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Abstract: Traditional video frame interpolation methods based on deep convolutional neural net-
works face challenges in handling large motions. Their performance is limited by the fact that
convolutional operations cannot directly integrate the rich temporal and spatial information of inter-
frame pixels, and these methods rely heavily on additional inputs such as optical flow to model
motion. To address this issue, we develop a novel framework for video frame interpolation that
uses Transformer to efficiently model the long-range similarity of inter-frame pixels. Furthermore, to
effectively aggregate spatio-temporal features, we design a novel attention mechanism divided into
temporal attention and spatial attention. Specifically, spatial attention is used to aggregate intra-frame
information, integrating both attention and convolution paradigms through the simple mapping
approach. Temporal attention is used to model the similarity of pixels on the timeline. This design
achieves parallel processing of these two types of information without extra computational cost,
aggregating information in the space–time dimension. In addition, we introduce a context extraction
network and multi-scale prediction frame synthesis network to further optimize the performance
of the Transformer. Our method and state-of-the-art methods are extensively quantitatively and
qualitatively experimented on various benchmark datasets. On the Vimeo90K and UCF101 datasets,
our model achieves improvements of 0.09 dB and 0.01 dB in the PSNR metrics over UPR-Net-large,
respectively. On the Vimeo90K dataset, our model outperforms FLAVR by 0.07 dB, with only 40.56%
of its parameters. The qualitative results show that for complex and large-motion scenes, our method
generates sharper and more realistic edges and details.

Keywords: video frame interpolation; spatio-temporal attention mechanism; Transformer; multi-scale
information

1. Introduction

Video frame interpolation (VFI) aims to improve the frame rate of a video by synthe-
sizing new intermediate frames between consecutive frames on the timeline. This task has
been widely used in the fields of video compression [1], video enhancement [2,3], and slow
motion generation [4].

Currently, most popular VFI methods are mainly based on convolutional neural
networks (CNNs) [5–8]. Although these methods achieve remarkable performance, they
exhibit obvious limitations in handling large motions in complex scenes. Specifically,
the CNN-based methods generally rely on extra optical flow [9] warping to model inter-
frame motion [5,6]. Despite this approach being effective in handling linear motion, it faces
many challenges for complex nonlinear motion estimation. Therefore, this limits the ability
of CNN-based methods to handle large motion and increases the significant computational
cost [5], which prevents the further development and optimization of VFI models. In
addition, CNNs are less capable of capturing inter-frame long-range information due to
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their restricted receptive fields, and using larger kernels increases computational overhead
and model parameters.

Recently, Transformer performed well in several tasks in computer vision [10–13]. It
has a flexible architecture that can effectively capture the long-range dependencies of pixels
and overcome the drawbacks of CNNs mentioned above. Thus, the architecture is well
suited for VFI tasks. However, it remains a challenging problem to apply Transformer to VFI
tasks and capture information on the timeline while aggregating video spatial information.

In light of these challenges, this paper proposes a new VFI model based on Transformer
architecture for synthesizing realistic video frames. Specifically, Transformer relies on the
self-attention mechanism to capture long-range information between pixels. The computa-
tional complexity of this mechanism is proportional to the number of input pixels, and thus
directly applying it to video data leads to extremely high computational cost. In addition,
some Transformer-based methods [14] only interact with pixels of a single image globally,
and are unable to directly adapt to the time dimension of video frames. To address the two
issues, we design the parallel spatio-temporal attention (PSTA) mechanism using a parallel
strategy, which is divided into temporal attention (TA) and spatial attention (SA), dedicated
to modeling pixel similarity in the time dimension and aggregating spatial information of
intra-frame pixels, respectively. In SA, in order to enhance the fine-grained dependencies
between intra-frame pixels, we design the SA as a mixture of two paradigms, convolution
and self-attention. Furthermore, to reduce the computational complexity, we employ the
simple mapping approach to process the input features so that they can be used as inputs
for both paradigms at the same time.

Second, while Transformer achieves the information interaction between remote pixels,
in order to avoid losing the pixel information of the original frames and preserve more
texture details, we propose two sub-networks: context extraction network (CE-Net) and
multi-scale prediction frame synthesis network (MPFS-Net). CE-Net is devoted to preserv-
ing the rich detailed information of the input frames, and MPFS-Net is able to fuse the
structure and information of video frames at different scales to synthesize high-quality
intermediate frames.

Our contributions are summarized as follows:

1. We propose a novel Transformer-based VFI framework. It overcomes the limita-
tions of traditional CNN-based methods and can effectively model the long-range
dependencies between pixels.

2. We design a new attention mechanism, PSTA. It is divided into TA and SA, and the
mechanism can process inter-frame spatio-temporal information in parallel to effi-
ciently process video frames. TA captures inter-frame pixel temporal variations, and
SA efficiently aggregates spatial features. SA is designed as the combination of both
convolutional and self-attention paradigms, and the input features are processed by a
simple mapping approach to suit both paradigms, which improves the quality and
realism of the synthesized frames. We also propose two sub-networks, CE-Net and
MPFS-Net, for enhancing the details of synthesized frames and fusing the information
of multi-scale video frames, respectively.

3. Our model demonstrates significant performance on various benchmark datasets,
with higher processing efficiency and fewer parameters. As shown in Figure 1, our
standard model (Ours) outperforms the state-of-the-art (SOTA) methods ABME [15]
and FLAVR [16] by 0.19 dB and 0.07 dB, respectively, with only 95.02% and 40.56% of
their parameters, respectively.
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Figure 1. Comparison of model size and performance with state-of-the-art methods using the
Vimeo90K [8] dataset. Our method achieves an ideal balance between excellent performance and
model parameters.

2. Related Work
2.1. Video Frame Interpolation

The existing VFI methods can be mainly classified into two categories: flow-
based [5,8,17,18] and kernel-based [19–22].

In flow-based VFI methods [5,6,18], input frames are warped by estimating the optical
flow to synthesize the intermediate frames. Niklaus and Liu [18] design a SoftSplat model
based on optical flow and a feature pyramid, which uses softmax splatting for forward
warping. Bao et al. [5] propose DAIN, which uses depth information to explicitly detect
occlusions and employs optical flow with a local interpolation kernel to warp the inter-
mediate flow. However, the complexity of optical flow estimation significantly affects the
processing speed of the model. To address this issue, Huang et al. [6] propose RIFE, a VFI
model based on privileged distillation, which is able to improve the processing speed by
estimating the intermediate flow in real time. Although the above methods are effective in
scenes dealing with simple motions, inaccuracies in optical flow estimation can limit the
performance of the model when dealing with complex nonlinear motions.

Kernel-based VFI methods [7,19–25] do not rely on any predefined assumptions,
and they generate new frames by using CNN estimation of spatially adaptive convolution
kernels. Therefore, kernel-based methods can overcome the drawback of inaccurate optical
flow estimation and have been widely used in various videos. Niklaus et al. [23] propose
adaptive separable convolution, replacing the original 2D convolution kernel with a pair
of 1D convolution kernels, which reduces the number of operations and the number of
parameters of the model. In video processing tasks, deformable convolution (DConv) has
been shown to enhance the flexibility of network encoders [26]. Inspired by DConv [27],
Lee et al. [7] propose AdaCoF, a model with a learned deformable spatial convolution
kernel, which solves the problem of limited degrees of freedom for ordinary convolution
kernels. Cheng and Chen [24] propose DSepConv, which uses deformable separated
convolution to extend the kernel-based approach, and further propose EDSC [25] for
multi-frame interpolation. To reduce model parameters, Ding et al. [19] propose CDFI,
a compression-driven VFI-based model. The model compresses AdaCoF by model pruning
and adds multi-scale details. Zhang et al. [20] propose a local lightweight strategy based
on a bidirectional encoding structure with a channel attention cascade and a VFI network,
L2BEC2. This strategy not only improves the visual quality but can also be migrated into the
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AdaCoF model, thus effectively reducing its number of parameters. Ding et al. [21] propose
a unified warping framework named MSEConv. The authors introduce an occlusion
masking operation to enhance the robustness of motion occlusion. Overall, kernel-based
methods typically employ a fixed-size convolutional kernel for prediction, which limits
their effectiveness in handling fine-grained features of video frames and motion information
at different scales. In addition, these methods also fail to adequately consider the long-
range dependence of inter-frame pixels in the time dimension. In contrast to these earlier
SOTA methods, we propose a novel Transformer-based VFI model that does not rely on
external inputs and can effectively simulate large motion in real scenes.

2.2. Vision Transformer

Due to its flexibility and high performance, Transformer [28] is widely used in com-
puter vision [10]. Carion et al. [13] propose a model for end-to-end target detection, named
DETR. Liang et al. [29] propose SwinIR, an image recovery model based on the Swin
Transformer [10]. While Transformer performs well in some image tasks, it is not directly
applicable to video. Recently, some researchers [14,30] have explored applying Transformer
to VFI tasks. For example, Lu et al. [14] propose a network based on a cross-scale window
attention mechanism, VFIformer. However, the approach fails to extend the attention
mechanism to the time dimension of the input frames, and only works on a single image.
In contrast, we propose a parallel scheme that is able to apply both kinds of attention
in the spatio-temporal domain without sacrificing processing efficiency, thus effectively
aggregating spatio-temporal information.

3. Proposed Method

The architecture of our proposed model is shown in Figure 2a and contains three
main parts: the Transformer-based encoder–decoder architecture, the CE-Net, and the
MPFS-Net. In particular, the encoder consists of four parallel spatio-temporal attention
Tansformer (PSTAT) layers, and each PSTAT layer contains two Transformer residual blocks
(TRBs). As shown in Figure 2b, each TRB consists of two PSTA blocks and a convolution.
The PSTA block consists of the PSTA mechanism, layer normalization (LN), and multi-layer
perceptron (MLP). The LN and the residual link help to stabilize the training, and the MLP
uses a two-layer structure with activation using the GELU function [31].
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Figure 2. The overall architecture of our proposed method. (a) Architecture of our model; (b) Trans-
former residual block structure in the parallel spatio-temporal attention Transformer layer; (c) Parallel
spatio-temporal attention; (d) Temporal attention dimension transformation.
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The aim of this study is to generate the middle frame I0.5 between consecutive input
frames I0 and I1. Firstly, I0 and I1 are passed through the encoder to obtain the corre-
sponding output FEnc

i (i = 0, 1, 2, 3) for each PSTAT layer, to extract the intra-frame and
inter-frame features. The decoder contains three 2D deconvolution upsampling layers with
a stride of 2, and the output of each layer is denoted as FDec

i (i = 0, 1, 2). FEnc
i and FDec

i flow
to CE-Net and MPFS-Net, respectively, to generate the multi-scale intermediate frames Î0.5
and Ĩ0.5, respectively. Finally, they are element-wise added to obtain the middle frame I0.5.
The architecture of the model can be formally represented as:

FEnc
i = Enc(PSTATi([I0, I1])),

FDec
i = Dec(ConvTranspose2di(FEnc

i )),

Î0.5 = CENet(FEnc
i ),

Ĩ0.5 = MPFSNet(FDec
i ),

I0.5 = Î0.5 + Ĩ0.5

(1)

3.1. Parallel Spatio-Temporal Attention

In computer vision, although Transformer shows exceptional performance in image
processing tasks [10,32] through the attention mechanism and shift windows, this approach
is not fully applicable to video data. For the VFI task, it is crucial to process large inter-
frame motions and aggregate the temporal information between two frames. Therefore, we
propose a parallel attention mechanism-PSTA that simultaneously processes intra-frame
spatial information and inter-frame temporal information, as shown in Figure 2c. Specif-
ically, the input feature tensor and output feature tensor are denoted as Fin ∈ RC×H×W

and Fout ∈ RC×H×W , with C, H, W being channel, height, and width, respectively. We first
pass the Fin ∈ RC×H×W to SA and TA, respectively. SA is used to aggregate the intra-frame
spatial features of the input frames, and TA is used to capture the temporal variations of
the inter-frame pixels, modeling their similarity in the time dimension. After extracting
the valid features in parallel, these two types of features are combined by element-wise
multiplication to form the output feature Fout ∈ RC×H×W . This allows the model to simul-
taneously learn the spatio-temporal information of the pixels. The computational process
is as follows:

FSA = SA(Fin),

FTA = TA(Fin),

Fout = FSA ⊙ FTA

(2)

where ⊙ is the Hadamard product, the detailed computation of FSA and FTA is described
in Sections 3.1.1 and 3.1.2. Next, we will describe the structure of PSTA in detail.

3.1.1. Spatio Attention

In order to efficiently extract intra-frame spatial features, SA is designed as a combina-
tion of self-attention mechanism and convolution as shown in Figure 2c. The SA module
mainly contains three stages: feature mapping, feature extraction, and feature fusion. Firstly,
in the feature mapping stage, we use three 1 × 1 convolutions to map and reshape the input
feature Fin ∈ RC×H×W into 3 × N intermediate feature blocks. These intermediate feature
blocks can be shared for both self-attention and convolution operations and are represented
as N sets of query, key, and value (all with ∈ RC/N×H×W) for self-attention and N sets of
convolution elements e ∈ RC/N×H×W for convolution operations. Intermediate feature
sharing avoids additional computation and simplifies the overall structure of the SA.

During the feature extraction stage, intermediate feature blocks are processed accord-
ing to different paradigms. For the convolution operation, 3 × N intermediate feature
blocks are reshaped into N feature maps f conv

in ∈ RC/N×H×W by a fully connected (FC)
layer, and then features are extracted from each set of feature maps by the convolution
operation with a kernel size of 3 × 3, and the resulting N sets of output features are denoted
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as f conv
out ∈ RC/N×H×W . For the self-attention operation, we use the standard multi-head

self-attention mechanism for feature aggregation. Specifically, for pixel p(i, j), its corre-
sponding input feature tensor is f att

ij ∈ RC/N . Each set of intermediate feature blocks after
mapping is directly used as query, key, and value. Wq, Wk, Wv are the projection matrices
of query, key, and value, and their matrices can be expressed as:

qij = Wq f att
ij , kij = Wk f att

ij , vij = Wv f att
ij (3)

Next, we aggregate the local features of the pixel by performing a self-attention opera-
tion on the ×3 intermediate feature blocks (query, key, value). The standard self-attention
computation involves two main steps: calculating attention weights and aggregating value
matrices. In this paper, we combine these two steps into one, and the specific computation
process of the attention is as follows:

Attention(qij, kmn, νmn) = softmax
m,n∈P

(
qT

ijkmn
√

d
)vmn (4)

where d is the feature dimension of qij. The corresponding acceptance domain of the query is
denoted as P(i, j). In the third stage, we concatenate the N sets of outputs produced by each
of the two operations. Subsequently, they are fused by addition, where the intensity of the
convolutional output is controlled by the parameter λ. Finally, the output FSA ∈ RC×H×W

of the SA module can be expressed by the following equation:

FSA = Fatt + λFconv (5)

3.1.2. Temporal Attention

Despite spatial attention effectively extracting the information within individual
frames, it fails to focus on the temporal information and variations between input frames.
Moreover, in order to reduce the model parameters and computational cost, inspired
by [33], we design a simple temporal attention mechanism to enhance the sensitivity
and adaptability of the model to temporal changes, as shown in Figure 2c. Specifically,
for the input tensor Fin ∈ RC×H×W , we add a time dimension T, reshaping C×H×W
as T×C×H×W. Then, we combine the channel and time dimensions, reshaping it to
(T×C)×H×W. The purpose of this is to sequentially arrange the channels of the two frames
in the temporal domain, facilitating the model to learn the information on the timeline.

Next, an average pooling (AvgPool) is used to perform the squeeze operation on the
reshaped tensor F′

in, which is an aggregation strategy that encodes features in the (T×C)
dimension as a global feature. This is followed by the FC layer that fuses information
from different channel feature maps. Then, a sigmoid function is used to map and obtain
attention weights of dimension (T×C). Finally, we remove the time dimension T from FTA
and reshape the feature tensor back to C×1×1, multiplying the output with SA to obtain
Fout ∈ RC×H×W . As shown in Figure 2d, this approach focuses on the temporal variation of
pixels between frames, explicitly modeling the correlation of pixels in the time dimension
and enabling the model to learn the temporal information between frames. The process of
TA calculation is summarized below:

F′
in = Reshape(Fin, [T, C, H, W]),

F′
TA = FC(AvgPool(F′

in)),

FTA = Reshape
(

F′
TA, [C, H, W])

(6)

where F′
TA ∈ R(T×C)×1×1, FTA ∈ RC×1×1, and Reshape are tensor dimension reshaping

operations.
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3.1.3. Computational Cost

To clearly demonstrate the computational overhead of our model, we analyze the
floating point operations (FLOPs) of the SA and TA modules in detail. The results are
presented in Table 1, for SA, the computational overhead of the simple mapping stage is
O(3C2HW), which has quadratic complexity with the number of channels C. In the feature
aggregation stage, both the convolutional operation and the attention mechanism are linear
to C, and their computational overheads are O(K2C) and O(3CK2), respectively. This indi-
cates that the main computational overhead of SA is concentrated in the simple mapping
stage. The computational overhead for TA overall similarly has quadratic complexity with
C. Therefore, the total time complexity of the model is O(C2).

Table 1. Theoretical floating point operations (FLOPs) for spatial attention (SA) and temporal
attention (TA) modules. Each module has quadratic complexity with the number of channels. K:
convolutional kernel size. C: input and output channels. T: time dimension. H, W: length and width
of the feature map.

Module Step FLOPs

SA Simple Mapping 3C2 × H × W
Convolution + Attention

(
K2 × C + 3C × K2)× H × W

TA All
(
C2 + C

)
× H × W × T + 2C2 × T

3.2. Context Extraction Network

In the video processing task, the original pixel information is gradually lost as the
deep learning network continuously encodes and decodes frame sequences [7], and this
phenomenon is exacerbated with the increased network depth. To reduce the information
loss of the model when processing contextual information, for the output features FEnc

i
of each layer of the encoder, we use CE-Net to enhance the feature representation of the
encoder, as shown in Figure 3a. CE-Net includes four levels, each processing features from
a corresponding layer of the encoder. In each level, we first encode the individual layer
FEnc

i with a 1 × 1 convolution, where the output channel dimensions of each level are 4, 8,
16, and 32, respectively. Then, they are upsampled by bilinear interpolation to resize the
features to align with the original frames. Next, the features are warped (corresponding to
I0 and I1) using two DConvs, respectively, thus effectively aggregating contextual features.
We concatenate these warped features with the warped input frames and use a Synthesis
Network [34] to generate multi-scale intermediate frames Î0.5.
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Figure 3. The overall structure of the sub-networks. (a) Context Extraction Network; (b) Multi-scale
Prediction Frame Synthesis Network; (c) Synthesis Block.

3.3. Multi-Scale Prediction Frame Synthesis Network

Multi-scale frame prediction has been shown to be effective for synthesizing final
frames [30]. We designed a synthesis network adapted to our model for predicting frames
at different scales, and unlike the method described in [30], MPFS-Net uses only multi-
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ple independent synthesis blocks (SynBlocks) to individually predict the feature FDec
i at

different layers of the decoder and at different scales. Note that there are only two input
frames in our model. Specifically, the decoder outputs features at three different scale
levels, FDec

0 , FDec
1 , and FDec

2 , where FDec
1 and FDec

2 are upsampled and concatenated with
FDec

0 , respectively, as inputs to the maximum scale prediction.
As shown in Figure 3c, each SynBlock employs the traditional kernel-based estima-

tion method, which contains one weight estimator, two offset estimators, one occlusion
estimator, and two DConvs. SynBlock estimates the parameters of FDec

i , Wi
j , αi

j, βi
j, and Mi.

We then apply forward-warping and backward-warping to the different scales of Ii
0 and Ii

1
with their respective parameters by using DConv, respectively, to obtain Pi

L and Pi
R. Finally,

Pi
L and Pi

R are element-wise multiplied with the occlusion map Mi to obtain the i-scale
prediction Pi.

The synthesized frames for each scale are obtained from the coarser scale and the
current prediction by addition. Firstly, the coarsest scale prediction P2 is used as the initial
value to synthesize the intermediate frame I′′0.5. Next, the finer scale synthesized frame I′0.5
is obtained by up-sampling and combining with the next level of prediction P1, and so on,
until we finally obtain the finest scale synthesized frame I0.5.

4. Experiment
4.1. Datasets and Metrics

Our model is trained on a Vimeo90K [8] training dataset. We evaluate our model on
various publicly available benchmark datasets, including Vimeo90K [8], Middlebury [9],
X4K1000FPS [17], UCF101 [35], SNU-FILM [36], and HD [37]. These benchmark datasets
contain rich scenes and large motions, and are widely used for VFI tasks. The details of
each dataset are given below:

• Vimeo90K [8]: This is a popular dataset widely used in VFI, which consists of three
consecutive video frames, the training set contains 51,312 triples with a resolution of
448 × 256. The testing set contains 3782 triples with the same resolution of 448 × 256.

• Middlebury [9]: This is a classic visual benchmark for evaluation that provides a
wealth of data on realistic scenes. We choose its OTHER testing set, which contains
ground-truth and has a resolution of 640 × 480.

• X4K1000FPS [17]: This is a 4K video dataset that is typically used to evaluate the
performance of models for multi-frame interpolation in ultra-high definition (UHD)
resolution scenes. We generate intermediate frames by iteratively using our model to
achieve the 8× frame interpolation testing on this dataset at both 4K and 2K resolutions.

• UCF101 [35]: This dataset contains rich videos of human behavior and is suitable for
video action recognition and video interpolation, among other tasks. It consists of
379 video triples, each with a resolution of 256 × 256.

• SNU-FILM [36]: This dataset provides high-quality video sequences and various
motion types. It contains 1240 video triplets with a resolution of 1280 × 720. Based
on the difficulty of the motion, it is divided into four subsets: easy, medium, hard,
and extreme.

• HD [37]: The dataset, collected by Bao et al [37], contains 11 videos, including four
1080p, three 720p, and four 1280 × 544 videos. It is often used to evaluate the perfor-
mance of the model for multi-frame interpolation in high-definition (HD) resolution
scenes. We choose videos with resolutions of 1080p and 720p for testing, and generate
intermediate frames by iteratively using our model in order to perform the 4× frame
interpolation testing on this dataset.

• Metrics: We use metrics such as peak signal-to-noise ratio (PSNR), structural simi-
larity (SSIM) [38], and average interpolation error (IE) to evaluate models. On the
Middlebury [9] dataset, we calculate its IE value, where a lower IE represents a bet-
ter performance. Meanwhile, we evaluate the PSNR and SSIM of the models on
Vimeo90K [8], X4K1000FPS [17], UCF101 [35], SNU-FILM [36], and HD [37] datasets,
where higher PSNR and SSIM indicate better performance.
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4.2. Implementation Details

• Network Architecture: The encoder has five layers, including an embedding Layer
and four PSTAT layers, and the feature channel dimensions of each layer are 32, 32, 64,
128, and 256, respectively, and the downsampling scale factor of each PSTAT layer is 2.
There is a skip link between the encoder and decoder. In SA, we set the parameter λ
to 0.3 [22], which controls the strength of the convolutional output. We introduce two
variants of our model: Ours and Ours-small. Both models are identical in all aspects
except for the channel dimensions, where the Ours-small model’s channel dimension
is set to half of that in the standard Ours model.

• Training Details: We crop each training sample of the Vimeo90K [8] training set to
192 × 192 patches and augment the data with random horizontal and vertical flipping
as well as time reversal. We use Adan [39] optimizer for end-to-end training, with the
hyperparameters β1, β2, and β3 set to 0.98, 0.92, and 0.99, respectively. The training
batch size is 8 and the initial learning rate is 2e−4. We perform 300 epochs using cosine
annealing to reduce the learning rate from 2e−4 to 2e−5. Our model was trained on an
NVIDIA GeForce RTX 3090 (manufactured by NVIDIA Corporation, Santa Clara, CA,
USA) with PyTorch 1.12.0, taking about 1 week.

4.3. Comparisons with State-of-the-Art Methods
4.3.1. Quantitative Comparison

We compare our model quantitatively with 17 SOTA methods in the VFI field, includ-
ing DAIN [5], RIFE [6], RIFE-Large [6], AdaCoF [7], ToFlow [8], ABME [15], XVFI [17],
SoftSplat [18], CDFI [19], SepConv [23], EDSC [25], CAIN [36], BMBC [40], IFRNet [41],
UPR-Net [42], UPR-Net-large [42], EBME [43]. These methods have been shown to perform
significantly well and some have been widely used in industry practice due to their innova-
tion and practicality, such as DAIN [5] and RIFE [6]. Both the SOTA models and our models
are trained on the Vimeo90K [8] training set and evaluated on the Vimeo90K [8] testing
set, Middlebury [9], UCF101 [35], and SNU-FILM [36]. To comprehensively evaluate the
model performance, we not only evaluate the model performance metrics (PSNR, SSIM,
and IE) but also compare the parameters and runtimes of the models. This comprehensive
evaluation approach is designed to evaluate thoroughly the performance of our models,
ensuring that while pursuing high image quality, computational efficiency is also taken
into account. This allows for a more accurate assessment of the feasibility and efficacy of
the model in real-world applications. For testing the runtime, we tested all the models
at 640 × 480 resolution using the same device (NVIDIA GeForce RTX 2080 Ti GPU) and
averaged the runtime through 100 iterations.

The results of the quantitative comparison are shown in Table 2. Although our model
slightly lags behind the SOTA UPR-Net-large [42] in runtime, our model outperforms
it by 0.09 dB on the Vimeo90K [8] testing set, demonstrating a significant performance
advantage. Comparing the real-time processing model RIFE-Large [6] and the newly intro-
duced EBME-H∗ [43], our model outperforms them by 0.27 dB and 0.18 dB, respectively.
Furthermore, our model performs excellently in IE on the Middlebury [9], and the quality
of the predicted frames is further validated through visual comparisons in Section 4.3.2.
On the UCF101 [35], our model also demonstrates the best performance, further proving its
robustness across various video scenes. In evaluations on the SNU-FILM [36], particularly
in the medium, hard, and extreme subsets, our model consistently achieves the highest
PSNR. This outstanding performance demonstrates the effectiveness of our model in han-
dling diverse motion scenes, reflecting the excellent capabilities of our proposed attention
mechanism in modeling large motions.
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Table 2. Quantitative comparison with state-of-the-art (SOTA) methods. We evaluate Middlebury [9]
with the IE, and the other datasets with PSNR/SSIM. The best and second-best results are shown in
red and blue. M.B. is the abbreviation for Middlebury [9]. “#P” and “#R” represent the number of
parameters (in millions) and runtime (in ms), respectively.

SNU-FILM
Methods Vimeo90K UCF101 M.B.

Easy Medium Hard Extreme
#P #R

DAIN [5] 34.71/0.9756 34.99/0.9683 2.04 39.73/0.9902 35.46/0.9780 30.17/0.9335 25.09/0.8584 24 151
RIFE [6] 35.61/0.9780 35.28/0.9690 1.96 40.06/0.9907 35.75/0.9789 30.10/0.9330 24.84/0.8534 9.8 12
RIFE-Large [6] 36.10/0.9801 35.29/0.9693 1.94 40.02/0.9906 35.92/0.9791 30.49/0.9364 25.24/0.8621 9.8 80
AdaCoF [7] 34.47/0.9730 34.90/0.9680 2.31 39.80/0.9900 35.05/0.9754 29.46/0.9244 24.31/0.8439 22.9 30
ToFlow [8] 33.73/0.9682 34.58/0.9667 2.15 39.08/0.9890 34.39/0.9740 28.44/0.9180 23.39/0.8310 1.1 84
ABME [15] 36.18/0.9805 35.38/0.9698 2.01 39.59/0.9901 35.77/0.9789 30.58/0.9364 25.42/0.8639 18.1 277
XVFIv [17] 35.07/0.9681 35.18/0.9519 - 39.78/0.9840 35.37/0.9641 29.91/0.8935 24.73/0.7782 5.5 98
SoftSplat [18] 36.10/0.9700 35.39/0.9520 1.81 - - - - - -
CDFI [19] 35.17/0.9640 35.21/0.9500 1.98 40.12/0.9906 35.51/0.9778 29.73/0.9277 24.53/0.8476 5 172
SepConv [23] 33.79/0.9702 34.78/0.9669 2.27 39.41/0.9900 34.97/0.9762 29.36/0.9253 24.31/0.8448 21.6 200
EDSC [25] 34.84/0.9750 35.13/0.9680 2.02 40.01/0.9900 35.37/0.9780 29.59/0.9260 24.39/0.8430 8.9 46
CAIN [36] 34.65/0.9730 34.91/0.9690 2.28 39.89/0.9900 35.61/0.9776 29.90/0.9292 24.78/0.8507 42.8 37
BMBC [40] 35.01/0.9764 35.15/0.9689 2.04 39.90/0.9902 35.31/0.9774 29.33/0.9270 23.92/0.8432 11 822
IFRNet [41] 35.80/0.9794 35.29/0.9693 - 40.03/0.9905 35.94/0.9793 30.41/0.9358 25.05/0.8587 5 22
UPR-Net [42] 36.03/0.9801 35.41/0.9698 - 40.37/0.9910 36.16/0.9797 30.67/0.9365 25.49/0.8627 1.7 42
UPR-Net-large [42] 36.28/0.9810 35.43/0.9700 - 40.42/0.9911 36.24/0.9799 30.81/0.9370 25.58/0.8636 3.7 62
EBME-H∗ [43] 36.19/0.9807 35.41/0.9697 - 40.28/0.9910 36.07/0.9797 30.64/0.9368 25.40/0.8634 3.9 82
ours-small 36.05/0.9796 35.23/0.9695 1.95 39.91/0.9906 35.87/0.9794 30.68/0.9373 25.46/0.8629 8.7 36
ours 36.37/0.9811 35.44/0.9700 1.91 40.22/0.9908 36.25/0.9801 30.85/0.9375 25.62/0.8639 17.2 82

To assess the performance of our method in multi-frame interpolation tasks, our model
is compared with SOTA methods, such as DAIN [5], RIFEm [6], ABME [15], IFRNet [41],
M2M [44], EMA-VFI-small [45], and EMA-VFI [45]. These SOTA methods are capable of
multi-frame interpolation with excellent performance. In this paper, we generate multiple
intermediate frames by recursively applying our model to achieve 4× and 8× frame interpo-
lation. Specifically, for the initial input frames I0 and I1, we first generate the intermediate
frame I0.5, followed by using I0.5 and I1, I0 and I0.5 to generate I0.75 and I0.25, respectively,
and so on. As shown in the results in Table 3, our model achieves the second-best per-
formance. Although the performance is slightly below EMA-VFI [45], it is ahead of other
SOTA methods and shows satisfactory performance. The results sufficiently prove that our
model is able to effectively achieve multi-frame interpolation on datasets with different
resolutions.

Table 3. Quantitative comparison with other methods for 4× interpolation on HD [37] and 8×
interpolation on XTest [17], evaluated with PSNR. The best and second-best results are shown in red
and blue.

Method 4× 8×
HD (720p) HD (1080p) XTest-2K XTest-4K

DAIN [5] 30.25 - 29.33 26.78
RIFEm [6] 31.87 34.25 31.43 30.58
ABME [15] 31.43 33.22 30.65 30.16
IFRNet [41] 31.85 33.19 31.53 30.46
M2M [44] 31.94 33.45 32.13 30.88
EMA-VFI-small [45] 32.17 34.65 31.89 30.89
EMA-VFI [45] 32.38 35.28 32.85 31.46
Ours 32.21 34.85 32.25 31.09
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4.3.2. Qualitative Comparison

In order to evaluate the quality of the video frames generated by our model, besides
the quantitative analysis, we also compare the model qualitatively with other SOTA meth-
ods, and the results of the visualization comparison on the Vimeo90K [8] testing set are
shown in Figure 4. Compared to other methods, our model generates more complete and
visually pleasing frames. For example, in the scene (bear’s foot) presented in the third
row of Figure 4, our method produces less visual distortion. The result in the fourth row
(car) presents a clearer tire structure. Moreover, in order to more accurately evaluate the
performance of the model in dealing with complex motion, we choose the SNU-FILM [36]
for further comparison. The results in Figure 5 indicate that our model generates reasonably
clear frames in the scene with rich texture details and fast motion (seabird’s wings). In the
extreme motion scene (skateboarding), our model generates frames with a more intact
structure and clearer details compared to the other three SOTA methods.

Overlay AdacofGT CDFI DAIN RIFE_m RIFE EBME UPR-Net UPR-Net 

-large

Ours-

small

Ours

Figure 4. Visual comparison with the state-of-the-art (SOTA) method using the Vimeo90K [8] testing
set. The rectangular boxes are the comparison areas. GT is the ground truth.

We choose Vimeo90K [8] and SNU-FILM [36] for visual comparisons because the
former includes a rich variety of scenes, while the latter covers situations involving a
wide range of motion, both of which contribute to a comprehensive assessment of model
performance. Furthermore, the rationale for comparing with different models includes
the fact that some models support real-time video processing [6,42], some perform well
in quantitative evaluations [19,42], and others represent the latest technological innova-
tions [42,43]. This multi-dimensional comparison not only demonstrates that our model
can generate high-quality intermediate frames but also verifies its practical application
capability in dealing with various complex scenarios.
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Overlay

GT

RIFEEBME

UPR-Net Ours

Overlay

GT

RIFE

EBME

UPR-Net

Ours

Figure 5. Visualization comparison with other state-of-the-art (SOTA) methods on SNU-FILM [36].
The rectangular boxes are the comparison areas.

4.4. Ablation Study

In this section, we design ablation experiments to assess the impact of specific com-
ponents on our model’s performance. These experiments focus on various aspects such
as the overall architecture and layer structure of the model, the PSTAT layer structure,
PSTA, and the size of the CE-Net convolutional kernel. The results of these experiments are
shown in Tables 4 and 5. We evaluate these configurations on both the Vimeo90K [8] and
UCF101 [35] datasets, using the same parameters and training scheme.

• Ablation Study on Model Layer Structure and Channel Selection. We investigate
the effects of PSTAT’s layer structure and initial channel on the model performance,
as shown in Table 4. Specifically, we set the number of TRBs in each PSTAT layer to
1 or 2, and each structure corresponds to an initial channel of 16 or 32, respectively.
Based on the results in Table 4, we can see that our model structure is scalable and the
model performs best when the number of TRBs is 2 and the initial channel dimension
is 32. Furthermore, as the number of TRBs decreases, the performance of the model
decreases, which indicates the effectiveness of TRBs in the interpolation task.

• Ablation Study on PSTAT Structure and TRB Structure. In the PSTAT layer, in order
to more thoroughly verify the effectiveness and scalability of PSTA, we use a regular
convolutional layer instead of PSTA, and the results are shown in Table 5. In the same
number of TRBs, the PSNR for the TRB with regular convolution is consistently lower
than for the TRB with PSTA. When comparing the results of TRB = 2 with convolution
to TRB = 1 with one PSTA block, it was found that the PSNR of the former was lower
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than the latter. These results indicate that PSTA is superior to convolution and that
PSTA is more suitable for modeling inter-frame motion. Additionally, as the number
of PSTA blocks increases, model performance improves, further demonstrating our
model’s scalability.

• Ablation Study on PSTA. We perform an ablation study on the PSTA structural
design in order to analyze the effect of SA and TA on the model performance, and
the results are shown in Table 5. We first evaluate the performance impact of SA
and TA on the model. In particular, the PSNR of the model is 35.61 dB when we
use a convolutional layer instead of SA, and the PSNR of the model without TA is
36.19 dB. This result shows that the performance of the model degrades when either
SA or TA is missing, and SA has a greater impact on our model. This indicates that
our proposed PSTA is very effective and it allows our model to aggregate both inter-
frame and intra-frame information without increasing the computational overhead.
It also shows the superiority of the parallel mechanism. In addition, we remove the
self-attention mechanism and convolution from the SA, respectively, and the results
show that both mechanisms affect the performance of the model, and the lack of the
self-attention mechanism has a greater impact on the model performance than the
lack of convolution. This result suggests that the self-attention mechanism is more
suitable than convolution for modeling large motions for the VFI task, and indirectly
shows that the Transformer-based model proposed in this paper outperforms the
CNN-based model.

• Ablation Study on Model Architecture Design. For CE-Net and MPFS-Net, we
conduct a simple comparison experiment, and we construct three model structures,
namely: the model without CE-Net, the model without MPFS-Net, and the model with-
out CE-Net and MPFS-Net. As shown by the results in Table 5, when the model lacks
CE-Net and MPFS-Net, the model performs poorly, especially when both are missing.
These results show that CE-Net and MPFS-Net are beneficial for our model and can
fully realize the performance of the Transformer-based structure. They also enable our
model to learn multi-scale information and synthesize high-quality video frames.

• Ablation Study on Conv Scheme in CE-Net. To investigate the strategy of using the
1 × 1 convolution in CE-Net, we use a simple model structure (1 TRB + 1 PSTA block).
We then replace the convolution kernel with a 3 × 3 kernel and evaluate the model for
CE-Net with different sizes of convolution kernels. Comparison of the results in the
last two rows of Table 5 show that the large-size convolutional kernel performs poorly
in our model and fails to focus on more details. In contrast, the 1 × 1 convolution can
aggregate more contextual information and is more suitable for CE-Net.

• Visual Ablation Study. Besides quantitative comparisons of ablation studies, we
also perform qualitative comparisons of PSTA, CE-Net, and MPFS-Net on the Mid-
dlebury [9], as shown in Figure 6. In particular, the model without SA generates
significantly blurrier intermediate frames. In the second row, all models generate
tennis balls with sharp edges, which indicates that the Transformer structure is able
to robustly model the similarity of long-range pixels for objects with regular shapes.
Furthermore, the full model is able to generate sharper and more detailed intermediate
frames compared to the version without key modules. This comparison clearly shows
the important contribution of each module in improving the quality of frame synthesis.
However, in the second row, there is still improvement in the performance of all the
models for human body motions, especially finger joints, which will be the focus of
our future research.
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Table 4. Ablation studies for transformer residual blocks and channels. “X-X-X-X” indicates the
number of Transformer residual blocks in each corresponding layer.

Architecture Channel
Vimeo90K UCF101

PSNR SSIM PSNR SSIM

1-1-1-1 16 35.46 0.9774 34.60 0.9626
2-2-2-2 16 36.05 0.9796 35.23 0.9695
1-1-1-1 32 36.11 0.9801 35.31 0.9698
2-2-2-2 32 36.37 0.9811 35.44 0.9700

Table 5. Ablation studies of encoder layer structure, parallel spatio-temporal attention (PSTA), model
architecture, and the size of the CE-Net convolutional kernel. “w/” denotes “with” and “w/o”
denotes ”without”.

Setting
Vimeo90K UCF101

PSNR SSIM PSNR SSIM

PSTAT Layer Structure Design
1 TRB w/Conv 3 × 3 34.21 0.9723 34.07 0.9527
1 TRB w/1 PSTA block 35.59 0.9794 34.85 0.9633
1 TRB w/2 PSTA blocks 36.11 0.9801 35.31 0.9698
2 TRB w/Conv 3 × 3 35.34 0.9692 34.41 0.9628
2 TRB w/1 PSTA block 36.30 0.9811 35.34 0.9699
2 TRB w/2 PSTA blocks 36.37 0.9811 35.44 0.9700

PSTA Design
Ours w/o SA 35.61 0.9779 34.90 0.9635
Ours w/o TA 36.19 0.9802 35.32 0.9698
SA w/o Attention 35.64 0.9782 35.05 0.9686
SA w/o Conv 35.94 0.9801 35.26 0.9691

Model Architecture Design
Ours w/o MPFS-Net + CE-Net 35.58 0.9757 34.82 0.9633
Ours w/o CE-Net 36.12 0.9799 35.33 0.9698
Ours w/o MPFS-Net 35.93 0.9791 35.24 0.9690

CE-Net Conv Scheme (Model w/ 1 TRB + 1 PSTA block)
CE-Net - Conv 3 × 3 35.52 0.9792 34.68 0.9629
CE-Net - Conv 1 × 1 35.59 0.9794 34.85 0.9633

Overlay GT SA w/o 

Attention

SA w/o 

Conv

w/o SA w/o TA Oursw/o 

MPFS+CE

w/o CE w/o MPFS

Figure 6. Visualization comparison of ablation studies. The testing dataset is Middlebury [9]. “w/o”
denotes “without”. The rectangular boxes are the comparison areas.

5. Limitations and Future Work

Although our approach has achieved significant results, there are still some limitations
that need to be further investigated. Currently, our model only generates intermediate
frames and is limited to accepting only two consecutive frames as input, which means that
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the information in multiple consecutive frames cannot be fully utilized. In future work,
we aim to develop a model that accepts multiple frame inputs and extend our method to
handle frame interpolation at arbitrary time steps.

6. Conclusions

In this study, we propose a new model using Transformer architecture for VFI.
The model contains the parallel spatio-temporal attention mechanism for extracting inter-
frame and intra-frame motion information and modeling long-range pixel dependencies.
Particularly, it is worth mentioning that our proposed parallel spatio-temporal attention
mechanism, based on a simple structure, facilitates the interaction of motion information
across the time dimension. It effectively avoids the additional computational overhead
typically associated with reusing attention mechanisms. Extensive experimental results
show that our model demonstrates excellent performance on multiple standard datasets
and is able to generate more visually pleasing intermediate frames compared to existing
methods.
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