
Citation: Kuang, X.; Zhou, S. Robotic

Manipulator in Dynamic

Environment with SAC Combing

Attention Mechanism and LSTM.

Electronics 2024, 13, 1969. https://

doi.org/10.3390/electronics13101969

Academic Editors: Padma Iyenghar

and Elke Pulvermüller

Received: 10 April 2024

Revised: 13 May 2024

Accepted: 15 May 2024

Published: 17 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Robotic Manipulator in Dynamic Environment with SAC
Combing Attention Mechanism and LSTM
Xinghong Kuang * and Sucheng Zhou

School of Engineering, Shanghai Ocean University, Shanghai 201306, China; m210811357@st.shou.edu.cn
* Correspondence: xhkuang@shou.edu.cn

Abstract: The motion planning task of the manipulator in a dynamic environment is relatively
complex. This paper uses the improved Soft Actor Critic Algorithm (SAC) with the maximum
entropy advantage as the benchmark algorithm to implement the motion planning of the manipulator.
In order to solve the problem of insufficient robustness in dynamic environments and difficulty
in adapting to environmental changes, it is proposed to combine Euclidean distance and distance
difference to improve the accuracy of approaching the target. In addition, in order to solve the
problem of non-stability and uncertainty of the input state in the dynamic environment, which
leads to the inability to fully express the state information, we propose an attention network fused
with Long Short-Term Memory (LSTM) to improve the SAC algorithm. We conducted simulation
experiments and present the experimental results. The results prove that the use of fused neural
network functions improved the success rate of approaching the target and improved the SAC
algorithm at the same time, which improved the convergence speed, success rate, and avoidance
capabilities of the algorithm.

Keywords: reinforcement learning; dynamic environment; reward function; motion planning

1. Introduction

In modern smart factories, automated robots are gradually replacing manual labor
and are widely used in production to implement various operations. Most industrial
robots work in a specific environment without interference from the outside world. As the
industrial environment becomes increasingly complex, there are also more moving obstacles
in the environment, such as Automated Guided Vehicles (AGVs) or technicians [1,2].

Machinery needs to avoid obstacles while completing tasks. For static obstacles
around the work area, robots can avoid the obstacles and find a suitable path most of
the time [3]. Compared to environments with only static obstacles, the status of obstacles
in these environments is constantly changing, and their positions are difficult to predict,
making manipulator motion planning a difficulty [4,5]. Traditional algorithms are very
suitable for static scenarios but not suitable for complex dynamic scenarios. For example,
the motion planning algorithm Rapid Random Tree (RRT), based on probability sampling,
can quickly search high-dimensional spaces, but because it explores the environment less,
it performs poorly when dealing with dynamic obstacles and completing specific tasks,
so effective training methods are crucial [6,7]. Tao and others introduced the Artificial
Potential Field (APF) algorithm and breadth-first search methods to solve the problems of
blind areas in search directions and too many search nodes in the picking manipulator, and
they verified the effectiveness and repeatability of the algorithm [8]. However, based on the
above-mentioned shortcomings of traditional algorithms applied to dynamic environments,
research on reinforcement learning has received more attention [9].

The fast progress of deep learning and computing power has made deep reinforcement
learning a reality, and it has been gradually used in games, robot navigation, industrial
production, and other fields [10]. Although deep reinforcement learning algorithms can

Electronics 2024, 13, 1969. https://doi.org/10.3390/electronics13101969 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101969
https://doi.org/10.3390/electronics13101969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13101969
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101969?type=check_update&version=1

Electronics 2024, 13, 1969 2 of 17

achieve certain results in simple dynamic environments, when the environment is complex,
the algorithm’s perception of the environment is weakened, resulting in reduced perfor-
mance. The reinforcement learning algorithm still faces various challenges, such as the
algorithm’s tendency to lead to the over-exploration of boundary values and slow conver-
gence [11]. It is not enough to improve the algorithm to obtain the best motion planning
results. In the face of dynamic environments, the optimization of data quality and the
design of reward functions become very important for motion planning [12]. The quality of
input data refers to the efficiency of the algorithm in processing the data and the expressive-
ness of the data [13]. In dynamic environments, the direct training of input data may lead
to overfitting or slow training due to the relative complexity of environmental information.

In this paper, we first build a comprehensive reward mechanism that combines Eu-
clidean distance and distance difference methods based on the soft action critic algorithm
based on the policy and value function methods to improve the performance of the ma-
nipulator approaching the target while ensuring its avoidance of obstacles. In addition, to
handle the problem of the poor utilization of data by manipulators in dynamic environ-
ments, an attention mechanism network combined with LSTM is proposed to improve the
actor network and Q-value network of the SAC algorithm. The attention mechanism is
skilled in extracting important information in the input state, and the LSTM network can
use historical information and the current state message to improve the agent’s decision-
making ability [14]. Combining the advantages of the two mechanisms improves the
performance of the agent’s motion planning. In addition, the reward mechanism and
improved algorithm were tested in two environments with different difficulties.

2. Related Work

As mentioned in the introduction, deep reinforcement learning algorithms can be used
for manipulator motion planning in complex environments. The movement of the robotic
arm can be considered a Markov Decision Process (MDP), so we can use tuples to describe
the MDP of the manipulator [15]. The following are the reward function improvements
and manipulator motion control algorithm research related to our research.

Motion planning for robotic arms usually uses either sparse rewards or dense re-
wards [16]. When using sparse rewards, in order to efficiently utilize the data, the recently
Prioritized Experience Replay (PER) and Hindsight Experience Replay (HER) can achieve
good results [17,18]. Chen et al. [19] used the shortest distance from the manipulator to the
obstacle and the Euclidean distance from the end of the manipulator to the target point
as the reward function. When considering that obstacle avoidance goes hand in hand
with reaching, the Euclidean distance encourages the robotic arm to take the shortest path
to approach the target, and the robotic arm falls into the local optimal solution. While
Lindner et al. [20] used sparse rewards for the optimization of the static obstacle avoidance
of robotic arms, this is not reflected in the dynamic environments of manipulators.

In order to improve the obstacle avoidance ability of the manipulator in the case of a
narrow channel, Li et al. [21] proposed a reward function design using the APF algorithm,
and then utilized the Deep Deterministic Policy Gradient (DDPG) algorithm for training,
which greatly improved the convergence efficiency. Fu et al. [22], in order to solve the
problem of low sample utilization when the DDPG algorithm is employed for manipulator
motion planning, proposed a multi-experience delayed pool sampling mechanism and
designed a position reward function, which effectively improves the learning efficiency.
ZHENG et al. [23], in response to the problem of the hand–eye calibration of robotic arms,
proposed a method combining a neural dynamics adaptive reward and action function
and experimentally proved its effectiveness. Luo et al. [24], for robotic arm operation tasks
using a fixed reward function when the dense reward function affects the performance,
used a network reset and converted the experience into sparse rewards, greatly improv-
ing the performance. Aiming at the problem of moving obstacles in the environment,
Chen et al. [25] got inspiration from the cylinder envelope method and cuboid envelope
method, simplifying the connecting link of the manipulator into a straight line and simul-

Electronics 2024, 13, 1969 3 of 17

taneously stacking the simplified volume of the robotic arm link onto the obstacle. This
method reduced the computational difficulty. The difference between the current distance
and the historical distance between the robotic arm and the obstacle is used as a reward
method for obstacle avoidance, effectively avoiding collisions between the robotic arm and
moving obstacles. For fixed target obstacles in the reward function, the authors used the
Euclidean distance as the reward criterion. In this paper, in order to make the manipulator
better track to the moving target and consider the instability effect caused by the small
distance change when tracking the moving target, we were inspired by [25]. We introduce
the distance difference method based on the Euclidean distance reward function to provide
information about object position changes. This method is designed to ensure obstacle
avoidance while improving the efficiency of completing tasks.

The existing research, on the other hand, has utilized algorithmic improvements to
enhance the predictive capability of models for uncertain environments. Zhou et al. [26]
combined an attention mechanism with a deep learning model based on Bidirectional Long
Short Term Memory (Bi-LSTM) and used an attention mechanism module between the
residual module and Bi-LSTM, achieving great results in the application of the motion
trajectory prediction of anthropomorphic robotic arms. Pu et al. [27], in order to handle
the problems of complex multi-agent interaction and limited communication, proposed
an attention mechanism-enhanced reinforcement learning method to solve the problem
of spatial information loss and the weakening of the learned spatial structure caused by
the LSTM network. Xu et al. [28] designed a dynamic grasping module and a trajectory
prediction module based on LSTM for dynamic grasping, which improved the dynamic
grasping ability of the robotic arm. Also, in the study of the dynamic gripping problem of a
robotic arm, Akinola utilized recurrent neural networks to predict the movement of objects.
Park et al. [29] predicted the future position of obstacles with an LSTM structure, achieved
good obstacle avoidance results, and output the hidden and memorized states of the current
time step by receiving the current input as well as the hidden and memorized states of the
previous time step as the input. Chen et al. [30] used Bi-LSTM combined with an attention
mechanism to receive the output and achieved better results in robot-assisted outpatient
services. To summarize, LSTM has good performance in object position prediction. In this
paper, we were inspired by the method of Xiao H [31], where the authors used Bi-LSTM
instead of a fully connected layer of the network and used an attention mechanism to
optimize the Bi-LSTM for solving the under-performance and convergence problems in the
optimal energy management of unmanned ships. Instead, to enhance the decision-making
ability of the network of reinforcement learning algorithms, we combined an attention
mechanism and an LSTM network. The LSTM network was used to optimize the input
state after importance redistribution, and it was applied to the SAC algorithm to study the
performance changes of manipulator motion planning in dynamic environments.

3. Method
3.1. Attn-LSTM Model Implement

Due to the influence of dynamic factors in the environment, when the state infor-
mation in the complex environment is extracted for RL training through a reinforcement
learning algorithm policy network, the state information in the environment changes fre-
quently. Simple MLP networks can only perform linear fitting according to the state and
environment, and their expressive ability in complex environments is weak [31]. The use
of LSTMs to optimize the network has become a common method, and they are used for
prediction based on historical status and current status information to improve learning
and strategy effects.

However, the output value of LSTMs is the last state related to the hidden layer state
of the unit. The output will be partially lost, and because of the frequent changes of some
state information in complex environments, a DRL algorithm that only integrates the
LSTM network cannot handle randomness well. Judgments and decisions are based on
changing factors. The attention mechanism allocates attention scores to dynamic obstacles

Electronics 2024, 13, 1969 4 of 17

and moving target points in the environment, allowing the model to better focus on the
key information of the input state [32], such as the position and moving speed of the
obstacle closest to the manipulator body and the position and moving speed of the target
point. Attention is reduced to unimportant information, such as the position and speed
information of obstacles far away from the body of the manipulator. In Equation (1), the
attention mechanism first extracts features from the state in the complex environment, and
MLP coding is used to obtain the state feature directions, eQ, eK, and eV , by encoding the
state of the dynamic obstacles and target points in the state information. ωQ, ωK and ωV
are the weight coefficients corresponding to state feature directions. The attention weight α
of the input state is calculated based on the state feature vector. Finally, the attention weight
and the state feature are multiplied to obtain the state vector with the highest weight Hattn
in the input state.

ei = φe(H; ωei)|i=Q,K,V (1)

α = so f tmax
(

eQ·eKT√
dim

)
(2)

Hattn = αT ·eV (3)

The attention mechanism helps the LSTM encode the key information of the input
state in the environment into the hidden state to provide global context information, which
is input to the LSTM network to extract the time-domain features among the data, ensuring
that the LSTM network will not change over time during long-term training and lose key
information. In Figure 1, the internal structure of the LSTM network includes a forgetting
gate, input gate, and output gate. The input gate is used to control the LSTM structure to
receive the output data from the port of the attention mechanism. The input information
of the LSTM, Hattn, is the information that is processed by the attention mechanism. The
structure of the LSTM is shown in the figure. The following equations represent the internal
rules about the output results of the LSTM in the Attn-LSTM structure:

C = [ht−1, H attn] (4)

ft = σ
(

ω f ·C + b f

)
(5)

it = σ(ωi·C + bi) (6)

ot = σ(ωo·C + bo) (7)

ct = ft
⊙

ct−1 + it
⊙

tanh(ωc·C + bc) (8)

where C is intermediate state, which is concatenated by the hidden state of the previous
time step, ht−1, and the new state information, Hattn. ct−1 is the cell state of the previous
time step. ω f , ωi, ωo, and ωc are the weights corresponding to the cell states of the oblivion
gate, the input gate, the output gate, and the output. b f , bi, bo, and bc are the biases. σ and
tanh represent the sigmoid activation function and tangent activation function, respectively.⊙

is a dot-multiplication operation between the matrices.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 17

σ and tanh represent the sigmoid activation function and tangent activation function, re-
spectively. ⨀ is a dot-multiplication operation between the matrices.

Figure 1. LSTM network construction.

As can be seen in Figure 2, the specific implementation process of the Attn-LSTM is
as follows. After the dimensions of the state data in the environment are expanded, they
are changed from two-dimensional data to three-dimensional data and then input into the
attention mechanism to extract the state features. According to the above analysis in the
attention mechanism process, the output of the attention mechanism is the input to the
LSTM network for processing, and the output of the last time step of the LSTM is taken as
the output of the SAC algorithm. The number of neurons in the embedding layer is 256.
The number of neurons used in the single-layer LSTM is 256. And the scaling factor of the
dot product attention mechanism is 0.5 to the power of the number of hidden layer neu-
rons.

Figure 2. Attn-LSTM network construction.

3.2. Modification of Arm Manipulator Reinforcement Learning Environment
3.2.1. State Space and Action Space

For the dynamic environment of robotic arm motion planning, the state contains the
end position coordinates 𝑃௘௡ௗ, the end velocity of the robotic manipulator 𝑉௘௡ௗ, the posi-
tion coordinates of the target point 𝑃௧௔௥௚௘௧, the velocity of the target point 𝑉௧௔௥௚௘௧, the po-
sition coordinates 𝑃௢௕௦௧௦, and the end velocity of the obstacles 𝑉௢௕௦௧௦. The state space s can
be represented in Equation (9) ൛𝑃௘௡ௗ,𝑉௘௡ௗ, 𝑃௧௔௥௚௘௧, 𝑉௧௔௥௚௘௧, 𝑃௢௕௦௧௦, 𝑉௢௕௦௧௦ൟ (9)

In Equation (10), the action space of the agent is the end of the robotic arm in the x,
y, and z directions. The state of the end of the robotic arm is shown in the equation [30].
When controlling the movement of the robotic arm, the three coordinates of the new action
are multiplied by a factor from the original. 𝑎 = ሼ𝑥, 𝑦, 𝑧ሽ (10)

3.2.2. Rewards

Figure 1. LSTM network construction.

Electronics 2024, 13, 1969 5 of 17

As can be seen in Figure 2, the specific implementation process of the Attn-LSTM is
as follows. After the dimensions of the state data in the environment are expanded, they
are changed from two-dimensional data to three-dimensional data and then input into the
attention mechanism to extract the state features. According to the above analysis in the
attention mechanism process, the output of the attention mechanism is the input to the
LSTM network for processing, and the output of the last time step of the LSTM is taken as
the output of the SAC algorithm. The number of neurons in the embedding layer is 256.
The number of neurons used in the single-layer LSTM is 256. And the scaling factor of the
dot product attention mechanism is 0.5 to the power of the number of hidden layer neurons.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 17

σ and tanh represent the sigmoid activation function and tangent activation function, re-
spectively. ⨀ is a dot-multiplication operation between the matrices.

Figure 1. LSTM network construction.

As can be seen in Figure 2, the specific implementation process of the Attn-LSTM is
as follows. After the dimensions of the state data in the environment are expanded, they
are changed from two-dimensional data to three-dimensional data and then input into the
attention mechanism to extract the state features. According to the above analysis in the
attention mechanism process, the output of the attention mechanism is the input to the
LSTM network for processing, and the output of the last time step of the LSTM is taken as
the output of the SAC algorithm. The number of neurons in the embedding layer is 256.
The number of neurons used in the single-layer LSTM is 256. And the scaling factor of the
dot product attention mechanism is 0.5 to the power of the number of hidden layer neu-
rons.

Figure 2. Attn-LSTM network construction.

3.2. Modification of Arm Manipulator Reinforcement Learning Environment
3.2.1. State Space and Action Space

For the dynamic environment of robotic arm motion planning, the state contains the
end position coordinates 𝑃௘௡ௗ, the end velocity of the robotic manipulator 𝑉௘௡ௗ, the posi-
tion coordinates of the target point 𝑃௧௔௥௚௘௧, the velocity of the target point 𝑉௧௔௥௚௘௧, the po-
sition coordinates 𝑃௢௕௦௧௦, and the end velocity of the obstacles 𝑉௢௕௦௧௦. The state space s can
be represented in Equation (9) ൛𝑃௘௡ௗ,𝑉௘௡ௗ, 𝑃௧௔௥௚௘௧, 𝑉௧௔௥௚௘௧, 𝑃௢௕௦௧௦, 𝑉௢௕௦௧௦ൟ (9)

In Equation (10), the action space of the agent is the end of the robotic arm in the x,
y, and z directions. The state of the end of the robotic arm is shown in the equation [30].
When controlling the movement of the robotic arm, the three coordinates of the new action
are multiplied by a factor from the original. 𝑎 = ሼ𝑥, 𝑦, 𝑧ሽ (10)

3.2.2. Rewards

Figure 2. Attn-LSTM network construction.

3.2. Modification of Arm Manipulator Reinforcement Learning Environment
3.2.1. State Space and Action Space

For the dynamic environment of robotic arm motion planning, the state contains the
end position coordinates Pend, the end velocity of the robotic manipulator Vend, the position
coordinates of the target point Ptarget, the velocity of the target point Vtarget, the position
coordinates Pobsts, and the end velocity of the obstacles Vobsts. The state space s can be
represented in Equation (9){

Pend,Vend, Ptarget, Vtarget, Pobsts, Vobsts
}

(9)

In Equation (10), the action space of the agent is the end of the robotic arm in the x,
y, and z directions. The state of the end of the robotic arm is shown in the equation [30].
When controlling the movement of the robotic arm, the three coordinates of the new action
are multiplied by a factor from the original.

a = {x, y, z} (10)

3.2.2. Rewards

The manipulator receives real-time rewards from the environment at each time step.
When designing the reward function, this paper refers to the design method of the develop-
ment platform in [19]. The difference is that we directly use Euclidean distance as part of the
distance reward criterion. Secondly, the Euclidean distance reward mechanism is combined
with the distance difference method. Our reward function is defined in Equation (11):

reward =


rg i f dt < δ
rc i f do < 0.01

rt + rdi f f + ro else
(11)

When the distance dt between the end of the manipulator and the target point is less
than the threshold δ1, a positive reward rg is given. When the minimum distance between
the manipulator and the obstacle is less than 0.01, a negative reward rc is given. do is
the shortest distance between the manipulator and the obstacle. ro is the reward function
between the robotic arm and the obstacle, as shown in Equation (12). rt and rdi f f is the

Electronics 2024, 13, 1969 6 of 17

Euclidean distance reward and distance difference reward between the manipulator and
the target point. The expression is as follows in Equations (13) and (14):

ro = w2

(
1

1 + do

)p
(12)

rt = w1dt (13)

rdi f f = ω3·(d t−1 − dt

)
(14)

3.3. Soft Actor–Critic-Based Path Planning for Uncertain Environments with Attn-LSTM

When using the SAC algorithm for path planning, the initial state is first obtained
from the environment, and actions are randomly sampled from the environment. The
current action is fed back to the environment to obtain the reward value and the next state
corresponding to the action. The actor network and critic network use the Attn--LSTM
structure to predict actions and values, respectively.

Each trajectory defined consists of a state, an action, a reward, and the next state in
order. Training starts when the batch size is filled. The manipulator interacts with the
environment through the trajectory to update the agent action network. The execution of
the action will cause the manipulator to transition into another state. The environment
will provide feedback to the robot’s actions, and the robot will receive rewards. The
standard of the reward is determined by the reward function in the environment, including
the completion of the task and the stability of the movement. Through continuous trial
and error, the robotic arm learns optimization strategies from historical experience to
maximize the cumulative reward value and obtain the optimal strategy. Compared to the
DRL algorithm with a deterministic policy, the SAC algorithm avoids the problem of the
excessive exploration of boundary values by the deterministic policy algorithm. While
maximizing the reward value and entropy accumulated in the future, the SAC algorithm
adopts a random strategy to make the strategy as random as possible and to prevent the
manipulator from repeatedly exploring an action.

The Attn-LSTM network is used in the policy network and the soft Q network for the
action and value prediction, respectively. Figure 3 shows the structures and sizes of the
neural networks used in this paper for reinforcement learning. The structures of the policy
network and the value network are the same. The difference is that the input of the policy
network is the state, the dimension is batch*30, and the output of the network is an action
vector of size 3. The input of the soft Q network is the splicing vector of the state and action,
the dimension is batch*33, and the network output is a numerical value.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 17

(a) (b)

Figure 3. The structures of (a) the strategy network and (a) the value network. Both the value net-
work and the strategy network are composed of an Attn-LSTM structure and MLP (multilayer per-
ceptron).

Each trajectory defined consists of a state, an action, a reward, and the next state in
order. Training starts when the batch size is filled and the manipulator interacts with the
environment through the trajectory to update the agent action network. The execution of
an action causes the manipulator to transition to another state. The environment provides
feedback on the robot’s actions, and the robot receives rewards, which are determined by
a reward function in the environment, including task completion and the stability of
movement. The robotic arm learns to optimize its strategy through trial and error and
historical experience to maximize the cumulative reward value, thus obtaining the opti-
mal strategy.

Compared to the DRL algorithm with deterministic strategies, the SAC algorithm
avoids the problem of over-exploring boundary values in the deterministic strategy algo-
rithm. The structure diagram of the improved SAC algorithm is shown in Figure 4. While
maximizing the future accumulated reward value and entropy, the SAC algorithm em-
ploys a stochastic strategy to make the strategy as random as possible to prevent the ro-
botic arm from exploring an action repeatedly.

SAC aims to maximize the reward value and entropy accumulated in the future, mak-
ing the strategy as random as possible and preventing the robotic arm from exploring a
movement repeatedly [33]. SAC contains a policy network, 𝜋ఏ(𝑎௧, 𝑠௧) , two soft Q-net-
works, 𝑄ଵ,ଶ(𝑠௧, 𝑎௧), a soft-value network, 𝑉ఝ(𝑠௧), and an objective-value network 𝑉ఝି (𝑠௧).
For high-dimensional action space environments, the actor network generates the mean
and standard deviation of a Gaussian distribution. Equation (15) denotes that the policy
network is updated by minimizing the Kullback–Leibler (KL) scatter and parameterized
by the parameters 𝜃 by minimizing the objective function.

𝐽(𝜋) = 𝐸௦೟~஽[𝑙𝑜𝑔𝜋ఏ(𝑎௧|𝑠௧) − min௞ୀଵ,ଶ 𝑄௞(𝑠௧, 𝑎௧)] (15)

Equation (16) denotes that the algorithm takes the form of a double Q-network simi-
lar to that in this article, which helps to avoid overestimating inappropriate Q-values.
What is important in the SAC algorithm is that the entropy regularization coefficient is
used to control the degree of randomness of the optimal policy and measure the im-
portance of entropy relative to rewards.

𝐽ொ(∅) = 𝐸(௦೟,௔೟)~஽[12 (𝑄ఏୀଵ,ଶ(𝑠௧, 𝑎௧) − [𝑟(𝑠௧, 𝑎௧) + 𝛾𝑉ఝష(𝑠௧ାଵ)])ଶ] (16)

To find the optimal policy, Equation (17) uses a policy network, 𝜋ఏ(𝑎௧, 𝑠௧), a state-
value function, 𝑉ఝ(𝑠௧) , an objective function, 𝑉ఝି (𝑠௧) , and an action-value function, 𝑄ఏଵ,ଶ(𝑎௧, 𝑠௧), and applies stochastic gradient descent to the objective function.

Figure 3. The structures of (a) the strategy network and (b) the value network. Both the value network
and the strategy network are composed of an Attn-LSTM structure and MLP (multilayer perceptron).

Each trajectory defined consists of a state, an action, a reward, and the next state in
order. Training starts when the batch size is filled and the manipulator interacts with the
environment through the trajectory to update the agent action network. The execution of
an action causes the manipulator to transition to another state. The environment provides

Electronics 2024, 13, 1969 7 of 17

feedback on the robot’s actions, and the robot receives rewards, which are determined
by a reward function in the environment, including task completion and the stability
of movement. The robotic arm learns to optimize its strategy through trial and error
and historical experience to maximize the cumulative reward value, thus obtaining the
optimal strategy.

Compared to the DRL algorithm with deterministic strategies, the SAC algorithm
avoids the problem of over-exploring boundary values in the deterministic strategy algo-
rithm. The structure diagram of the improved SAC algorithm is shown in Figure 4. While
maximizing the future accumulated reward value and entropy, the SAC algorithm employs
a stochastic strategy to make the strategy as random as possible to prevent the robotic arm
from exploring an action repeatedly.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 17

𝐽௏(𝜋) = 𝐸(௦೟,௔೟)~஽[12 (𝑉ఝୀଵ,ଶ(𝑠௧) − 𝐸௔೟~గഇ[min௞ୀଵ,ଶ 𝑄௞(𝑠௧, 𝑎௧) − 𝑙𝑜𝑔𝜋ఏ(𝑎௧|𝑠௧)])ଶ] (17)

Figure 4. SAC-based path planning algorithm with Attn-LSTM(AL-SAC).

The execution of an action leads to the transition of the robotic arm to another state,
which is a manifestation of robot kinematics. The environment provides feedback on the
robot’s actions and the robot is given a reward, which is based on criteria determined by
a reward function in the environment, including task completion and the stability of
movement. The robot is trained to optimize its strategy and learn from its historical expe-
rience, such that the accumulated reward value is maximized. Until a given task is
reached, this is achieved by the robot through continuous interaction with the environ-
ment. The overall algorithm flow is shown in Algorithm 1.

Algorithm 1: AL-SAC
1: Initialize Critic network 𝜃ଵ, 𝜃ଶ, Actor network 𝜃గ
2: Copy parameters 𝜃ଵᇱ ← 𝜃ଵ, 𝜃ଶᇱ ← 𝜃ଶ
3: Initialize replay buffer 𝑅
4: For episode 𝑖 < 𝑁 do
5: get initial state 𝑠଴
6: 𝑠௧ = 𝐿𝑆𝑇𝑀. (𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛. (𝑖𝑛𝑝𝑢𝑡))
7: select action 𝑎௧ = 𝜋ఏ(𝑠௧)
9: Save 𝑅 ← (𝑠௧, 𝑎௧, 𝑟௧, 𝑠௧ାଵ)
10: for 𝑘 < 𝑀 do
11: Sample tuples from 𝑅
13: 𝑦௜ = 𝑟௜ + 𝛾𝑚𝑖𝑛௝ୀଵ,ଶ𝑄௪ೕష(𝑠௜ାଵ, 𝑎௜ାଵ) − 𝛼𝑙𝑜𝑔𝜋ఏ(𝑎௜ାଵ|𝑠௜ାଵ)
14: Update each Critic network:
16: Minimize loss function 𝐿 = ଵே ∑ (𝑦௜ − 𝑄௪ೕ(𝑠௜ାଵ, 𝑎௜ାଵ))ଶே௜ୀଵ
17: Update each Actor network:
18: 𝐿గ(𝜃) = ଵே ∑ (𝛼𝑙𝑜𝑔𝜋ఏ(𝑎෤௜|𝑠௜) − min௝ୀଵ,ଶ 𝑄௪ೕ(𝑠௜, 𝑎෤௜))ே௜ୀଵ

Figure 4. SAC-based path planning algorithm with Attn-LSTM(AL-SAC).

SAC aims to maximize the reward value and entropy accumulated in the future,
making the strategy as random as possible and preventing the robotic arm from exploring a
movement repeatedly [33]. SAC contains a policy network, πθ(at, st), two soft Q-networks,
Q1,2(st, at), a soft-value network, Vφ(st), and an objective-value network V−φ (st). For
high-dimensional action space environments, the actor network generates the mean and
standard deviation of a Gaussian distribution. Equation (15) denotes that the policy network
is updated by minimizing the Kullback–Leibler (KL) scatter and parameterized by the
parameters θ by minimizing the objective function.

J(π) = Est∼D

[
logπθ(at|s t)− min

k=1,2
Qk(st, at)

]
(15)

Equation (16) denotes that the algorithm takes the form of a double Q-network similar
to that in this article, which helps to avoid overestimating inappropriate Q-values. What
is important in the SAC algorithm is that the entropy regularization coefficient is used to
control the degree of randomness of the optimal policy and measure the importance of
entropy relative to rewards.

JQ(∅) = E(st ,at)∼D

[
1
2

(
Qθ=1,2(st, at)−

[
r(st, at) + γVφ−(st+1)

])2
]

(16)

Electronics 2024, 13, 1969 8 of 17

To find the optimal policy, Equation (17) uses a policy network, πθ(at, st), a state-value
function, Vφ(st), an objective function, V−φ (st), and an action-value function, Qθ1,2(at, st),
and applies stochastic gradient descent to the objective function.

JV(π) = E(st ,at)∼D

[
1
2

(
Vφ=1,2(st)− Eat∼πθ

[
min
k=1,2

Qk(st, at)− logπθ(at|s t)

])2
]

(17)

The execution of an action leads to the transition of the robotic arm to another state,
which is a manifestation of robot kinematics. The environment provides feedback on the
robot’s actions and the robot is given a reward, which is based on criteria determined
by a reward function in the environment, including task completion and the stability
of movement. The robot is trained to optimize its strategy and learn from its historical
experience, such that the accumulated reward value is maximized. Until a given task is
reached, this is achieved by the robot through continuous interaction with the environment.
The overall algorithm flow is shown in Algorithm 1.

Algorithm 1: AL-SAC

1: Initialize Critic network θ1, θ2, Actor network θπ

2: Copy parameters θ′1 ← θ1 , θ′2 ← θ2
3: Initialize replay buffer R
4: For episode i < N do
5: get initial state s0
6: st = LSTM.(attention.(input))
7: select action at = πθ(st)
8: Save R← (st, at, rt, st+1)
9: for k < M do
10: Sample tuples from R
11: yi = ri + γminj=1,2Qw−j

(si+1, ai+1)− αlogπθ(ai+1|si+1)

12: Update each Critic network:

13: Minimize loss function L = 1
N ∑N

i=1

(
yi −Qwj (si+1, ai+1)

)2

14: Update each Actor network:

15: Lπ(θ) =
1
N

N
∑

i=1

(
αlogπθ

(∼
a i

∣∣∣si

)
− min

j=1,2
Qwj

(
si,
∼
a i

))
16: Update factor α

17: Update target network:
18: θ′1,2 ← τθ1,2 + (1− τ)θ′1,2
19: end for
20: end for

4. Experiments and Evaluation

The initialization environment of the robot is shown in Figure 5. Three obstacle balls
of different sizes and a red target point were set up in the environment. While the robot
avoids obstacles, the end effector should follow the moving target point. When the distance
between the end effector and the moving target point remains within the set threshold, the
tracking is successful.

We provided evaluation metrics for the success rate, obstacle avoidance rate, and
convergence speed. The maximum number of running steps set in the environment was
100, and the environment was re-initialized when the robotic arm took an action that
reached 100 steps. The success rate refers to the probability that the distance between the
end of the manipulator and the moving target in the environment is achieved within the
set threshold value in 100 steps when the algorithm is trained for one round, as shown in
Equation (18). In Equation (19), the reach counters are the number of times that the distance
between the manipulator arm and the target is less than the threshold value in 100 steps.
And the safety rate refers to the probability that the robotic arm does not collide with the
obstacle within 100 steps, as shown in the following equation, where the collision counters

Electronics 2024, 13, 1969 9 of 17

are the number of times the robotic arm collides with the obstacle within 100 steps. To make
the success rate smoother, we calculated the average success rate every 20 training rounds.
The speed of convergence was measured by comparing the difference in the number of
rounds from the start of the training to the number of rounds when the algorithm reached
a steady state The lower the number of rounds, the faster the convergence.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 17

(a) (b)

(c) (d)

Figure 5. Simulation in the environment. (a) The manipulator reaches the target point on the left
side of the obstacle; (b) the obstacle gradually approaches the manipulator; (c) the manipulator
avoids the moving obstacle; (d) the manipulator reaches the target point on the right side.

4.1. Experimental Parameter Setting
The simulation experiment was conducted using the Windows 11 and Anaconda 3

platforms, and the program used in the experiment was based on the Python 3.7, Pytorch
1.7.1 and CUD 10.1 frameworks. The five neural networks of the SAC algorithm were
trained on AMD Ryzen 5 5600H and NVIDIA GeForce GTX 1650. The number of training
sets was 10,000. The experiment was conducted under two conditions of different diffi-
culty levels, requiring the robot to keep the distance between the end of the robot manip-
ulator and the moving target point within 0.1 and 0.05, respectively, without colliding
with obstacles. At the same time, the average success rate, safety rate, and average reward
were calculated every 20 episodes. The hyperparameters of the SAC are shown in Table 1.
The learning rates of the actor network, critic network, and value network were all 0.0005.
The rewards for successful planning and collision were respectively set as 𝑟௚ = +15 and 𝑟௖ = −30. The weights corresponding to the reward function were 𝜔ଵ = −800, 𝜔ଶ = −25, 𝜔ଷ = +1500, and 𝑝 = +35.

The SAC algorithm has a large number of hyperparameters and affects the effective-
ness of the algorithm training. We referred to other articles in the same field on hyperpa-
rameter settings [34–38] and gave the determinable hyperparameter settings shown in Ta-
ble 1 below. The hyperparameter explored was the effect of the number of hidden layers
on the performance of the algorithm. We discuss this in three cases, 512 × 256, 256 × 256,
and 256 × 256. We implemented 10,000 episodes of training in the environment and rec-
orded the loss values of the actor network and the critic network, as shown in Figure 6a,b.
Also, the sliding average was recorded every 20 episodes. In Figure 6a, it can be seen that
the loss curve of the 512 × 256 hidden layer structure has a smoother curve relative to the
other two, while the loss value decreased faster, and the actor network had a better strat-
egy for selecting actions. And Figure 6b shows that the Q-value network of the 512 × 256
structure converged to a relatively stable state, learning a better estimation of the value
function, with no large oscillations during the training process. The average rewards cor-
responding to the three different hidden layer structures are shown in Figure 6, and it can
be seen that the 512 × 256 structure represented by the red color had the largest reward
value at convergence. Combined with the reward value in Figure 7 and the loss curve in
Figure 6, it can be seen that the SAC algorithm with the 512 × 256 structure converged

Figure 5. Simulation in the environment. (a) The manipulator reaches the target point on the left side
of the obstacle; (b) the obstacle gradually approaches the manipulator; (c) the manipulator avoids the
moving obstacle; (d) the manipulator reaches the target point on the right side.

success rate =
reach counters
100 timesteps

× 100% (18)

sa f ety rate =
(

1− collision counters
100 timesteps

)
× 100% (19)

We provided a specific description of the established environment. The agent used
the Franka Panda manipulator, in which the three white obstacles had radii of 0.1, 0.2, and
0.3, the red target sphere had a radius of 0.05 and moved along the green Y-axis, and all
had a speed of 0.25. The reward function, involving the distance between the manipulator
arm and the obstacle balls, was calculated by the collision detection in the PyBullet physics
engine function.

4.1. Experimental Parameter Setting

The simulation experiment was conducted using the Windows 11 and Anaconda 3 plat-
forms, and the program used in the experiment was based on the Python 3.7, Pytorch 1.7.1
and CUD 10.1 frameworks. The five neural networks of the SAC algorithm were trained on
AMD Ryzen 5 5600H and NVIDIA GeForce GTX 1650. The number of training sets was
10,000. The experiment was conducted under two conditions of different difficulty levels,
requiring the robot to keep the distance between the end of the robot manipulator and the
moving target point within 0.1 and 0.05, respectively, without colliding with obstacles. At
the same time, the average success rate, safety rate, and average reward were calculated
every 20 episodes. The hyperparameters of the SAC are shown in Table 1. The learning
rates of the actor network, critic network, and value network were all 0.0005. The rewards
for successful planning and collision were respectively set as rg = +15 and rc = −30. The

Electronics 2024, 13, 1969 10 of 17

weights corresponding to the reward function were ω1 = −800, ω2 = −25, ω3 = +1500,
and p = +35.

Table 1. Hyperparameters for SAC.

Hyperparameter Value

Learning rate 0.0005
Batch size 256

Soft update rate 0.005
Replay memory size 106

Discount factor 0.99

The SAC algorithm has a large number of hyperparameters and affects the effective-
ness of the algorithm training. We referred to other articles in the same field on hyperparam-
eter settings [34–38] and gave the determinable hyperparameter settings shown in Table 1
below. The hyperparameter explored was the effect of the number of hidden layers on the
performance of the algorithm. We discuss this in three cases, 512 × 256, 256 × 256, and
256 × 256. We implemented 10,000 episodes of training in the environment and recorded
the loss values of the actor network and the critic network, as shown in Figure 6a,b. Also,
the sliding average was recorded every 20 episodes. In Figure 6a, it can be seen that the
loss curve of the 512 × 256 hidden layer structure has a smoother curve relative to the other
two, while the loss value decreased faster, and the actor network had a better strategy for
selecting actions. And Figure 6b shows that the Q-value network of the 512 × 256 structure
converged to a relatively stable state, learning a better estimation of the value function,
with no large oscillations during the training process. The average rewards corresponding
to the three different hidden layer structures are shown in Figure 6, and it can be seen
that the 512 × 256 structure represented by the red color had the largest reward value at
convergence. Combined with the reward value in Figure 7 and the loss curve in Figure 6, it
can be seen that the SAC algorithm with the 512 × 256 structure converged faster and had
the best overall algorithm performance. Therefore, the SAC algorithm we used adopted
the 512 × 256 hidden layer structure.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 17

faster and had the best overall algorithm performance. Therefore, the SAC algorithm we
used adopted the 512 × 256 hidden layer structure.

(a) (b)

Figure 6. Loss curves of policy networks and Q-value networks for three different hidden layer
structures when using the SAC algorithm as a benchmark algorithm. In order to clearly see the curve
changes, the cubic network was taken as a localized method measure. (a) Loss curve of actor net-
work; (b) loss curve of critic network. (‘*’ represents a multiplication sign).

Figure 7. The SAC algorithm uses the average reward value when three hidden layer structures are
used, taking a local amplification measure.

Table 1. Hyperparameters for SAC.

Hyperparameter Value
Learning rate 0.0005

Batch size 256
Soft update rate 0.005

Replay memory size 10଺
Discount factor 0.99

4.2. Results and Discussion
In order to verify the effectiveness of the proposed method, we expanded the exper-

iment into two parts, namely verification of the improved reward function and effective-
ness analysis of the SAC algorithm (AL-SAC) based on the Attn-LSTM network. In the
first set of experiments, the SAC algorithm used the same code and the same network
structure, including the activation function ReLu, the optimizer Adam, a learning rate,
batch size, experience pool, discount cost, and other hyperparameters. The ‘Euclidean+
sparse’ reward function and the improved reward function were used for manipulator

Figure 6. Loss curves of policy networks and Q-value networks for three different hidden layer
structures when using the SAC algorithm as a benchmark algorithm. In order to clearly see the curve
changes, the cubic network was taken as a localized method measure. (a) Loss curve of actor network;
(b) loss curve of critic network. (‘*’ represents a multiplication sign).

Electronics 2024, 13, 1969 11 of 17

Electronics 2024, 13, x FOR PEER REVIEW 11 of 17

faster and had the best overall algorithm performance. Therefore, the SAC algorithm we
used adopted the 512 × 256 hidden layer structure.

(a) (b)

Figure 6. Loss curves of policy networks and Q-value networks for three different hidden layer
structures when using the SAC algorithm as a benchmark algorithm. In order to clearly see the curve
changes, the cubic network was taken as a localized method measure. (a) Loss curve of actor net-
work; (b) loss curve of critic network. (‘*’ represents a multiplication sign).

Figure 7. The SAC algorithm uses the average reward value when three hidden layer structures are
used, taking a local amplification measure.

Table 1. Hyperparameters for SAC.

Hyperparameter Value
Learning rate 0.0005

Batch size 256
Soft update rate 0.005

Replay memory size 10଺
Discount factor 0.99

4.2. Results and Discussion
In order to verify the effectiveness of the proposed method, we expanded the exper-

iment into two parts, namely verification of the improved reward function and effective-
ness analysis of the SAC algorithm (AL-SAC) based on the Attn-LSTM network. In the
first set of experiments, the SAC algorithm used the same code and the same network
structure, including the activation function ReLu, the optimizer Adam, a learning rate,
batch size, experience pool, discount cost, and other hyperparameters. The ‘Euclidean+
sparse’ reward function and the improved reward function were used for manipulator

Figure 7. The SAC algorithm uses the average reward value when three hidden layer structures are
used, taking a local amplification measure.

4.2. Results and Discussion

In order to verify the effectiveness of the proposed method, we expanded the experi-
ment into two parts, namely verification of the improved reward function and effectiveness
analysis of the SAC algorithm (AL-SAC) based on the Attn-LSTM network. In the first set
of experiments, the SAC algorithm used the same code and the same network structure,
including the activation function ReLu, the optimizer Adam, a learning rate, batch size,
experience pool, discount cost, and other hyperparameters. The ‘Euclidean+ sparse’ reward
function and the improved reward function were used for manipulator motion planning.
After 10,000 episodes of algorithm training, the average success rate and reward value
were compared.

In the second set of experiments, we used the improved reward function as the baseline
to comparatively analyze the performance of the SAC algorithm, the LSTM-based SAC
algorithm (LSTM-SAC), and the Attn-LSTM-based algorithm (AL-SAC). The performance
indicators evaluated included the average reward value, average reward, and total collision
probability. Both sets of experiments set up two environments with different difficulties.
The distance thresholds from the end effector of the manipulator to the target point in
Environment 1 (Env1) and Environment 2 (Env2) were 0.1 and 0.05. The third set of
experiments, based on the above experiments, analyzed the real-time distance from the
manipulator to the obstacles and target points.

4.2.1. Performance Evaluation of Reward Functions

It can be seen in Figures 8a and 9a that our reward function had a high convergence
speed and success rate. Compared to the SAC algorithm, which used the contrastive reward
function, calculated in terms of running episodes, the convergence states were reached
by 480 episodes and 2600 episodes earlier, respectively. After completing exploration and
starting to converge, the success rates increased by 1% and 7.4%, respectively.

Figures 8b and 9b show the average rewards in Environment 1 and Environment 2,
respectively. It can be seen that the changing trend of the average reward curve is consistent
with the success rate curve. Using our algorithm’s reward function of the shadow-filled area
obtained a higher total reward, and the average reward curve in the early stage can better
explore the environment. By combining the analysis of the success rate and reward, it is
shown that the reward function combining the Euclidean distance and distance difference
had a faster training speed and better success rate effect. The Euclidean distance can
provide distance information for the reward function, while the distance difference method
provides dynamic position change information, which synthesizes the position accuracy
and dynamic adaptability of the manipulator in a dynamic environment.

Electronics 2024, 13, 1969 12 of 17

Electronics 2024, 13, x FOR PEER REVIEW 12 of 17

motion planning. After 10,000 episodes of algorithm training, the average success rate and
reward value were compared.

In the second set of experiments, we used the improved reward function as the base-
line to comparatively analyze the performance of the SAC algorithm, the LSTM-based
SAC algorithm (LSTM-SAC), and the Attn-LSTM-based algorithm (AL-SAC). The perfor-
mance indicators evaluated included the average reward value, average reward, and total
collision probability. Both sets of experiments set up two environments with different dif-
ficulties. The distance thresholds from the end effector of the manipulator to the target
point in Environment 1 (Env1) and Environment 2 (Env2) were 0.1 and 0.05. The third set
of experiments, based on the above experiments, analyzed the real-time distance from the
manipulator to the obstacles and target points.

4.2.1. Performance Evaluation of Reward Functions
It can be seen in Figures 8a and 9a that our reward function had a high convergence

speed and success rate. Compared to the SAC algorithm, which used the contrastive re-
ward function, calculated in terms of running episodes, the convergence states were
reached by 480 episodes and 2600 episodes earlier, respectively. After completing explo-
ration and starting to converge, the success rates increased by 1% and 7.4%, respectively.

(a) (b)

Figure 8. Comparison of ‘Euclidean + spare’ and our reward function in Env1. (a) Average success
rate; (b) average reward.

Figures 8b and 9b show the average rewards in Environment 1 and Environment 2,
respectively. It can be seen that the changing trend of the average reward curve is con-
sistent with the success rate curve. Using our algorithmʹs reward function of the shadow-
filled area obtained a higher total reward, and the average reward curve in the early stage
can better explore the environment. By combining the analysis of the success rate and
reward, it is shown that the reward function combining the Euclidean distance and dis-
tance difference had a faster training speed and better success rate effect. The Euclidean
distance can provide distance information for the reward function, while the distance dif-
ference method provides dynamic position change information, which synthesizes the
position accuracy and dynamic adaptability of the manipulator in a dynamic environ-
ment.

Figure 8. Comparison of ‘Euclidean + spare’ and our reward function in Env1. (a) Average success
rate; (b) average reward.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 17

(a) (b)

Figure 9. Comparison of ‘Euclidean + spare’ and our reward function in Env2. (a) Average success
rate; (b) average reward.

4.2.2. Performance Evaluation of Algorithms
The hyperparameters and training conditions of the SAC algorithm part are the same.

Figures 10a,b and 11a,b show the changing trends of the average success rate and average
reward of the three algorithms under Environment 1 and Environment 2, respectively.
Table 2 shows the number of convergence steps, the average success rate after conver-
gence, and the average reward indicators of the three algorithms in Environment 1 and
Environment 2. We compared the performance of SAC, PPO, and TD3 in a dynamic envi-
ronment. It can be seen in Figure 10a that the PPO reached convergence at a much higher
number of rounds relative to the SAC algorithm. TD3 maintained the lowest success rate
compared to the SAC. The success rate curve of SAC has a larger slope, indicating faster
convergence relative to PPO and TD3. In Figure 11a, TD3 has lower success rate and num-
ber of converged rounds than PPO in the early stage, but after reaching the converged
state, the success rate is slightly higher than PPO. But both were always lower than the
SAC algorithm. The latter introduces entropy regularization, which provides more
choices for the action exploration of the strategy network, and the combination of the
strategy and value functions further optimizes the algorithm performance. It can be seen
that the SAC algorithm training was more stable in a high-dimensional space, with a
higher success rate and faster convergence speed.

The AL−SAC algorithm maintained the fastest convergence speed compared to the
other two algorithms; by around 600 episodes and 1000 episodes, respectively, the explo-
ration was completed and convergence began, and the success rate after convergence was
the highest. Compared to the SAC algorithm, the convergence speed and success rate of
the LSTM−SAC algorithm were also improved. It completed exploration and started to
converge in 1100 episodes and 1960 episodes, respectively. And it can be seen in Figure
10b that the AL−SAC algorithm reward value curve is smoother, indicating that the algo-
rithm training was more stable compared to the other algorithms. Comparing the AL−SAC
algorithm and the LSTM−SAC algorithm, the combination of the attention mechanism and
the LSTM improved the performance and efficiency of the motion planning of the manip-
ulator in the dynamic environment to a certain extent.

Figure 9. Comparison of ‘Euclidean + spare’ and our reward function in Env2. (a) Average success
rate; (b) average reward.

4.2.2. Performance Evaluation of Algorithms

The hyperparameters and training conditions of the SAC algorithm part are the
same. Figures 10a,b and 11a,b show the changing trends of the average success rate
and average reward of the three algorithms under Environment 1 and Environment 2,
respectively. Table 2 shows the number of convergence steps, the average success rate after
convergence, and the average reward indicators of the three algorithms in Environment 1
and Environment 2. We compared the performance of SAC, PPO, and TD3 in a dynamic
environment. It can be seen in Figure 10a that the PPO reached convergence at a much
higher number of rounds relative to the SAC algorithm. TD3 maintained the lowest success
rate compared to the SAC. The success rate curve of SAC has a larger slope, indicating
faster convergence relative to PPO and TD3. In Figure 11a, TD3 has lower success rate and
number of converged rounds than PPO in the early stage, but after reaching the converged
state, the success rate is slightly higher than PPO. But both were always lower than the
SAC algorithm. The latter introduces entropy regularization, which provides more choices
for the action exploration of the strategy network, and the combination of the strategy and
value functions further optimizes the algorithm performance. It can be seen that the SAC

Electronics 2024, 13, 1969 13 of 17

algorithm training was more stable in a high-dimensional space, with a higher success rate
and faster convergence speed.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 17

(a) (b)

Figure 10. Comparison of three algorithms in Env1. (a) Average success rate; (b) average reward.

Table 2. Performance comparison of three algorithms.

Env1 Env2

Convergence
Episode

Average Success
Rate Average Reward

Convergence
Episode

Average Success
Rate Average Reward

SAC 1920 80.7% 1388 4000 64.49% 1224.1
LSTM−SAC 1100 81.09% 1415.4 1960 71.8% 1302.45

AL−SAC 600 83.15% 1483.1 1000 74.1% 1343.5
PPO 3500 82% 1452.4 7500 69.12% 1278.08
TD3 5000 80.54% 1467.5 6000 69.3% 776.78

Combining the analysis of the changing trends of the average success rate, average
reward value, and total collision rate in Figure 12. The Attn−LSTM can significantly im-
prove the convergence speed of manipulator motion planning and improve performance
compared to the LSTM. Due to the introduction of the attention mechanism and the LSTM
fusion network in the SAC algorithm, the manipulator can achieve significant distribution
of complex and changeable state information during the training process and extract more
key information, thereby speeding up the robotic arm and convergence speed and im-
proving the performance of manipulator motion planning.

(a) (b)

Figure 11. Comparison of three algorithms in Env2. (a) Average success rate; (b) average reward.

Figure 10. Comparison of three algorithms in Env1. (a) Average success rate; (b) average reward.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 17

(a) (b)

Figure 10. Comparison of three algorithms in Env1. (a) Average success rate; (b) average reward.

Table 2. Performance comparison of three algorithms.

Env1 Env2

Convergence
Episode

Average Success
Rate Average Reward

Convergence
Episode

Average Success
Rate Average Reward

SAC 1920 80.7% 1388 4000 64.49% 1224.1
LSTM−SAC 1100 81.09% 1415.4 1960 71.8% 1302.45

AL−SAC 600 83.15% 1483.1 1000 74.1% 1343.5
PPO 3500 82% 1452.4 7500 69.12% 1278.08
TD3 5000 80.54% 1467.5 6000 69.3% 776.78

Combining the analysis of the changing trends of the average success rate, average
reward value, and total collision rate in Figure 12. The Attn−LSTM can significantly im-
prove the convergence speed of manipulator motion planning and improve performance
compared to the LSTM. Due to the introduction of the attention mechanism and the LSTM
fusion network in the SAC algorithm, the manipulator can achieve significant distribution
of complex and changeable state information during the training process and extract more
key information, thereby speeding up the robotic arm and convergence speed and im-
proving the performance of manipulator motion planning.

(a) (b)

Figure 11. Comparison of three algorithms in Env2. (a) Average success rate; (b) average reward. Figure 11. Comparison of three algorithms in Env2. (a) Average success rate; (b) average reward.

Table 2. Performance comparison of three algorithms.

Env1 Env2

Convergence
Episode

Average
Success Rate

Average
Reward

Convergence
Episode

Average
Success Rate

Average
Reward

SAC 1920 80.7% 1388 4000 64.49% 1224.1
LSTM−SAC 1100 81.09% 1415.4 1960 71.8% 1302.45

AL−SAC 600 83.15% 1483.1 1000 74.1% 1343.5
PPO 3500 82% 1452.4 7500 69.12% 1278.08
TD3 5000 80.54% 1467.5 6000 69.3% 776.78

The AL−SAC algorithm maintained the fastest convergence speed compared to the
other two algorithms; by around 600 episodes and 1000 episodes, respectively, the explo-
ration was completed and convergence began, and the success rate after convergence was
the highest. Compared to the SAC algorithm, the convergence speed and success rate of
the LSTM−SAC algorithm were also improved. It completed exploration and started to

Electronics 2024, 13, 1969 14 of 17

converge in 1100 episodes and 1960 episodes, respectively. And it can be seen in Figure 10b
that the AL−SAC algorithm reward value curve is smoother, indicating that the algorithm
training was more stable compared to the other algorithms. Comparing the AL−SAC
algorithm and the LSTM−SAC algorithm, the combination of the attention mechanism
and the LSTM improved the performance and efficiency of the motion planning of the
manipulator in the dynamic environment to a certain extent.

Combining the analysis of the changing trends of the average success rate, average
reward value, and total collision rate in Figure 12. The Attn−LSTM can significantly
improve the convergence speed of manipulator motion planning and improve performance
compared to the LSTM. Due to the introduction of the attention mechanism and the LSTM
fusion network in the SAC algorithm, the manipulator can achieve significant distribution
of complex and changeable state information during the training process and extract
more key information, thereby speeding up the robotic arm and convergence speed and
improving the performance of manipulator motion planning.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 17

Figure 12. The performance of the three algorithms in terms of collision rate, shown in the bar chart,
is the sum of all rounds of collision rate after 10,000 training sessions in Environments 1 and 2.

In order to more intuitively observe the movement status of the robotic arm in a com-
plex environment, the test was conducted in Environment 2, which had a more difficult
task. Figure 13 shows the graph of the distance between the end manipulator of the robotic
arm and the target point and the shortest distance to the obstacle after 5000 rounds of
training of the robotic arm. The shaded part is the recorded value of 5000 episodes, and
the curve indicates the average value recorded every 100 episodes. Each distance record
value represents the superposition value of the maximum 100 running steps in the envi-
ronment under one episode. It can be seen in Figure 13a that the curve change slope of the
AL−SAC algorithm is larger, indicating that it had a faster convergence speed, and it be-
gan to converge and reached a stable state at 800 episodes. Curve in Figure 13b shows that
in the same episodes of the AL−SAC algorithm, the distance between the manipulator and
the obstacle remained in a stable state, and the distance was shorter than the other two
algorithms. Combined with the analysis of Experiment 2 above, this shows that the intro-
duction of the Attn−LSTM structure into the SAC algorithm can extract more important
information during the training process, accelerate the convergence speed of the agent,
and improve the success rate. At the same time, the stability of algorithm performance is
increased.

(a) (b)

Figure 13. Comparison of distance between three algorithms in 5000 episodes of training. (a) The
distance between the end of the manipulator and the moving target. (b) The shortest distance be-
tween the body of manipulator and the moving obstacle.

5. Conclusions
This paper proposes a motion planning method for a robotic arm in a complex envi-

ronment based on the SAC algorithm, so that the robotic arm can better contact the target

Figure 12. The performance of the three algorithms in terms of collision rate, shown in the bar chart,
is the sum of all rounds of collision rate after 10,000 training sessions in Environments 1 and 2.

In order to more intuitively observe the movement status of the robotic arm in a
complex environment, the test was conducted in Environment 2, which had a more difficult
task. Figure 13 shows the graph of the distance between the end manipulator of the
robotic arm and the target point and the shortest distance to the obstacle after 5000 rounds
of training of the robotic arm. The shaded part is the recorded value of 5000 episodes,
and the curve indicates the average value recorded every 100 episodes. Each distance
record value represents the superposition value of the maximum 100 running steps in
the environment under one episode. It can be seen in Figure 13a that the curve change
slope of the AL−SAC algorithm is larger, indicating that it had a faster convergence speed,
and it began to converge and reached a stable state at 800 episodes. Curve in Figure 13b
shows that in the same episodes of the AL−SAC algorithm, the distance between the
manipulator and the obstacle remained in a stable state, and the distance was shorter
than the other two algorithms. Combined with the analysis of Experiment 2 above, this
shows that the introduction of the Attn−LSTM structure into the SAC algorithm can extract
more important information during the training process, accelerate the convergence speed
of the agent, and improve the success rate. At the same time, the stability of algorithm
performance is increased.

Electronics 2024, 13, 1969 15 of 17

Electronics 2024, 13, x FOR PEER REVIEW 15 of 17

Figure 12. The performance of the three algorithms in terms of collision rate, shown in the bar chart,
is the sum of all rounds of collision rate after 10,000 training sessions in Environments 1 and 2.

In order to more intuitively observe the movement status of the robotic arm in a com-
plex environment, the test was conducted in Environment 2, which had a more difficult
task. Figure 13 shows the graph of the distance between the end manipulator of the robotic
arm and the target point and the shortest distance to the obstacle after 5000 rounds of
training of the robotic arm. The shaded part is the recorded value of 5000 episodes, and
the curve indicates the average value recorded every 100 episodes. Each distance record
value represents the superposition value of the maximum 100 running steps in the envi-
ronment under one episode. It can be seen in Figure 13a that the curve change slope of the
AL−SAC algorithm is larger, indicating that it had a faster convergence speed, and it be-
gan to converge and reached a stable state at 800 episodes. Curve in Figure 13b shows that
in the same episodes of the AL−SAC algorithm, the distance between the manipulator and
the obstacle remained in a stable state, and the distance was shorter than the other two
algorithms. Combined with the analysis of Experiment 2 above, this shows that the intro-
duction of the Attn−LSTM structure into the SAC algorithm can extract more important
information during the training process, accelerate the convergence speed of the agent,
and improve the success rate. At the same time, the stability of algorithm performance is
increased.

(a) (b)

Figure 13. Comparison of distance between three algorithms in 5000 episodes of training. (a) The
distance between the end of the manipulator and the moving target. (b) The shortest distance be-
tween the body of manipulator and the moving obstacle.

5. Conclusions
This paper proposes a motion planning method for a robotic arm in a complex envi-

ronment based on the SAC algorithm, so that the robotic arm can better contact the target

Figure 13. Comparison of distance between three algorithms in 5000 episodes of training. (a) The
distance between the end of the manipulator and the moving target. (b) The shortest distance between
the body of manipulator and the moving obstacle.

5. Conclusions

This paper proposes a motion planning method for a robotic arm in a complex envi-
ronment based on the SAC algorithm, so that the robotic arm can better contact the target
point while avoiding obstacles in an environment with dynamic obstacles and dynamic
target points. In view of the shortcomings of the traditional Euclidean distance reward
function, a reward function that combines distance difference and Euclidean distance is
proposed to improve the motion planning efficiency of the manipulator. At the same time,
according to the dynamic characteristics of the uncertain environment, an attention mecha-
nism network fused with an LSTM is introduced to improve the effect and convergence of
the SAC algorithm. The comparative analysis of the simulation experiments proves that
this method can improve the success rate and convergence speed of the manipulator and
reduce the probability of collision, indicating that this method has certain effectiveness
and advantages. The current method has a large training time cost, and it may become
possible to use transfer learning or environment sampling parallelization in future research.
In addition, since the robotic arm needs further verification in a real environment, we plan
to build a suitable real-life platform for experiments in the future.

Author Contributions: X.K. supervised the implementation process of algorithm; S.Z. analyzed and
improved the reward function and SAC algorithm. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2022YFC3104001.

Data Availability Statement: The environment and algorithms implemented in the text will later be
uploaded to https://github.com/Zhousucheng4811/paper-code (accessed on 5 May 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bhuiyan, T.; Kästner, L.; Hu, Y.; Kutschank, B.; Lambrecht, J. Deep-Reinforcement-Learning-based Path Planning for Industrial

Robots using Distance Sensors as Observation. In Proceedings of the 2023 8th International Conference on Control and Robotics
Engineering (ICCRE), Niigata, Japan, 21–23 April 2023; pp. 204–210.

2. Matulis, M.; Harvey, C. A robot arm digital twin utilising reinforcement learning. Comput. Graph. 2021, 95, 106–114. [CrossRef]
3. Said, A.; Talj, R.; Francis, C.; Shraim, H. Local trajectory planning for autonomous vehicle with static and dynamic obstacles

avoidance. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN,
USA, 19–22 September 2021; pp. 410–416.

https://github.com/Zhousucheng4811/paper-code
https://doi.org/10.1016/j.cag.2021.01.011

Electronics 2024, 13, 1969 16 of 17

4. Palmieri, G.; Scoccia, C. Motion planning and control of redundant manipulators for dynamical obstacle avoidance. Machines
2021, 9, 121. [CrossRef]

5. Azizi, M.R.; Rastegarpanah, A.; Stolkin, R. Motion planning and control of an omnidirectional mobile robot in dynamic
environments. Robotics 2021, 10, 48. [CrossRef]

6. Ding, J.; Zhou, Y.; Huang, X.; Song, K.; Lu, S.; Wang, L. An improved RRT* algorithm for robot path planning based on path
expansion heuristic sampling. J. Comput. Sci. 2023, 67, 101937. [CrossRef]

7. Ma, H.; Meng, F.; Ye, C.; Wang, J.; Meng, M.Q.-H. Bi-Risk-RRT based efficient motion planning for autonomous ground vehicles.
IEEE Trans. Intell. Veh. 2022, 7, 722–733. [CrossRef]

8. Tao, L.; Chen, C.; Pan, W. On Obstacle Avoidance Motion Planning of Picking Manipu-lator Arm based on Improved RRT. J. Hefei
Univ. (Compr. Ed.) 2023, 40, 95–101+110.

9. Semnani, S.H.; Liu, H.; Everett, M.; Ruiter, A.; How, J. Multi-agent motion planning for dense and dynamic environments via
deep reinforcement learning. IEEE Robot. Autom. Lett. 2020, 5, 3221–3226. [CrossRef]

10. Finean, M.N.; Petrović, L.; Merkt, W.; Marković, I.; Havoutis, I. Motion planning in dynamic environments using context-aware
human trajectory prediction. Robot. Auton. Syst. 2023, 166, 104450. [CrossRef]

11. Zhou, C.; Huang, B.; Hassan, H.; Fränti, P. Attention-based advantage actor-critic algorithm with prioritized experience replay for
complex 2-D robotic motion planning. J. Intell. Manuf. 2023, 34, 151–180. [CrossRef]

12. Huang, Z.; Wang, J.; Pi, L.; Song, X.; Yang, L. LSTM based trajectory prediction model for cyclist utilizing multiple interactions
with environment. Pattern Recognit. 2021, 112, 107800. [CrossRef]

13. Shaili, M.; Anuja, A. A Huber reward function-driven deep reinforcement learning solution for cart-pole balancing problem.
Neural Comput. Appl. 2023, 35, 16705–16722.

14. Xiong, C.; Xiong, J.; Yang, Z.; Hu, W. Path planning method for citrus picking manipulator based on deep reinforcement learning.
J. South China Agric. Univ. 2023, 44, 473–483.

15. Malik, A.; Lischuk, Y.; Henderson, T.; Prazenica, R. A deep reinforcement-learning approach for inverse kinematics solution of a
high degree of freedom robotic manipulator. Robotics 2022, 11, 44. [CrossRef]

16. Zhang, L.; Feng, Y.; Wang, R.; Xu, Y.; Xu, N.; Liu, Z.; Du, H. Efficient experience replay architecture for offline reinforcement
learning. Robot. Intell. Autom. 2023, 43, 35–43. [CrossRef]

17. Sangiovanni, B.; Rendiniello, A.; Incremona, G.P.; Ferrara, A.; Piastra, M. Deep Reinforcement Learning for Collision Avoidance
of Robotic Manipulators. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018.
[CrossRef]

18. Luo, Y.; Wang, Y.; Dong, K.; Zhang, Q.; Cheng, E.; Sun, Z.; Song, B. Relay Hindsight Experience Replay: Self-guided continual
reinforcement learning for sequential object manipulation tasks with sparse rewards. Neurocomputing 2023, 557, 126620. [CrossRef]

19. Chen, L.; Jiang, Z.; Cheng, L.; Knoll, A.C.; Zhou, M. Deep reinforcement learning based trajectory planning under uncertain
constraints. Front. Neurorobotics 2022, 16, 883562. [CrossRef]

20. Lindner, T.; Milecki, A. Reinforcement learning-based algorithm to avoid obstacles by the anthropomorphic robotic arm. Appl.
Sci. 2022, 12, 6629. [CrossRef]

21. Li, Y.; Zhang, C.; Chai, L. Collaborative obstacle avoidance trajectory planning for mobile robotic arms based on artificial potential
field DDPG algorithm. Comput. Integr. Manuf. Syst. 2023, 1–15.

22. Fu, Z.; Zheng, W.; Zhang, L.; He, L.; Yuan, L.; Shao, M. Obstacle Avoidance Path Planning Method of Robotic Arm Based on
MRD-DDPG. Modul. Mach. Tool Autom. Manuf. Tech. 2023, 7, 41–45. (In Chinese) [CrossRef]

23. Zheng, Z.; Yu, M.; Guo, P.; Zeng, D. Neurodynamics Adaptive Reward and Action for Hand-to-Eye Calibration with Deep
Reinforcement Learning. IEEE Access 2023, 11, 60292–60304. [CrossRef]

24. Luo, Y.; Wang, Y.; Dong, K.; Liu, Y.; Sun, Z.; Zhang, Q.; Song, B. D2SR: Transferring Dense Reward Function to Sparse by Network
Resetting. In Proceedings of the 2023 IEEE International Conference on Real-time Computing and Robotics (RCAR), Datong,
China, 17–20 July 2023; pp. 906–911.

25. Chen, P.; Pei, J.; Lu, W.; Li, M. A deep reinforcement learning based method for real-time path planning and dynamic obstacle
avoidance. Neurocomputing 2022, 497, 64–75. [CrossRef]

26. Zhou, H.; Yang, G.; Wang, B.; Li, X.; Wang, R.; Huang, X.; Wu, H.; Wang, X.V. An attention-based deep learning approach for
inertial motion recognition and estimation in human-robot collaboration. J. Manuf. Syst. 2023, 67, 97–110. [CrossRef]

27. Pu, Z.; Wang, H.; Liu, Z.; Yi, J.; Wu, S. Attention enhanced reinforcement learning for multi agent cooperation. IEEE Trans. Neural
Netw. Learn. Syst. 2022, 34, 8235–8249. [CrossRef] [PubMed]

28. Xu, B.; Hassan, T.; Hussain, I. Improving reinforcement learning based moving object grasping with trajectory prediction. Intell.
Serv. Robot. 2023, 17, 265–276. [CrossRef]

29. Park, K.-W.; Kim, M.; Kim, J.-S.; Park, J.-H. Path planning for multi-Arm Manipulators using Soft Actor-Critic algorithm with
position prediction of moving obstacles via LSTM. Appl. Sci. 2022, 12, 9837. [CrossRef]

30. Chen, C.W.; Tseng, S.P.; Kuan, T.W.; Wang, J.F. Outpatient text classification using attention-based bidirectional LSTM for
robot-assisted servicing in hospital. Information 2020, 11, 106. [CrossRef]

31. Xiao, H.; Fu, L.; Shang, C.; Bao, X.; Xu, X.; Guo, W. Ship energy scheduling with DQN-CE algorithm combining bi-directional
LSTM and attention mechanism. Appl. Energy 2023, 347, 121378. [CrossRef]

https://doi.org/10.3390/machines9060121
https://doi.org/10.3390/robotics10010048
https://doi.org/10.1016/j.jocs.2022.101937
https://doi.org/10.1109/TIV.2022.3152740
https://doi.org/10.1109/LRA.2020.2974695
https://doi.org/10.1016/j.robot.2023.104450
https://doi.org/10.1007/s10845-022-01988-z
https://doi.org/10.1016/j.patcog.2020.107800
https://doi.org/10.3390/robotics11020044
https://doi.org/10.1108/RIA-10-2022-0248
https://doi.org/10.23919/ECC.2018.8550363
https://doi.org/10.1016/j.neucom.2023.126620
https://doi.org/10.3389/fnbot.2022.883562
https://doi.org/10.3390/app12136629
https://doi.org/10.13462/j.cnki.mmtamt.2023.07.010W
https://doi.org/10.1109/ACCESS.2023.3287098
https://doi.org/10.1016/j.neucom.2022.05.006
https://doi.org/10.1016/j.jmsy.2023.01.007
https://doi.org/10.1109/TNNLS.2022.3146858
https://www.ncbi.nlm.nih.gov/pubmed/35180087
https://doi.org/10.1007/s11370-023-00491-5
https://doi.org/10.3390/app12199837
https://doi.org/10.3390/info11020106
https://doi.org/10.1016/j.apenergy.2023.121378

Electronics 2024, 13, 1969 17 of 17

32. Chen, C.; Liu, Y.; Kreiss, S.; Alahi, A. Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep
reinforcement learning. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20–24 May 2019; pp. 6015–6022.

33. Zhou, D.; Jia, R.; Yao, H.; Xie, M. Robotic arm motion planning based on residual reinforcement learning. In Proceedings of the
2021 13th International Conference on Computer and Automation Engineering (ICCAE), Melbourne, Australia, 20–22 March 2021;
pp. 89–94.

34. Guo, N.; Li, C.; Gao, T.; Liu, G.; Li, Y.; Wang, D. A fusion method of local path planning for mobile robots based on LSTM neural
network and reinforcement learning. Math. Probl. Eng. 2021, 2021, 5524232. [CrossRef]

35. Mock, J.W.; Muknahallipatna, S.S. A comparison of ppo, td3 and sac reinforcement algorithms for quadruped walking gait
generation. J. Intell. Learn. Syst. Appl. 2023, 15, 36–56. [CrossRef]

36. Zhao, X.; Zhao, H.; Chen, P.; Ding, H. Model accelerated reinforcement learning for high precision robotic assembly. Int. J. Intell.
Robot. Appl. 2020, 4, 202–216. [CrossRef]

37. Zhou, C.; Huang, B.; Fränti, P. Representation learning and reinforcement learning for dynamic complex motion planning system.
IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–15. [CrossRef] [PubMed]

38. Han, D.; Mulyana, B.; Stankovic, V.; Cheng, S. A survey on deep reinforcement learning algorithms for robotic manipulation.
Sensors 2023, 23, 3762. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/5524232
https://doi.org/10.4236/jilsa.2023.151003
https://doi.org/10.1007/s41315-020-00138-z
https://doi.org/10.1109/TNNLS.2023.3247160
https://www.ncbi.nlm.nih.gov/pubmed/37028017
https://doi.org/10.3390/s23073762
https://www.ncbi.nlm.nih.gov/pubmed/37050822

	Introduction
	Related Work
	Method
	Attn-LSTM Model Implement
	Modification of Arm Manipulator Reinforcement Learning Environment
	State Space and Action Space
	Rewards

	Soft Actor–Critic-Based Path Planning for Uncertain Environments with Attn-LSTM

	Experiments and Evaluation
	Experimental Parameter Setting
	Results and Discussion
	Performance Evaluation of Reward Functions
	Performance Evaluation of Algorithms

	Conclusions
	References

