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Abstract: The integration of Artificial Intelligence (AI) in Energy Storage Systems (ESS) for Electric
Vehicles (EVs) has emerged as a pivotal solution to address the challenges of energy efficiency,
battery degradation, and optimal power management. The capability of such systems to differ from
theoretical modeling enhances their applicability across various domains. The vast amount of data
available today has enabled AI to be trained and to predict the behavior of complex systems with a
high degree of accuracy. As we move towards a more sustainable future, the electrification of vehicles
and integrating electric systems for energy storage are becoming increasingly important and need
to be addressed. The synergy of AI and ESS enhances the overall efficiency of electric vehicles and
plays a crucial role in shaping a sustainable and intelligent energy ecosystem. To the best of the
authors’ knowledge, AI applications in energy storage systems for the integration of electric vehicles
have not been explicitly reviewed. The research investigates the importance of AI advancements in
energy storage systems for electric vehicles, specifically focusing on Battery Management Systems
(BMS), Power Quality (PQ) issues, predicting battery State-of-Charge (SOC) and State-of-Health
(SOH), and exploring the potential for integrating Renewable Energy Sources with EV charging
needs and optimizing charging cycles. This study examined all topics to identify the most commonly
used methods, which were analyzed based on their characteristics and potential. Future trends were
identified by exploring emerging techniques introduced in recent literature contributions published
since 2017.

Keywords: artificial intelligence; data management; electric vehicles; energy storage systems; machine
learning

1. Introduction

There is a noticeable upward trend in the interest in applications of Artificial Intelli-
gence (AI) across various research topics, offering undeniable advantages such as higher
accuracy of predictive results and reduced computational complexity compared to classical
modeling techniques [1]. Implementing these methods has become widespread but has
primarily occurred within the last decade. The increasing popularity of Electric Vehicles
(EVs) has resulted in a higher demand for energy to power charging operations [2]. This
has made it more difficult to accurately estimate driving behavior and charging demand,
which calls for a new perspective that can enable fast and dependable responses. AI is
revolutionizing Energy Storage Systems (ESSs) by enabling sophisticated optimization al-
gorithms to enhance efficiency and reliability. Intelligent ESSs can optimize energy storage
and distribution through AI-powered predictive analytics, leading to more sustainable
and cost-effective solutions. A general schematization of the framework based on these
assertions is provided in Figure 1. The role of AI can also be explained in the following
shape: Its capability to handle big data quickly allows for cross-implementation among
different contexts and topics, integrating them as part of the general system and improving
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related performance. AI algorithms also facilitate real-time monitoring and control of ESSs,
ensuring adaptive responses to dynamic energy demands and grid conditions. However,
research in this area is relatively recent and ongoing, with a smaller volume of literature
compared to other topics.
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The growth in the usage of EVs and electric mobility is driving the market for numer-
ous ESSs [3]. Therefore, electric and electrochemical devices are employed to fully realize
electric motion, given their high efficiency and adaptability to different conditions [4].
Capacitors, supercapacitors, generators, and power converters are remarkable examples in
the former category [5,6]. Regarding the latter category, it is essential to establish a relation-
ship with batteries despite the different technologies through which they are produced [7].
In particular:

• Lithium-ion (Li-ion) batteries are the most diffused, given the extended thermal range
of operation, load capacity, and reduced mass per cell and internal resistance. However,
degradation phenomena are critical, limiting their applicability due to low duration.

• Nickel–Cadmium (Ni-Cd) and Nickel–Metal–Hydride (Ni-MH) batteries are able to
reduce dimensions and offer good performance for durability with a high energy
density; on the contrary, the reduced thermal operational range limits their application
to medical devices.

• Other types of batteries may offer higher energy densities; however, they have dif-
ferent optimal working temperature ranges, which can limit their applications and
increase costs.

Additionally, AI advancements can be applied to ESSs [8,9]. In particular, all processes
that refer to prediction, communication, and management can benefit from the implemen-
tation of AI algorithms that are capable of reducing the processing time of the evaluation
process and merging heterogeneous data [10] to set effective strategies aimed at managing
the components better and extending the capability of communications in the wake of the
Internet of Things (IoT) [11,12].

The need to implement AI for ESSs can be retrieved in the following framework,
depending on the following:

• Number of input parameters available;
• Number of output parameters to be determined;
• Complexity of the problem;
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• Computational time.

Moreover, AI can handle complex problems without requiring a detailed model,
eliminating the need for modelization steps [13]. Several models can be found in the
literature regarding ESSs, hereby listed with an increasing level of detail:

• Empirical models (EMs);
• Physical models (PMs);
• Single-Particle Models (SPMs);
• Single-Electrolyte Interface (SEIs);
• Combined.

Starting from macroscale models, EMs are based on indirect relationships between
inputs and outputs from experimental observations, especially considering input variables
that do not show a proper physical link with the output variables or the process itself.
EMs are mainly extrapolated from experiments through “ready-to-use” mathematical
relationships [14]. Instead, PMs can describe the working principles of an ESS dealing
with physical quantities that can be either directly measured or indirectly estimated [5,15].
PMs are mainly constituted by electro-chemical relationships, thus disclosing a higher
level of detail in the model adopted. A further step is the composition of PMs with SPMs
and/or SEIs; these can delve into all problems set on a micro-scale referring to damaging
mechanisms for cells [11]. In particular, they are able to connect EMs with PMs, but
are only used for low values of currents. On the other hand, SEIs are more suitable for
describing damaging mechanisms such as lithium plating, cracking, and degradation
of cells. Therefore, SEIs provide a physical-based evaluation of the so-called State of
Health (SoH).

In the category of “empirical models”, there is a further sub-category that needs to be
highlighted. This modeling technique arises from the need for more precise knowledge
regarding detailed parameters for ESSs, necessitating a simplification of the model. Thus,
two distinct approaches emerge. The first approach entails employing passive electrical
elements to mimic the behavior of the battery in a simplified manner, known as the
Equivalent (or Electric) Circuit Model (ECM) [15]. Here, the physical meaning of the
arrangement used for the electric circuit is not linked with the real working principles of the
device but instead helps provide the relevant information needed as output. The second
approach is derived from the already described approach but exploits the advantages of
AI [11,16–18]. Applying Machine Learning (ML) techniques enables the simultaneous
achievement of two distinct objectives. First, estimations of the system status need to be
provided in a short time period. Second, the trend is to reduce the complexity of the system
model, discarding all technical details that are out of the scope of calculations, which would
have required significant computational time. In this sense, the implementation of AI is
generally valuable in providing an almost real-time response to every query, with some
exceptions [19]. The integration of ML is always based on a real dataset that is sufficiently
large to allow a reliable training phase for the algorithm.

The significance of hybrid energy storage systems for electric vehicles and efficient
energy management strategies are explored in [20,21], focusing on battery ultracapacitor
systems and optimal planning and control algorithms for Electric Vehicle Charging Stations.
Ref. [22] provides a comprehensive review of lithium-ion batteries, discussing topics such
as EV systems, energy management, and future recommendations. Ref. [23] highlights the
role of energy storage technology in facilitating the adoption of renewable energy and dis-
cusses its integration with artificial intelligence for optimized system control. Additionally,
Ref. [24] explores machine learning applications in manufacturing sectors, emphasizing
sustainability and environmental impact. Moreover, Ref. [25] emphasizes the importance
of optimal planning and control algorithms for Electric Vehicle Charging Stations, focusing
on system configurations, energy management, and advanced control issues. It highlights
the potential benefits of hybrid designs and portable energy storage systems for enhancing
flexibility and profitability in grid-tied EV charging station networks.
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To the best of the authors’ knowledge, no study has explicitly reviewed AI applications
in energy storage systems for the integration of electric vehicles. Therefore, this review
aims to investigate the extent to which AI is being integrated into ESSs for EVs, drawing
from existing literature contributions and extrapolating potential future trends. This work
is motivated by the growing attention AI methods have garnered over the past decade, as
they are being applied across diverse topics and fields. However, limitations exist due to
the relatively small number of relevant applications considered in this sector, considering
its recent relevance and significance. Section 2 introduces the general framework regarding
ESSs for EVs, while Section 3 describes the methodology adopted for the literature contri-
butions considered, analyzing each topic in which AI methods are implemented. Section 4
provides a critical discussion on the implemented methods, while Section 5 proposes future
trends that are lagging behind the analysis provided and extrapolated.

2. Methodology

AI is being implemented in various fields. Its integration into ESSs for EVs has only re-
cently begun to gain significance within the past decade [26]. Contemporary advancements
in technology and manufacturing materials dedicated to batteries and technical aspects of
managing such systems during their life cycle have favored the implementation of AI in this
field [6]. To provide a repeatable analysis, the contributions published in the literature were
retrieved through the Scopus database; the search parameters are summarized in Table 1.
We examined all relevant contributions published since 2017 regarding the role of AI in
ESSs. Contributions published before this threshold were deemed insignificant in terms of
quantity and advancements compared to recent publications. Moreover, all resources were
evaluated by limiting the language of publication to English and the type of documents
considered. Given that this work aims to concentrate on the AI methods applied, our focus
primarily lies in journal publications. Figure 2 depicts the trends of published articles over
the last six years. Since 2024 is ongoing and the number of publications is very limited,
its data are not fully represented in the figure. The trend in the future is expected to grow
according to a cubic polynomial trend, meaning that the topic has just gained interest. It
can be the overall growth in literature contributions retrieved since 2020, where major
policies were approved to boost the public release of economic subsidies to purchase an EV.
This trend is also accompanied by a parallel growth in the number of EV charging stations
installed and future installations, allowing a broader use of EVs. According to the fitted
trend line, the growth in the literature contributions is expected to be stabilized, following
a linear path in the following years, even if an exponential trend was observed regarding
the use of AI in other topics [27–29]. The database obtained was pre-processed through
a bibliometric analysis, thus constituting a first-layer step on the general topic in order
to confer systematicity to the analysis. Figure 3 depicts a co-occurrences map based on
indexed keywords extrapolated from the original query results. In particular, four clusters
can be distinguished regarding the use of AI-learning systems, whose topics are listed
as follows:

1. AI methods for Li-ion batteries, in particular for State-of-Charge and State-of-Health
estimation;

2. AI methods to control electric power systems, such as battery management systems
(BMSs) and battery energy storage systems, and to couple with wind and solar
power generation;

3. Blockchain for Internet of Things perspective in realizing smart power grids (V2G)
and demand response in cooperation between electric power transmission networks
and renewable energy sources;

4. Learning algorithms for performance and information management related to digital
storage, energy efficiency, and cost-scheduling.
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Table 1. Query for Scopus database.

Title–Abstract–Keywords Publication Year Document Types Language

Artificial intelligence, energy storage
systems, electric vehicles >2016 Excluded conference reviews,

conference papers, reviews Limited to English
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If the analysis is based on a bibliometric point of view like the aforementioned one, the
most occurring AI methods identified are very few—Artificial Neural Networks (ANNs) for
cluster 1, Fuzzy Neural Networks (FNNs) for cluster 2, blockchain for cluster 3, and Deep
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Reinforcement Learning for cluster 4. This leads to considering only a general oversight on
the subject, which is acceptable in the presence of many literature contributions. In this
case, given the limited number of papers considered (81 items in total), a detailed analysis
must be provided to discover the different approaches authors adopt in applying AI to
ESSs for EVs.

3. Applications of AI to Energy Storage Systems for EVs

Starting from the actual state of EV diffusion worldwide, the most important topics
regarding the relationships between EV operations and ESSs were identified based on the
bibliometric inquiry, as reported in Section 2 and depicted in Figure 3. In particular, the
topics on which the role of AI is being focused are:

• Battery Management System as the supervisor role in managing battery state parame-
ters during motion and charging;

• Power Quality improvement strictly related to network safety and security;
• Possibility to couple EV charging operations with RESs in order to enhance a fully

sustainable charging cycle;
• Optimization of charging and discharging cycle;
• Battery State of Health prediction based on relevant state parameters;
• Estimation of State of Charge (SoC) for the battery based on different operative constraints.

3.1. AI in Battery Management Systems

The use of AI for vehicular subsystems to help manage the energy stored is progres-
sively spreading towards an intensive application [17]. Figure 4 collects the main tasks
deployed by BMSs universally. A BMS performs measurements through sensors—in par-
ticular, it derives the measurement of battery SoC—and then acts on the system in order
to ensure its correct working conditions and safety and realize data communication to
transmit relevant information to drivers. Different BMSs can be recognized [30]:

• Passive: The BMS exploits only passive electrical circuit elements to regulate and
balance the charge among the cells of a battery.

• Active: The BMS exploits not only passive elements but also elements capable of
intervening in the system based on control signals (i.e., amplifiers, transistors).
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ANN is strongly exploited for online and offline evaluation processes, thus assessing
the performance of the algorithm chosen in [31]. Positive feedback was observed with the
benefit of less energy consumption (−6%), but issues related to the simulation-to-real gap
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were encountered, thus limiting online application in real time. Moreover, compared to
similar contributions developed in this field, the overall energy efficiency evaluated is the
highest, reaching 96%, with an average value of 86.1%. In addition, good performance must
be reported in terms of the estimated speed and torque, whose errors comprised 0.5–0.6%.
Similar results are obtained in [32], where the overall battery performance is improved,
with AI cooperating to keep SoC between 63 and 67% and global energy consumption
reduced to −6.7%. This testifies that implementing AI carries benefits in the management
of ESSs.

The advantages of AI in prediction and quickness in calculations allow for the devel-
opment of multiple strategies. The Adaptive Neuro Fuzzy Information System (ANFIS)
and Model Reference Adaptive System (MRAS) are exploited to improve the performance
of BMSs within a controller [33–35]. The MRAS module allows for physical speed sensors
to be discarded; thus, traveling speed is estimated through α and β components of motor
voltages and currents. ANFIS, which is composed of ANNs combined with fuzzy logic, is
structured as follows:

• Two input channels (error and its derivative in time);
• 4 ÷ 5 hidden layers;
• One output (i.e., the control signal u).

The addition of fuzzy logic enhances accuracy, especially for SoC estimation, making
ANNs universally reliable for results achieved, reducing fatigue, stress, and battery con-
sumption, and improving bus stability. Applications of such a method on BMSs aimed
to improve controller performance are translated into higher average efficiency of the
module (+7.6%) with a reduction in stress on fuel cells (−15 ÷ 30%). Fluctuations of
overall achievements are related to the different driving cycles considered: either the US
Highway Fuel Economy Test (HWFET, also known as Federal Test Procedure FTP-75) or
the EU’s Worldwide-harmonized Light vehicles Test Procedure (WLTP) [36]. Detaching
the evaluation procedure from a physics-based model means neglecting the uncertainty
or fluctuations in measured data, on which the model relies to accurately prompt the
outcome [37]. Moreover, implementing an ANN-based controller allows for improvement
of the robustness of the BMS controller against external disturbances, with related impacts
that are contained to within 0.33% [38].

Digital Twin (DT) is an emerging discipline that deals with testbed activities. This
technique consists of a digital representation of a real and unique product considering its
characteristics, properties, conditions, and behavior, thanks to mathematical models [7].
One of the advantages of adopting DT is the continuous improvement in testing communi-
cation protocols to allow for charging or battery swapping sessions, coupling with RESs,
and the realization of smart grids in order to assess the overall energy demand based on
the correct estimation process of BMSs. In the wake of this, a digital representation of the
battery model is exploited in parallel by BMSs to assess the real battery operations—in
particular, the estimation of SoC and DoC (Depth of Charge) [3,39]. The application is made
possible by implementing hybrid models—i.e., a combination of physics and AI—with
a strong constraint regarding the public disclosure of real battery data. This method is
designed to increase the accuracy of outcomes since the prediction through ML is accompa-
nied by physics-based models to confer meaningful results [31]. The following technique
can also be applied for life cycle predictions and to refine the model through multi-scale
dimensions [40]. An interesting application is exposed to some ESSs with energy generated
by Electric Multiple Units (EMUs) in railway transportation through AI [41].

3.2. AI in Power Quality

The Power Quality (PQ) issue has emerged in the last decades due to the diffu-
sion of electronic power devices and their interactions with the electricity distribution
network [42,43]. As an emerging topic, few contributions to the literature were retrieved.
Given their non-linear behavior and the harmonic distortion generated in power grids,
the integration of such components must be treated well, especially in the development of
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smart grids (or microgrids), where the cooperation between EV charging infrastructure,
users’ loads, RES generation, and ESSs is realized, as Figure 5 depicts [44]. Focusing on PQ
is needed to ensure the reliability and safety of the network, stabilize the energy flow, and
reduce the detrimental effect of harmonic distortion injected into the grid. The fundamen-
tal role of AI here is harmonizing the cooperation between different electric loads—each
featured by different generation dynamics and daily load profile—acting on the same
distribution grid. PQ issues can be mitigated through passive filtering in the network, but
it is necessary to quickly detect the nature of the imbalance-generating downgrades on the
power quality transferred [45]. Here, a comparison between the AI approach and Fuzzy
Logic Control is performed, with very close final results [45,46]. The potentiality of AI is
limited by the training phase, which must be accounted for to increase its accuracy. The
need for AI in this field relies mainly on performing optimization processes, data analytics,
and asset management, organized into three levels as follows [47]:

• Business;
• Infrastructure;
• Physical.
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With this classification, no link appears to underlie these fields and is related to the
main topic of this manuscript. Analyzing the framework in detail makes it possible to
discover its hidden rationale. The business level refers mainly to data analytics, which
is oriented to offer commercial solutions in a customer–supplier relationship. Moreover,
it also involves the presence of all assets capable of generating profits for the company,
such as PV power plants, in terms of their presence allowing the company to propose
different commercial offers to various customers, i.e., residential or industrial users [48].
Implementing multi-agent deep reinforcement learning as a Markov Decision Process
(MDP) has reduced operational costs, increasing income by between +9% and +16% across
various case studies, depending on the solar penetration levels. The infrastructure level
regards grid management, which involves strategies to improve the operational parameters
and exploit the whole grid’s potential to respond adequately to the energy demand. Lastly,
the physical level pertains to all activities performed on the grid mediated by AI, such
as predictive maintenance processes. A different approach can involve the implemen-
tation of blockchain protocol to differentiate market management through peer-to-peer
trading [49–51]. This last topic is experiencing a significant diffusion when dealing with
interconnected systems using IoT since blockchain can keep track of past transactions. The
combination of blockchain and AI can generate the Artificial Intelligence of Things (AIoT).
Blockchain technology can be leveraged for power management purposes within the smart
grid, facilitating more efficient allocation of energy resources to meet demand require-
ments through collaboration with AI [48]. The comparison between different reinforcement
learning (RL) algorithm approaches dealing with building interactions within the grid is
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evaluated in cooperation with surrogate models and Q-learning [52]. It is a valuable contri-
bution that addresses an essential remark about implementing the AI method that can be
easily extended as a general remark for other techniques. The pure RL approach produces
a very ineffective behavior in prediction in the presence of a restricted number of episodes
to be evaluated. At the same time, the accuracy is strongly improved in cooperation with
different AI approaches—such as guidance, short term, and long term with surrogate
models with or without rule-based control strategies, and imitation learning—within the
same restricted number of evaluated episodes. This resulted in an overall total energy cost
reduction of −30%. Another valuable application that cannot be neglected is related to
the implementation of AI in a power generation plant to fine-tune an Active Disturbance
Rejection Controller (ADRC) to allow for coupling between RESs and EVs [42,46]. The
control architecture was tested on several scenarios such as frequency, overvoltage, and
power control and allowed to reduce the overshoot and undershoot in the time response if
compared to conventional techniques—like PID controllers—and a contemporary reduction
in the settling time of about −50%. This is reflected in the general improved stability of
the controller.

3.3. Use of AI in RES-EV Coupling

The widespread adoption of EVs requires maximizing Renewable Energy Sources
(RESs) to fulfill EV charging energy demands with green energy for sustainable mobil-
ity [45,53]. Discussing the reduction in environmental impact in transportation systems
appears contradictory without considering the environmental impact of the energy pro-
duction processes. Especially regarding electric mobility and realizing a system that is
fully environmentally sustainable and beneficial for the target of emissions reduction, the
coupling between EV charging infrastructure and RES power plants must be considered.
This topic is closely connected to the previous one described in Section 3.2 since realizing
smart grids is the common field. A careful focus must be set on the different natures of
electric loads and flows within the grid; as already mentioned for PQ, EV charging stations
are a source of imbalance and harmonic distortion. Coupled with the seasonality and
randomness of RES power production, dealing with intermittent power injection poses
challenges. However, the realization of smart grids enables the coupling of various loads,
and with the assistance of AI techniques, it optimizes energy flows [54], thereby reducing
uncertainties. Different methods can be implemented to enact effective grid management,
utilizing various approaches [55]. In particular, the implementation of an FLC with respect
to a classical ANN-based controller allows for a reduction in the Total Harmonic Distor-
tion index on both grid and load currents below 5%, thus complying with the IEEE-519
standard [56] and being able to reach the maximum possible output power [45]. From
this perspective, AI is mainly exploited to optimize energy flows [25,57]. As a general
framework, the use of AI in smart grids is needed to harmonize the different loads that
can generate demand and, thus, to set up demand response strategies. Moreover, the
importance of communications protocol allows for the implementation of AI in smart grids;
hence, such algorithms can exploit data availability to provide meaningful results [55].
Also, in this topic, the main task that AI is in charge of is single-objective or multi-objective
optimization, depending on the final system to be optimized, whether EMS and smart
grids [58,59] or the charging phases of a generic EV [60].

3.4. Optimization of Charging/Discharging Cycles through AI

Numerous researchers have concentrated on AI-based models for EV charging forecast-
ing and scheduling, highlighting their superiority over traditional optimization methods
like linear, exponential, and multinomial logit models. However, the focus on EV discharg-
ing scheduling, specifically V2G systems, has been limited, as this concept is relatively new
and evolving [61]. Therefore, there is a need for a comprehensive review of existing research
in EV charging and discharging to identify gaps and propose improvements for future
studies. This paper [62] undertakes such a review, categorizing studies into forecasting
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mechanisms. In addition, a schematization of each charging technique is illustrated in
Figure 6. This makes visible the step-by-step changes toward the implementation of AI in
charging/discharging optimization cycles:

• In a control-based strategy, the system is set to optimize the charging cycles of a generic
EV connected to a charging station; the system realizes only control actions on either
the vehicle or charging station side for what concerns charging operations.

• With a smart strategy, the role of AI is to integrate EV charging operations within
a V2G management protocol. Here, the system acts as a control strategy for either
a vehicle or a charging station based on information flows coming from the power
distribution grids, RES production plant, and load demand. The required energy flow
is then managed on the infrastructure side.

• In an indirectly controlled strategy, based on the previous step, the role of AI is to
determine a dynamic energy price, in addition to the information flow coming from
the infrastructure.
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The utilization of V2G services leads to a higher frequency of charging and discharging
cycles compared to scenarios without V2G services [63]. Consequently, the potential for
battery degradation is more pronounced in the presence of V2G services. Petit et al.
conducted an assessment on two types of lithium-ion batteries, Nickel–Cobalt–Aluminum
Oxides (NCA) and Lithium Ferro-Phosphate (LFP), revealing varied impacts of V2G on
different batteries [64]. Pelletier et al.’s studies highlight that storing batteries at a high SoC
expedites calendar aging [65]. Moreover, extensive research underscores that degradation
is exacerbated by overcharging and over-discharging, mainly when the battery operates
beyond its specified voltage range [66,67]. In [68], a novel ML approach was introduced
to forecast future energy consumption. This algorithm exhibited an accuracy of between
93% and 97%. On average, the margin of error of the algorithm in expense predictions
was less than 7%. These results suggest significant potential for energy savings, with
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observed reductions of 37% in energy usage. Ref. [69] employs a Support Vector Machine
(SVM) to analyze home charging schedules, leveraging user energy consumption data and
SoC information at various intervals. The SVM model achieves nearly 100% accuracy in
predicting EV status. While it is acknowledged that battery degradation is an unavoidable
process, there are tangible measures to minimize its impact. This includes steering clear of
overcharging and over-discharging, advocating for optimal charging/discharging rates,
ensuring adherence to the appropriate temperature range, and maintaining the battery at
an optimal SoC. Consequently, enhancing the precision of battery degradation estimation
and modeling emerges as a critical imperative for the development of robust battery control
strategies for both charging and discharging operations.

Numerous utility providers in countries such as India, Sweden, the United Kingdom,
Canada, and the United States have widely embraced the Time-of-Use (ToU) electricity tariff
strategy. This approach can be implemented to incentivize users to shift their electricity
consumption away from peak periods towards off-peak periods. The ToU tariff structure
entails distinct pricing for charging during peak, standard, and off-peak hours [70]. The
ToU EV charging pricing model was introduced, emphasizing demand price and power-
quality considerations [71]. Various EV charging strategies have been specifically modified
to align with ToU tariffs with the primary goal of minimizing charging costs. An intelligent
approach could be the management of EV charging loads in response to ToU tariffs within a
regulated market [72]. This can benefit from using an estimator to predict charging session
parameters, such as duration and energy consumption [73]. According to simulation
outcomes, the proposed scheduling framework led to a noteworthy 29.42% reduction in
average charging costs.

The machine learning approach for energy consumption forecasting achieved an
accuracy of between 93% and 97%, with a margin of error in expense predictions of below
7% and observed energy usage reductions of 37%. Meanwhile, the SVM model reported
nearly 100% accuracy in predicting EV statuses, particularly in analyzing home charging
patterns. Despite differing scopes, both methods significantly enhance efficiency and
reduce energy management costs and EV charging schedules.

3.5. Battery Health Prediction Dynamic through AI

Dynamic EV battery health prediction with AI employs advanced algorithms for
real-time analysis and modeling of degradation patterns [74]. This approach supports
charging optimization, enhancing battery life and overall efficiency. Prognostics in battery
health focuses on anticipating future degradation in energy or power, aiming to predict
when the performance of the battery will no longer meet satisfactory standards [75]. The
constraint is to have a pre-processing phase of the dataset coming from the battery, i.e.,
adapted to the purposes of the ML process [76]. This operation is oriented to optimize the
algorithm aiming to constitute an ML-based battery model, which can be exploited either
to benchmark estimation accuracy among different approaches or predict the battery SoH
based on available operative data in a straightforward way. The ML modeling process
described is illustrated in Figure 7.
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Recent advancements in communication and AI technologies have spurred the widespread
utilization of ML techniques for SoH prediction [77]. ML-based methods, known for
their ease of application and independence from detailed degradation mechanisms, have
become a focal point in promoting SoH estimation [78]. Gaussian Process Regression
(GPR) is the most used, centered on the viability and efficiency of this algorithm for SoH
estimation using real-world data [79]. In their study, Afandizadeh et al. presented an
ML-based methodology to estimate battery SoH. Emphasizing the importance of precise
SoH assessment for predicting battery degradation and optimizing maintenance strategies,
the authors conclude that their proposed approach offers accurate and reliable estimates of
battery SoH [80,81]. The unique data processing approach integrates Big Data, AI, and IoT
technologies, achieving an impressive 99.98% accuracy for the battery model.

A data-driven approach for SoH prediction can be introduced using GPR, selected for
its ability to model complex data relationships and capture prediction uncertainty without
relying on future load information or DL-based prognostics [82,83]. In [84], the results on
the NASA battery dataset show that the proposed method does not exceed 1% error in
early SoH predictions.

Artificial Neural Networks (ANNs) avoid traditional mathematical expressions and
instead analyze the relationship between input variables (stress factors) and degradation
metrics. Leveraging ANNs enables the development of robust degradation models, facili-
tating on-board estimation of battery SoH [85,86]. This paper [87] introduces an ANN to
develop an SoH estimator for lithium-ion battery packs. Impressively, the results demon-
strate an extremely low MSE of 1.4 × 10−5. However, the accuracy of SoH estimation is
contingent on a substantial amount of training data. ANNs excel in capturing non-linear
relationships, adapting to dynamic environments, and learning autonomously from input
data in estimation tasks. However, the complexity, especially in deep architectures, may
challenge interpretation. Overfitting is a concern with limited data, and training deep
networks demands substantial computational resources. ANNs depend on the quality and
quantity of training data, and their black-box nature hinders interpretability.

The results achieved in battery SoH prediction demonstrate significant advancements
in accuracy and reliability. For instance, the ML-based methodology achieved an im-
pressive accuracy of 99.98% for battery SoH estimation, surpassing traditional methods.
Additionally, the data-driven approach utilizing GPR demonstrated an error rate below 1%
in early SoH predictions. These advancements highlight the tangible benefits of advanced
AI algorithms for dynamic EV battery health prediction, leading to increased accuracy and
reliability compared to conventional methods.

3.6. State-of-Charge Estimation

The SoC estimation process is the topic on which the implementation of AI has been
the most focused. Two main branches are studied to evaluate internal temperature and
thermal management operated by BMSs [88].

The challenges faced by EVs due to numerous faults in battery packs underscore the
importance of assessing the SoC of batteries. The application of AI and ML concepts was
introduced to address issues like over-current and over-voltage protection for battery cells.
ML algorithms prove valuable in predicting SoC, as they can capture cell dynamics and
retain historical data, which is essential for forecasting future charge levels. This delves into
various aspects, including different charging methods and energy storage technologies [89].
The exploration of BMS in conjunction with multiple charging methods and energy storage
technologies is a focal point in these comprehensive reviews [90,91].

The authors utilized a simple radial-basis ANN to identify the ECM parameters [92].
Inputs were SoC, along with the measured current and voltage, while the output was
the Open Circuit Voltage (OCV). A similar approach was adopted where, following the
modeling of the battery system with an ANN and a state space model, the SoC was
calculated using a dual EKF or another adaptive filter-based estimator [93–95]. Errors were
found to be below 1.87%, proving benefits in the online updating function of the NN. A
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MISO approach (Multi-Input Single-Output) constituted by a four-input, one-output BPNN
can also be adapted for SoC estimation [96,97]. Here, the difference in the estimation error,
whether an optimized or a non-optimized BPNN is adopted, can be kept below 4% or
10%, with a sensible difference in the estimation performance. In a more straightforward
approach, a two-input, one-output configuration can be chosen, with one hidden layer for
the BPNN structure. The inputs are the battery current and terminal voltage, and the SoC
is the output variable. Some other approaches can estimate battery SoC directly from an
ANN online [98–100].

It is worth noting that the primary drawback of ANNs lies in their need for more neu-
rons to enhance accuracy, limiting their implementation in real-life models. Additionally,
each ANN requires training before use, and multiple iterations may be necessary. This
renders the trained ANN applicable to only a specific purpose. Furthermore, ANNs lack
effectiveness in extrapolation, constraining their ability to calculate the remaining charge
time of a battery [101].

Several publications directly calculate SoC using Fuzzy-Logic (FL)-based estima-
tion [102]. SoC and cell capacities can be estimated by comparing cell voltages at the
beginning and end of charging, termed the “FL Dissipative Cell Equalization” algorithm.
Meanwhile, Sheng and Xiao employed a least-squares support vector machine with fuzzy
inference and nonlinear correlation measurement for SoC estimation [103]. FL offers advan-
tages in handling uncertainty, incorporating expert knowledge through rule-based systems,
adapting to dynamic environments, and ensuring ease of interpretation. It excels in control
systems, especially when precise mathematical models are challenging. However, draw-
backs include a potential lack of precision, rule complexity, optimization difficulties, limited
scalability for complex problems, and reliance on expert-defined rules over data-driven
insights. Evaluating these pros and cons is crucial to assessing the appropriateness of fuzzy
logic-based estimation for specific applications.

4. Discussion of AI Methods

The coupling of BMS with AI carries undeniable benefits. When dealing with such
techniques, several critical points must be addressed, specifically if applied to battery (or
energy) management. The first is related to the availability of a large dataset on which
the algorithm can be trained effectively. The number of public datasets is limited, and
the majority are not publicly released. In addition, most of them depend on the type of
battery tested, as underlined in [30]. For example, the total number of datasets retrieved
was 18, where:

• Four datasets could be used for both NCA and LCO;
• Eight with NMC;
• Seven for LFP.

Secondly, after creating the dataset, it is crucial to ensure that the sampled physical
parameters align with the algorithm’s objectives for training. Thirdly, once the dataset
is retrieved, the data within it must be sufficiently reliable, addressing issues related to
measurement uncertainty. Lastly, its scope is the most critical factor in determining whether
the selected dataset is suitable for the training phase of the algorithm. In other words, the
dataset should be modified to evaluate specific relevant aspects, as focusing too heavily on
certain parameters could invalidate the entire training phase. It is crucial to give careful
attention to the quality of the dataset. Therefore, it is essential to ensure the dataset is
accurate and error-free [104]. The most implemented ML technique found throughout the
articles analyzed is ANN. In detail, ANN is often developed to evaluate Li-ion battery
performance. The accuracy of the evaluation process on battery voltage and SoC was
discovered to be more reliable during the discharging phase than charging operations [105].
In addition, the parallel estimation performed in cooperation between ANN and physics-
based models such as ECM shows an improvement in accuracy, with a reduced root mean
squared error (<1%) and R2 (~0.96–0.995) [40,106].
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Other optimization algorithms are implemented in cooperation with ANN to reach
a satisfying optimization convergence. Most of them merge ANN with Particle-Swarm
Optimization (PSO) to reach valuable results from an optimization perspective [8,32]. This
cooperation is helpful in improving the performance of ANN, especially when the pre-
diction performance of the algorithm is satisfying, in addition to providing optimization
parameters or optimization based on historical data. In [8], a comparison between ANN-
PSO and Radial-Basis Function (RBFNN) is set, with the latter outperforming the former,
with errors below 1%, and the former showing errors in estimation above 4%. One of the
applications in BMSs is the time-varying parameter tuning function that can be imple-
mented through AI [107] and Long Short-Term Memory LSTM [108]. In other applications,
ANN may reduce the estimation errors compared with offline procedures and methods,
limiting the error in accuracy to 0.17–1.55% [109].

Regarding the PQ topics, various ML methods offer potential, though each comes with
its limitations. Specifically, Convolutional Neural Networks (CNNs) and Recurrent Neural
Network (RNNs) stand out as promising options, each possessing unique characteristics
tailored to specific scopes. CNNs are commonly applied in event classification tasks,
particularly in object recognition, boasting impressive accuracy rates ranging from 96%
to 99% [110–113]. However, it is essential to note that while CNNs excel in recognizing
patterns in spatial data, RNNs are better suited for sequential data processing, making
them suitable for time-series analysis tasks often encountered in PQ analysis. Therefore,
the selection of ML method should be driven by the specific requirements and nature of
the PQ dataset being analyzed. Despite that, CNNs do not fit with time-series data, and
in order to improve their performance, parallel cooperation with physics-based models
such as wavelet or spectrogram RNN instead are capable of dealing with time-series and
sequential data for event detection. Generally, the accuracy of RNN lies between 98 and
99% [44]. In addition to CNNs and RNNs, hybrid models combining both architectures,
known as Convolutional Recurrent Neural Networks (CRNNs), have emerged as powerful
tools in various domains, including PQ analysis. These models leverage the strengths of
both CNNs and RNNs, allowing for the extraction of spatial features by the convolutional
layers and capturing temporal dependencies through the recurrent layers. CRNNs offer a
holistic approach to data analysis, which is particularly beneficial in scenarios where both
spatial and temporal information play crucial roles, such as in PQ monitoring and event
detection. By integrating CNN and RNN components, hybrid models can achieve superior
performance and more nuanced insights compared to using either architecture individually.
Thus, exploring the potential of CRNNs in PQ analysis could lead to enhanced accuracy
and robustness in detecting and classifying power-quality events.

One of the drawbacks of RNNs is the phenomenon known as the “vanishing gradient”,
where the gradient signal diminishes exponentially during training, hindering accurate
evaluation. Additionally, like many AI methods, RNNs are susceptible to overfitting,
resulting in decreased performance as the algorithm struggles to generalize event detection
beyond the training data. To address these challenges, Autoencoders (AEs) offer a potential
solution by extracting features from sequential datasets or time series [114]. AEs excel
in handling lower-dimensionality problems and non-linear models, making them viable
alternatives to RNNs. Although AEs may exhibit slightly lower accuracy rates (typically
ranging from 96% to 98%), their ability to mitigate overfitting and capture relevant features
can lead to more robust and generalized event detection in PQ analysis [115,116].

The Generative Adversarial Network (GAN) is designed to discern whether an event is
reliable based on its character or should be discarded. This is achieved through the interplay
between a random generator and a discriminator. Such capabilities could prove valuable
if implemented for PQ disturbances. In the GAN framework, the algorithm is initially
trained to generate input data resembling real-world scenarios, while the discriminator’s
role is to distinguish between real and generated data through binary classification (0 or 1).
However, it is essential to note that while these different methods offer intriguing strengths,
each also exhibits weaknesses and limitations in its applicability to the PQ research field.
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Therefore, careful consideration is necessary when selecting the most appropriate method
for a given PQ analysis.

Another solution involves adopting a pragmatic approach that fosters collaboration
among the various methods discussed. The goal is to integrate their specific strengths and
mitigate individual weaknesses. By doing so, the overall applicability of the techniques
can be enhanced, leading to more robust and effective solutions for PQ issues. A plausible
configuration might entail combining CNNs with GANs to discern real events from decep-
tive yet similar occurrences (e.g., distinguishing potential faults within the network from
false alarms). This cooperative arrangement allows for a more comprehensive analysis,
leveraging the unique capabilities of each method to improve the accuracy and robustness
of event classification in PQ disturbances.

The coupling between RESs and EV charging falls into a broader topic under inves-
tigation, which is connected with the realization of smart grids. Here, still valid and as
mentioned before for BMSs, the problem is mainly related to global optimization from a
management view rather than a proper prediction. Therefore, ANNs are also generally
implemented to predict load levels. The optimization is realized by performing PSO on
controller parameters in parallel, thus adapting the response of the system based on time-
varying coefficients. Realizing smart grids (or micro-grids) stresses the need to deal with
demand response, actuating different strategies based on different AI methods adopted.
Also, for this case, ANNs are the most used, given their simplicity in implementation [117].
As previously discussed, the collaboration between ANNs and optimization methods yields
positive results that enhance algorithm accuracy. However, due to the randomness inherent
in human activity, multiple optimization methods can be leveraged in contrast to previous
topics. A synergistic approach combining the Mixed Integer Linear Problem (MILP) and
Markov Decision Process (MDP) allows AI to address multi-dimensional problems effec-
tively. MILP focuses on optimization scenarios and selecting the best-case solutions among
possible scenarios. At the same time, MDP acts as the decision agent, prioritizing choices
among a set of alternatives determined by ANN.

Moreover, integrating the Q-learning method enhances the reinforced learning ap-
proach, effectively managing high energy consumption costs and reducing dependence
on photovoltaic (PV) penetration levels. Additionally, Field-Programmable Gate Arrays
(FPGAs) have emerged in pioneering applications for coordinating and controlling loads
and RESs. These versatile devices offer promising opportunities for optimizing energy uti-
lization and grid stability in real-time applications. This method can tackle sudden changes
in the configuration thanks to its quick responsiveness in calculations. The coupling with
several optimization methods contributes to minimizing the results, allowing a benchmark
to be settled on which optimization method contributes to reaching the optimal value. In
particular, the optimization methods analyzed can reduce −1.7% to −3.77% of the costs
considered, with an average of −2% [118].

The topic of health prediction in EV batteries encompasses a different ML technique,
such as Gaussian Process Regression (GPR). It offers a data-driven approach that can model
complex data relationships and capture prediction uncertainty without relying on future
load information. ANNs analyze relationships between input variables and degradation
metrics, facilitating robust degradation models for on-board SoH estimation. Also here,
from a future perspective, Neural Networks (NN), Relevance Vector Machine (RVM),
Autoregressive Model (AM), and SVM could find a relevant opportunity for implemen-
tation. These techniques can play a crucial role in estimating the SoH of batteries, aiding
in optimizing charging strategies and overall battery efficiency. RVM, AM, and SVM can
also contribute to accurate SoH predictions, leveraging real-world data to enhance the
reliability of battery health assessments. These ML techniques can collectively empower
proactive maintenance strategies and support the longevity of EV batteries by enabling
timely interventions based on accurate health predictions.

In the context of SoC estimation, advanced machine learning techniques such as
Gated Recurrent Unit (GRU) and RNN and LSTM networks can improve the prediction
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process. These algorithms can be exploited to accurately predict the SoC of EV batteries and
optimize charging and discharging processes while ensuring efficient energy utilization.
GRU and LSTM networks excel in handling sequential data, allowing them to capture
temporal dependencies and dynamics inherent in battery behavior. Based on historical data
and real-time inputs, these models can effectively track changes in battery SoC over time,
enabling precise estimations even in dynamic operating conditions. In addition to advanced
machine learning techniques, several publications directly employ Fuzzy-Logic (FL)-based
estimation for SoC calculation. Fuzzy logic offers a flexible and intuitive approach to SoC
estimation, allowing for the incorporation of expert knowledge and linguistic variables
to handle uncertainties and imprecisions in battery behavior. This methodology enables
accurate SoC estimation even when traditional modeling approaches struggle to capture
complex dynamics or where data availability is limited.

Table 2 provides an insightful comparison of various neural network architectures
and their respective pros and cons in the context of ESSs for EVs. Feed-forward ANNs,
such as multilayer perceptron, are noted for their high accuracy in assessing battery perfor-
mance, especially when used in conjunction with physics-based models, although they are
dependent on large and reliable datasets and may face compatibility issues with specific
battery types. CNNs excel in event classification tasks but may have limited compatibility
with time series and sequential data. RNNs effectively handle time-series data but are
challenged by issues like the vanishing gradient problem and susceptibility to overfitting.
DNNs demonstrate the capability to learn complex patterns but may suffer from overfitting
with insufficient training data. GANs are praised for their ability to generate realistic
data samples and are useful for data augmentation but may encounter training instability
and mode collapse. Autoencoders (AEs) are highlighted for their feature extraction and
dimensionality reduction abilities, although they may struggle with data semantics and
interpretability. GRU and LSTM networks effectively handle sequential data and capture
temporal dependencies, but both require careful parameter tuning, and LSTMs can be
computationally intensive during training.

Table 2. Summary of AI methods, including advantages and disadvantages, for ESSs related to EV.

Topic AI Techniques PROs CONs

BMS ANN

High accuracy in evaluating Li-ion battery
performance during discharging phases

Improved accuracy through parallel
estimation with physics-based models

(e.g., ECM)

Dependency on the availability of large
and reliable datasets

Compatibility issues with specific
battery types

PQ

CNN High accuracy in event classification

Limited compatibility with time-series and
sequential data

Challenges with the vanishing
gradient problem

RNN Effectively handles time-series and
sequential data for event detection

Challenges with the vanishing
gradient problem

Susceptibility to overfitting

DNN Capability to learn complex patterns
from data

Prone to overfitting with insufficient
training data

GAN

Capable of generating realistic
data samples

Useful for data augmentation and synthetic
data generation

Training instability
Mode collapse

AE
Extracts useful features from input data

Helps with dimensionality reduction
and denoising

Reconstruction loss may not fully capture
data semantics

Limited interpretability



Electronics 2024, 13, 1973 17 of 26

Table 2. Cont.

Topic AI Techniques PROs CONs

RES–EV charging ANN Simplified implementation for
load-level prediction

Dependency on the availability of large
and reliable datasets

Challenges in handling
multi-dimensional problems

SoC

GPR

Models complex data
relationships effectively

Captures prediction uncertainty without
relying on future load information

Computational complexity may be high for
large datasets

NN

Analyzes relationships between input
variables and degradation

metrics effectively
Facilitates robust degradation models

Requires substantial training data for
accurate estimation

Interpretability may be challenging

RVM
Offers high-dimensional regression with

sparsity and uncertainty estimation
Can handle small datasets effectively

Computationally intensive for
large datasets

Sensitive to parameter tuning

AM Suitable for modeling sequential data May not capture complex non-linear
relationships well

SVM
Effective in high-dimensional spaces

Versatile kernel functions for capturing
non-linear relationships

Computationally expensive training
May suffer from overfitting with noisy data

SoH

GRU
Handles sequential data effectively
Captures temporal dependencies in

battery behavior
Requires careful tuning of parameters

LSTM Long-term memory capability
Handles sequential data effectively

Can be computationally intensive
during training

FL Flexible and intuitive approach
Interpretability may be limited

Requires careful tuning of
membership functions

Upon initial inspection, there was a bias towards specific topics within the scope
of our analysis. Specifically, the implementation of AI is prominently observed in the
sectorial applications of SoC and SoH estimation, indicating a significant push in AI
utilization in these areas. However, for other topics such as BMS, PQ, RES–EV coupling, and
charging/discharging cycles, AI applications are relatively limited in comparison, owing
to sustained relevance since 2022. The intersection of BMS and AI sparked initial interest
around 2017–2018 and has since evolved significantly over the third time period. Similarly,
interest in PQ and RES–EV coupling emerged in literature from around 2020 onwards.
Upon closer examination of the bibliographic contributions, it became apparent that a
significant portion addressed cross-topic research. For instance, references [38–44] explore
the overlap between BMS and PQ, focusing on their combined effects on the grid. This
underscores the importance of interdisciplinary collaboration, as the application of AI
extends beyond the primary area of interest to adjacent topics. This observation is also
valid for references [48–52], which highlight the connection between PQ and RESs due
to the latter’s significant impact on power-quality management. Undoubtedly, SoC and
SoH estimation remain the most prominent research subjects, which is evident not only
in the earlier part of the second time period (2012–2016) but also in the broader array of
AI techniques employed compared to other topics. As indicated in Table 2, recent topics
exhibit a narrower spectrum of AI methods, indicating nascent exploration with deeper
applications. ANNs are particularly prevalent, owing to their ease of implementation,
except for PQ, which has seen recent interest aligned with various ML methods. This
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alignment reflects the necessity to address non-homogeneous datasets, as discussed earlier
in this section.

5. Future Trends

As future trends and developments, an intriguing dynamic is observed in the im-
plementation of AI within the discussed topics [119]. Given the recent emergence of this
field in terms of literature contributions, various AI methods have been implemented in
studies conducted over the considered time horizon of 7 years (2017–2024), each with its
associated positive and negative implications. The motivations for this phenomenon can
be attributed to several factors. Firstly, there is a need for a simple architecture method
that allows for application across a broader spectrum of cases. This motivates the initial
widespread applications of ANNs, as reflected by the cluster analysis briefly introduced in
Section 2, where co-occurrences highlighted the strong association. Secondly, this benefit is
evident in the speed of adaptation and training, as ANNs have demonstrated remarkable
efficiency in learning from data and adjusting to new information rapidly. Their ability
to swiftly process large volumes of data enables them to refine their models and improve
performance iteratively, leading to more effective decision-making and problem-solving
capabilities. Additionally, the parallel processing capabilities of ANNs contribute to faster
training times compared to traditional algorithms, allowing for quicker deployment and
integration into practical applications. Lastly, a potential development could involve the
cloud-based deployment of such methods, along with all the associated possibilities for
further advancements.

BMSs can derive significant benefits from cloud-based applications, offering two main
advantages. Firstly, the remote allocation of gathered information involves transmitting
data to a remote server in real time, effectively separating the physical hardware from
the data collection process. This setup enhances flexibility and scalability while enabling
centralized monitoring and analysis. Moreover, a cloud-based architecture facilitates the
aggregation of a large volume of data, creating a comprehensive dataset for algorithm
re-training and accuracy improvement. Secondly, the potential to implement a battery
predictive model mediated through AI in the cloud is promising. By leveraging data
gathered from the entire vehicle fleet, this approach enables the development of robust
predictive models capable of optimizing battery performance, predicting failures, and
enhancing overall efficiency and reliability. This ensures the enhancement of the evaluation
process, with estimated benefits in battery management resulting in a decrease in battery
wear of approximately 20%. However, this approach also presents several critical aspects
that must be highlighted, particularly concerning cybersecurity and the implementation
of anti-intrusive protocols. These concerns are essential to address to safeguard sensitive
data and ensure the integrity and security of the system against potential cyber threats and
unauthorized access [120,121]. Attackers may have an interest in accessing data to:

• Cause unavailability of the systems: By launching denial-of-service (DoS) attacks or
exploiting vulnerabilities, attackers can disrupt the availability of systems, rendering
them inaccessible to legitimate users.

• Steal personal data: Attackers may attempt to access and exfiltrate sensitive per-
sonal information stored within systems, leading to privacy breaches and potential
identity theft.

• Interfere with correct functions of systems: Through various means, such as injecting
malicious code, tampering with data, or manipulating system configurations, attackers
can disrupt the intended operations of systems, leading to errors, malfunctions, or
unintended outcomes.

Two possible strategies can limit the danger of cyberattacks and undue access to
sensible data [122–124]:

• Blockchain architecture [50,51,55];
• Training AI algorithms able to recognize cyberattacks [125,126].



Electronics 2024, 13, 1973 19 of 26

In this last case, a CNN algorithm was proposed, which outperformed other AI
techniques with 98% accuracy.

The latter remarks are still valid for what concerns the coupling between RESs and EV
charging [25]. The importance of protection against cyberattacks is a universal concern that
permeates all discussed topics. An immediate consequence of the diverse topics discussed
here is the necessity for algorithms to identify various aspects and behaviors adeptly, tran-
scending their individual characteristics and capabilities. Collaboration between different
methods becomes imperative to enhance resilience against external attacks and bolster
the robustness and accuracy of algorithms. For instance, coupling a CNN with GANs
and RNNs enables the system to differentiate real events from intrusive attempts while
also handling time-series data—a capability lacking in CNNs alone. This cooperative ap-
proach can yield numerous benefits, improving the overall potential of systems by enabling
multi-stage estimators and enhancing their adaptability to complex scenarios.

Referring to the cluster analysis initially presented in this work, it is important to
provide some additional insights to complete the review analysis. The co-occurrence
analysis revealed the main topics and the most prevalent methods within the literature.
This confirms the findings of the review, particularly highlighting the extensive utilization
of ANNs and Fuzzy Logic. However, bibliometric analysis alone may not fully capture
the prevalence of ANNs as the most implemented method, especially beyond the specific
clusters identified. This comprehensive review explores AI applications in ESSs for EVs,
highlighting emerging trends and future directions.

Digital Twin is emerging as a further trend in development. As mentioned in Section 3.1,
this discipline can contribute to keeping up to date the dataset on which the estimation
process is established [3]. Digital twins can contemporaneously simulate the functionality
of focused subsystems, such as batteries, to predict the SoC and SoH while the real system
operates. Real-time monitoring of physical parameters of interest enables the algorithm
to improve its accuracy performance. The DT approach can predict relevant characteris-
tics of the real system without physical intervention, preserving operational integrity—
particularly crucial in operation-based applications like vehicle fleets for transportation.
Developed within a digital environment, the collaboration between physical-based and
data-driven methods can significantly enhance prediction accuracy and performance.

The integration of DT with AI presents a groundbreaking opportunity to reshape
the landscape of ESSs in EVs. Beyond their role in real-time monitoring of battery SoC
and SoH, AI-enhanced DTs offer many applications to enhance EV efficiency, reliability,
and sustainability. Predictive maintenance emerges as a critical application, where DTs
continuously monitor battery performance to identify issues, minimizing downtime and
maintenance costs preemptively. Moreover, DTs can dynamically optimize battery us-
age by leveraging AI techniques like reinforcement learning and adapting charging and
discharging strategies to real-time conditions and user preferences. Personalized energy
management solutions adjusted to individual driving habits and fleet-wide optimization
strategies further underscore the transformative potential of DT–AI integration in maximiz-
ing EV performance and longevity. Ultimately, this convergence promises to unlock new
frontiers of innovation, sustainability, and resilience in the transportation sector, positioning
EVs as integral components of the future energy ecosystem.

6. Conclusions

This paper provides a thorough review of the synergy between AI and Energy Storage
Systems for Electric Vehicles. The motivation for exploring such topics derives from the
extensive applications of AI methods, which have the capability to estimate output results
without the need for a detailed physical modelization. The state of the art on ESSs for EVs
is presented, together with the methodology for enquiring about literature contributions.
The database was first analyzed preliminarily using a bibliometric approach to provide
initial clustering based on co-occurrences. This classification allowed for the selection of the
most relevant subjects that the authors considered to be worthy of a noteworthy analysis.
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Therefore, each subject was analyzed on a deep insight level in order to discover the AI
methods used most and discuss them according to their strengths and weaknesses. An
important observation was made regarding the implementation approach, focusing on
each aspect that can distinguish the application. During the analysis, it was discovered that
ANNs were a popular choice due to their user-friendly setup. ANNs are often combined
with Fuzzy Logic and optimization algorithms to enhance their performance and accuracy.
However, it was noted that Deep Learning and Reinforcement Learning methods were not
widely adopted and were underutilized. Given the recent developments, there is a potential
for future improvements in AI techniques. This can be achieved through better cooperation
between different methods, allowing for increased operativity and improved accuracy. By
merging the advantages of each technique, the limitations that affect performance can be
minimized. Cloud-based and DT applications have been found to be the most implemented
for these methods, and there is a contemporary synergy between physics-based and data-
driven approaches.
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