to develop a deep learning and data fusion solution that could
classify PCB components into five categories (chips, connectors, ports, two-solders and
other components). To accomplish this objective, we proposed a strategy encompass-
ing image capture, data integration, and a deep learning classifier, which merges three
WaferCaps-based classifiers via parallel decision fusion.

We evaluated the effectiveness of our suggested approach by juxtaposing it with
the performance of leading-edge deep learning systems including WaferCaps, ResNet-50,
Inception-V3, and MLP. The results demonstrated that the comprehensive performance of
the decision fusion system surpassed each of the other models.
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