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Abstract: The scope of complex dynamical networks (CDNs) with dynamic edges is very wide,
as it is composed of a class of realistic networks including web-winding systems, communication
networks, neural networks, etc. However, a classic research topic in CDNs, the synchronization
control problem, has not been effectively solved for CDNs with dynamic edges. This paper will
investigate the emergence mechanism of synchronization from the perspective of large-scale systems.
Firstly, a CDN with dynamic edges is conceptualized as an interconnected coupled system composed
of an edge subsystem (ES) and a node subsystem (NS). Then, based on the proposed improved
directed matrix ES model and expanded matrix inequality, this paper overcomes the limitations of
coupling term design in node models and the strong correlation of tracking targets between nodes
and edges. Due to the effect of the synthesized node controller and the auxiliary effect of the ES, state
synchronization can be realized in the CDN. Finally, through simulation examples, the validity and
advantages of our work compared to existing methods are demonstrated.

Keywords: state synchronization; complex dynamical networks; edges subsystem; node subsystem

1. Introduction

As a widely observed natural phenomenon, synchronization has attracted a lot of
attention in research on complex dynamic networks (CDNs) control. In this field of research,
synchronization is regarded as a collective dynamic behavior, and the main concern is
identifying a control method that can consistently determine the states between nodes.
Previous theoretical results have revealed the existence of laws of the expected dynamic
characteristics of complex network systems, and these laws have been applied to social
networks, communication networks, multi-intelligent systems, and other fields [1–3].

According to mathematical graph theory, nodes are the carriers of synchronization be-
havior, while edges (i.e., the topology) play the role of communication bridges between
nodes to promote or hinder the emergence of synchronization [1]. In the current research
on synchronization in CDNs, exploring the impact of topology (edges) on the node state is
the main research direction. Some scholars have explored what conditions of the adjacency
matrix (topology) of CDNs are most beneficial for synchronization to occur. For example, the
mathematical expressions of the occurrence of synchronization phenomena have been derived
under constant topologies [4–7], switching topologies [8–11], and random topologies [12–14].
In Refs. [4–7], the connections between nodes were constant, and the favorable characteristic
conditions for synchronous evolution were derived. In Refs. [8–11], the studied CDNs con-
tained multiple topologies, and topology switching was found to follow a certain switching
signal. The main purpose of these studies was to identify the topological features and switch-
ing frequencies that can assist in the achievement of synchronization. In Refs. [12–14], the
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connection or disconnection between nodes followed a given random probability distribution;
therefore, exploring the network size and information dissemination patterns can help real-
ize synchronization in such a scenario. Another group of scholars has utilized optimization
methods and models of CDNs to seek an optimal topology that can promote synchroniza-
tion [15–17]. Ref. [15] explored what conditions the spectrum of the topology’s Laplacian
matrix must satisfy to achieve the optimal synchronizability in high-order complex networks.
In Ref. [16], researchers found that a non-trivial and ideal balance between relative connection
strengths can lead to network support for optimal collective behavior. In Ref. [17], an optimal
power-grid topology with maximum anti-correlation that can drive distributed power grid
synchronization was obtained based on the defined frequency correlation function between
nodes. Although the diversity of edges and the impact of different topologies on CDNs have
been addressed, the dynamic edge group has not been regarded as a dynamic system in the
emergence mechanism of synchronization.

In reality, there are many networks where the edges between nodes cannot be described
by constant topologies, switching topologies, or random topologies. Edges, like nodes,
have rich dynamic characteristics and are generally characterized as dynamic systems. For
instance, in industrial web-winding systems, if the motors and the webs between motors
are abstracted as nodes and edges, respectively, the motor speed and web tension can be
regarded as state variables. A dynamic system of the webs’ tension (i.e., the edges’ states)
can be established based on actual production equipment, and an underactuated control
method for motors can be used to make the web tension reach the target value [18,19]. A
web-winding system is a typical complex system with dynamic edges, where the coupling
relationship between the states of nodes and edges is the source of complex dynamic
behavior. It should, thus, be noted that exploring the dynamic characteristics of one aspect
of this system depends on the other.

In TCP congestion control, terminal devices such as routers act as nodes for infor-
mation exchange through transmission links. In order to achieve maximum resource
utilization, it is necessary to design reasonable dynamics for the links’ prices (i.e., the
edges’ states) [20,21]. In biological neural networks, the facilitation of synapses can be seen
as dynamic behavior of edges, where the adaptability of synaptic dynamics leads to the
emergence of chaotic dynamic behaviors [22,23]. In transportation networks, reasonable
paths (edges) are crucial for the stable operation of the transportation network [24,25].
In Ref. [24], a Pareto-optimal algorithm was used to solve for the optimal set of each de-
mand node, generating an optimal path that meets the expected travel time and degree of
reliability in stochastic transportation networks. Ref. [25] designed an elastic deep learning
architecture that solves the problem of sensor placement and traffic flow estimation, then de-
rives a meaningful relationship between traffic flow data and network topology, providing
an effective tool for revealing the significance of topology in the stable operation of traffic
networks. Ref. [26] emphasized the importance of node dynamics, control protocols, and
network topology for the overall behavior of complex networks—in particular, discussing
the design method of time-varying coupling protocols in network synchronization. These
practical systems indicate that the dynamic changes within edges are sources of dynamic
behaviors in networks, especially when designing appropriate edge dynamics that can
promote the achievement of desired features in complex networks.

From the above examples of networks, it can be seen that edges can exhibit desired
dynamic characteristics, as well as serve a coupling role, so they cannot be simply described
using constant, switching, or random modes. Therefore, the dynamic coupling relationship
between edges and nodes should be paid more attention to from a holistic perspective.
It is necessary to explore the role of edges in the evolution of node states or in effective
control methods by establishing an appropriate complex network model. The approach
of treating edges as dynamic systems not only expands the existing modeling methods in
complex network research but also helps us to understand the essence of dynamic network
behavior as a whole. However, research on edge system modeling and corresponding
control methods is rare in the existing literature about CDN synchronization control.
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From the perspective of large-scale system theory, a complex network can be decom-
posed into two subsystems composed of nodes and edges, namely the node subsystem (NS)
and the edge subsystem (ES). On this basis, an interconnected model of CDNs consisting of
NSs and ESs is established [27–32]. The dynamic behaviors of the nodes and edges under
the coupling relationship between the two subsystems have been studied. Refs. [27–29]
explored the dynamic characteristics of edges, which are rarely addressed, and the edge
state tracking control problem was solved using an underactuated node control strategy.
Ref. [27] utilized heterogeneous controlled nodes to indirectly drive edge states and de-
rived the correlation between the ES’s state and network structure balance. In Ref. [28],
controllers of the ES and NS were designed based on the proposed edge-state observer, and
the asymptotic tracking of the reference target was achieved under the mutual coupling
effect. In Ref. [29], by transferring and expanding the model following a control method
based on control theory, model following of the two subsystems was achieved. In order to
make nodes exhibit the expected dynamic behavior, a control design method combining
edge dynamics was studied in [30–32]. Ref. [28] established a dynamic edges model in
discrete-time CDNs and studied design methods of controller and edge dynamics that
facilitate synchronization. In Refs. [30,31], a control design method for achieving target
tracking of nodes was discussed via the auxiliary role of the ES with and without edge-state
observers. Although the modeling problem of dynamic edges and the mutual coupling
dynamic behaviors between two subsystems have been investigated, the studies reported
in [27–32] have shortcomings in terms of model universality and control design methods
that urgently need to be resolved through further studies.

By analyzing the literature, the following two noticeable gaps emerge: (1) In the
existing research on CDN synchronization control, the synchronization mechanism of
CDNs with dynamic edges is largely ignored [4–17]. This neglect is reflected not only in
the dynamic edges’ characteristics but also in the impact of edges on node states. (2) There
is a lack of universality in the ES models and the design mechanism of synchronization
controllers. In Refs. [27–29,31,32], the edge models were in undirected or special vector
form, and the controller design method was limited by pre-set coupling structures. In view
of these gaps, this paper proposes a more general directed matrix model of dynamic edges
based on related works. From the perspective of two subsystems, the synchronization
mechanism of controlled CDNs under the auxiliary effect of dynamic edges is investigated.

Compared with most of the existing literature on the synchronization of CDNs, our
work provides the following contributions and novelties:

(1) Following the notion of large-scale system control theory, a CDNs is regarded
as an interconnected system composed of an NS and an ES. We propose an improved
undirected matrix ES model that is more general and realistic than similar models proposed
in [27–29,31,32].

(2) Based on the proposed extended matrix inequality lemma, the design mechanism
of the synchronization controller and coupled term is simplified, overcoming the limitations
of the node model concerning the number of nodes and the tracking-target relationship
between the ES and NS in [29,31,32].

The remainder of this paper is organized as follows. Section 2 presents the net-
work model, necessary preliminaries, and proof of the extended matrix inequality lemma.
Section 3 discusses the emergence mechanism of synchronization, solves the design prob-
lems of the controller and coupling term in this paper, and proves the effectiveness of the
design method via the Lyapunov direct method. In Section 4, we provide three examples to
compare with existing methods, and the simulation results demonstrate the effectiveness
and superiority of our method. Conclusions are drawn in Section 5.
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2. Model Description and Preliminaries

Let xij(t) ∈ R indicate the time-varying connection weight (edge) from node i pointing
to node j at time t. Motivated by the models in [27,28], the dynamics of edges in a CDN
with N nodes are proposed as follows:

dxij(t)
dt

=
N

∑
k=1

likxkj(t) +
N

∑
r=1

ljrxir(t) + φij(y(t)), i, j = 1, 2, · · · , N, (1)

where y(t) = (yT
1 (t), yT

2 (t), · · · , yT
N(t))

T ∈ RNn, yi(t) ∈ Rn is the state variable of the i-th
node, lik and ljr are real constant coefficients and indicate the strength of the interaction,
and φij(y(t)) is the coupling term about nodes’ states.

Letting X(t) = [xij(t)]N×N , L = [lrs]N×N , and Φ(y(t)) = [φij(y(t))]N×N , the ES can
be described by the following matrix equation:

Ẋ(t) = LX(t) + X(t)LT + Φ(y(t)) (2)

The state equation of nodes is proposed as follows:

ẏi(t) = f (yi(t)) + c
N

∑
j=1

xij(t)hj(yj(t)) + ui(t), i = 1, 2, · · · , N, (3)

where f (·) : Rn → Rn is a nonlinear function, c ∈ R is common coupling strength,
hj(yj(t)) ∈ Rn is the inner coupled function, and ui(t) ∈ Rn is the control input of node i.

Using the Kronecker product, the NS can be described as follows:

ẏ(t) = F(y(t)) + c(X(t)⊗ In)h(y(t)) + u(t), (4)

where F(y(t)) = ( f T(y1), f T(y2), · · · , f T(yN))
T , h(y(t)) = (hT

1 (y1), hT
2 (y2), · · · , hT

N(yN))
T ,

u(t) = (uT
1 (t), uT

2 (t), · · · , uT
N(t))

T , and ⊗ stands for the Kronecker product of the matrices.

Remark 1. (i) Equation (1) implies that the change in the connection strength (edge state) (xij(t))
is affected by the edges between nodes i and j and the other nodes, as well as the nodes’ states. The
physical construction of the web-winding system can demonstrate the rationality of Equation (1), in
which the change in the tension value of the web (i.e., the edge state) is affected by the adjacent webs
and motors (nodes). (ii) The state equation in the form of (2) is employed to govern the dynamics
of the ES and investigate the dynamic features of the CDN. However, the models proposed in the
the current literature are either of the vector type or are undirected, neither of which can intuitively
and realistically represent the variations in dynamic edges. Equation (2) is the improved directed
matrix-type edge model proposed in this paper, which is closer to the approach of using adjacency
matrices to represent network topology in the existing literature but is not limited by the symmetry of
state X(t) (i.e., it is not undirected). (iii) This article aims to reveal the synchronization mechanism
of a controlled NS under the auxiliary role of the ES. The achievement of state synchronization relies
on an effective controller (u(t)) and coupling term (Φ(y(t))). The design method of the coupling
term is no longer limited by the node model and the tracking target correlation between the NS
and ES. (iv) The asymmetric state matrix (X(t)) is not measured accurately by sensors in practical
applications, and thus, it is unavailable for the controller (u(t)).

Assumption 1. The matrix (L) in Equation (2) is Hurwitz stable.

Assumption 2. The function f (·) is continuous and satisfies the following condition:

(y1 − y2)
T [ f (y1)− f (y2)] ≤ γ(y1 − y2)

T(y1 − y2), f or ∀y1, y2 ∈ Rn, (5)

where γ is a known positive real number.
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Lemma 1 ([33]). The following properties are true according to the operator vec(·) and the Kro-
necker product.

(1) vec(QWY) = (Q ⊗ YT)vec(W);
(2) (Q ⊗ W)(Y ⊗ Z) = (QY)⊗ (WZ);
(3) (Q ⊗ W)T = QT ⊗ WT ;
(4) (Q ⊗ W)−1 = Q−1 ⊗ W−1,

where Q, W, Y, and Z are matrices with appropriate dimensions. The operator vec(·) is
defined as vec(A) = (a11, a21, · · · , aN1, · · · , a1M, · · · , aNM)T (A = [aij]N×M). In property
(4) of Lemma 1, matrices Q and W are invertible. AT and A−1 represent the transposition
and inverse of matrix A, respectively.

Lemma 2. If Assumption 1 holds, there is a matrix (Ξ) satisfying the following matrix inequality:

L̃T(Ξ ⊗ Ξ) + (Ξ ⊗ Ξ)L̃ < 0, (6)

where L̃ = L ⊗ IN + IN ⊗ L.

Proof. If Assumption 1 holds, it follows from matrix theory that there exists a positive
definite matrix (Ξ) satisfying the following Lyapunov equation:

LTΞ + ΞL < 0. (7)

Thus, we can obtain

(LTΞ + ΞL)⊗ IN = LTΞ ⊗ IN + ΞL ⊗ IN

= (LT ⊗ IN)(Ξ ⊗ IN) + (Ξ ⊗ IN)(L ⊗ IN) < 0,
(8)

and

IN ⊗ (LTΞ + ΞL) = IN ⊗ LTΞ + IN ⊗ ΞL

= (IN ⊗ LT)(IN ⊗ Ξ) + (IN ⊗ Ξ)(IN ⊗ L) < 0.
(9)

Multiplying IN ⊗ Ξ on the right side of inequality (8), the following can be obtained

(LT ⊗ IN)(Ξ ⊗ IN)(IN ⊗ Ξ) + (Ξ ⊗ IN)(L ⊗ IN)(IN ⊗ Ξ) < 0. (10)

It is noticed that (Ξ ⊗ IN)(L ⊗ IN)(IN ⊗ Ξ) = (ΞL)⊗ Ξ = (Ξ ⊗ Ξ)(L ⊗ IN); then, the
inequality (10) can be rewritten as follows:

(LT ⊗ IN)(Ξ ⊗ Ξ) + (Ξ ⊗ Ξ)(L ⊗ IN) < 0. (11)

Multiplying Ξ ⊗ IN on the left side of inequality (9), similarly, we can obtain the
following inequality:

(IN ⊗ LT)(Ξ ⊗ Ξ) + (Ξ ⊗ Ξ)(IN ⊗ L) < 0. (12)

Obviously, the following inequality can be obtained from (11) and (12):

(LT ⊗ IN + IN ⊗ LT)(Ξ ⊗ Ξ) + (Ξ ⊗ Ξ)(L ⊗ IN + IN ⊗ L) < 0. (13)

This completes the proof of Lemma 2.

Remark 2. (i) There are many systems satisfying Assumption 2, such as Hopfield neural networks,
Chua circuits, and so on. (ii) Using Lemma 1, matrix Equation (2) can be transformed into a vector
equation to facilitate stability analysis. The proposed extended matrix inequality (6), as evidenced
by the theoretical results in Lemma 2, can simplify the design method of coupling term Φ(y(t)),
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overcoming the limitations of the node model and the tracking-target relationship between the NS
and ES in [27,29,31,32]. (iii) This paper discusses a synchronous universal control method for
CDNs with dynamic edges; the dynamics of the edges and nodes are governed by the proposed models
of the ES (2) and NS (4), respectively. The states of edges can indicate whether nodes are connected
or not or the strength value of the connection. Thus, the connectivity pattern is actually determined
by edges’ dynamics, and the number of nodes is not directly related to the proposed methods.

3. Main Results

In this section, we solve the fundamental problem of this paper, namely the design
methods of node controllers and coupling terms, to clarify the emergence mechanism of
synchronization in CDNs with dynamic edges. In addition, we prove the effectiveness of
our proposed design method via the Lyapunov direct method.

Definition 1 ([15]). A CDN is said to achieve state synchronization if lim
t→∞

y1(t) = lim
t→∞

y2(t) =

· · · = lim
t→∞

yN(t) = 0.

For a CDN consisting of subsystems (2) and (4), we synthesize an effective controller
(u(t)) and dynamic coupling matrix (Φ(y(t))), making the CDN synchronized. To facil-
itate an understanding of the synchronization mechanism proposed in this article, we
demonstrate the network framework and control diagram in Figures 1 and 2, respectively.

Figure 1. The framework of a CDN composed of an node subsystem (NS) and edge subsystem (ES).

Figure 2. The diagram of a controlled network.

The feedback NS controller is designed as follows:

u(t) = (−α − γ)(K+
α Kα ⊗ In)y(t), (14)

where Kα =



1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
... · · ·

...

0 0 0
... −1

−1 0 0 · · · 1

 ∈ RN×N , K+
α is the Moore–Penrose inverse

matrix of Kα, and α > 0 is an adjustable scalar and represents the control gain.
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The coupling term Φ(y(t)) is constructed as follows:

Φ(y(t)) = −cΞ−1KT
α KαY(t)h̃T(t)Ξ−1, (15)

where h̃(t) = (h1(y1(t)), h2(y2(t)), · · · , hN(yN(t)))T , Ξ is determined by inequality (7),
namely Y(t) = (y1(t), y2(t), · · · , yN(t))T .

We define the following synchronous errors: ei(t) = yi(t)− yi+1(t) (i = 1, 2, · · · , N − 1)
and eN(t) = yN(t) − y1(t). Letting vector e(t) = (eT

1 (t), eT
2 (t), · · · , eT

N(t))
T, according to

Lemma 1, the error system reads as follows:

ė(t) = Kβẏ(t), (16)

where Kβ = Kα ⊗ In.
In order to carry out stability analysis, the state (X(t)) of the ES is vectorized via

operator vec(·). Letting x(t) = vec(X(t)) ∈ RN2
, its derivative over time is expressed

as follows:
ẋ(t) = L̃x(t)− c(Ξ−1 ⊗ Ξ−1)(KT

α ⊗ h̃(t))Kβy(t), (17)

Remark 3. (i) If the error system (16) can be asymptotically stable via the node control law (14)
and coupling term (15), then lim

t→∞
[yi(t) − yj(t)] = 0 (i, j = 1, 2, · · · , N and i ̸= j) will hold,

which is mathematically equivalent to lim
t→∞

y1(t) = lim
t→∞

y2(t) = · · · = lim
t→∞

yN(t) = 0. Thus, the

synchronization error (e(t)) defined in this paper does not contradict the existing literature. (ii) This
paper focuses on the synchronization mechanism of a controlled NS under the auxiliary role of the
ES. According to the mathematical model of two coupled subsystems, the overall dynamic behavior
of the CDN is influenced by the node controller and edge coupling term. Therefore, the fundamental
problem that we are aiming to solve is the design of an effective controller (u(t)) and coupling term
(Φ(y(t))) that will make the CDN achieve state synchronization.

Theorem 1. Consider continuous-time CDNs with mutually coupled subsystems (2) and (4).
Under Assumptions 1 and 2, synchronization can be realized via the control strategy (14) and the
coupling term (15); meanwhile, X(t) is bounded.

Proof. Construct the following positive definite function:

V(t) = V1(t) + V2(t), (18)

where V1(t) = eT(t)e(t), V2(t) = xT(t)(Ξ ⊗ Ξ)x(t), and the positive definite matrix Ξ is
solved via inequality (7).

The derivative of V1(t) can be derived as follows:

V̇1(t) = 2eT(t)ė(t)

= 2eT(t)Kβẏ(t)

= 2eT(t)Kβ[F(y(t)) + c(X(t)⊗ In)h(y(t)) + u(t)]

= 2eT(t)KβF(y(t)) + 2ceT(t)(KαX(t)⊗ In)h(y(t)) + 2eT(t)Kβu(t)

= 2eT(t)F̄(y(t)) + 2ceT(t)(KαX(t)⊗ In)h(y(t)) + 2eT(t)Kβu(t),

(19)

where KβF(y(t)) = F̄(y(t)) = ( f T(y1)− f T(y2), · · · , f T(yN−1)− f T(yN), f T(yN)− f T(y1))
T.

It follows from Assumption 2 that

eT(t)F̄(y(t)) ≤ γeT(t)e(t). (20)
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From Lemma 1, one has

(KαX(t)⊗ In)h(y(t)) = vec(KαX(t)h̃(t))

= (Kα ⊗ h̃T(t))x(t).
(21)

Thus, the following inequality can be obtained via controller (14)

V̇1(t) ≤2γeT(t)e(t) + 2ceT(t)(Iα ⊗ h̃T(t))x(t)

+ 2eT(t)Kβ[(−α − γ)(K+
α Kα ⊗ In)y(t)]

=− 2αeT(t)e(t) + 2ceT(t)(Kα ⊗ h̃T(t))x(t).

(22)

The differential coefficient of V2(t) is derived as follows:

V̇2(t) =ẋT(t)(Ξ ⊗ Ξ)x(t) + xT(t)(Ξ ⊗ Ξ)ẋ(t)

=[L̃x(t)− c(Ξ−1 ⊗ Ξ−1)(KT
α ⊗ h̃(t))e(k)]T(Ξ ⊗ Ξ)x(t)

+ xT(t)(Ξ ⊗ Ξ)[L̃x(t)− c(Ξ−1 ⊗ Ξ−1)(KT
α ⊗ h̃(t))e(k)]

=xT(t)[L̃T(Ξ ⊗ Ξ)x(t) + (Ξ ⊗ Ξ)L̃]x(t)− 2cxT(t)(KT
α ⊗ h̃(t))e(k).

(23)

Therefore, we can prove that

V̇(t) ≤ −2αeT(t)e(t) + xT(t)[L̃T(Ξ ⊗ Ξ) + (Ξ ⊗ Ξ)L̃]x(t). (24)

It follows from Lemma 2 that

L̃T(Ξ ⊗ Ξ) + (Ξ ⊗ Ξ)L̃ < 0. (25)

Therefore, it can be derived that V̇(t) < 0 via (24) and (25). Consequently, conclusions

about e(t)
t→∞→ 0 and X(t)

t→∞→ O (O denotes the null matrix, and this means that X(t) is
stable) can be derived. The proof is accomplished.

Remark 4. (i) Matrix Kα is singular, which implies y(t)
t→∞→ 0 cannot be obtained directly via e(t)

t→∞→ 0
in Equation (16). Therefore, the synchronization discussed in this article is non-trivial. (ii) The results
in Theorem 1 do not indicate that the NS is asymptotically stable. Let ẏ(t) = Ωy(t) + g(y(t), X(t)),
Ω = (−α − γ)(K+

α Kα ⊗ In), g(y(t), X(t)) = F(y(t)) + c(X(t)⊗ In)h(y(t)). If matrix Ω is stable
and ∥g(y(t), X(t))∥ ≤ β∥y(t)∥ (where β is an arbitrarily small positive scalar), the stability of the
controlled NS can be guaranteed. (iii) The results in Theorem 1 show that the state of the ES (2) is
asymptotically stable, which implies the nodes in the network are connected with weak strength when
the synchronization of the NS is achieved. The same results are shown in most of the existing literature.
In these studies, the structure of the complex network was assumed to satisfy the dissipative condition,
in which the interconnected parts in the dynamics of the nodes converge asymptotically to zero in the
process of synchronous evolution. Therefore, the results in Theorem 1 are consistent with the existing
research. (iv) Based on the form of the node controller in (14) and the coupling term in (15), the design
method proposed in this paper can ensure the asymptotic stability of synchronization error (e(t)) without
being limited by the number of network nodes and is resiliently applicable to CDNs in which the isolated
dynamics of nodes are known, are linearizable, or satisfy the Lipschitz condition or the undirected model.
(v) The clarity of the synchronization mechanism depends on the effectiveness of the design methods of the
node controller and coupling term. The complexity of design methods is related to the degree of difficulty of
solving the Moore–Penrose inverse matrix of Kα (K+

α ) and the Lyapunov Equation (7) but is independent
of the number of nodes (i.e., network size).
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4. Simulation Examples
4.1. Example 1

Take the following Chua chaotic system [34] as the dynamics of isolated nodes (N = 30):

ẏi(t) = Ayi(t) + g(yi(t)), i = 1, 2, · · · , 30, (26)

where yi(t) = (yi1(t), yi2(t), yi3(t))T ∈ R3, g(yi(t)) = −10(g1(yi(t)), 0, 0)T ∈ R3, matrix

A =

 −10 10 0
1 −1 1
0 −14.87 0

, and g1(yi(t)) = −1.27y1i(t) + 0.295(|y1i(t) + 1| − |y1i(t)− 1|).

Let f (yi(t)) = Ayi(t)+ g(yi(t)), γ = 9.0620, the inner coupled functions be hi(yi(t)) =
(yi1(t)yi2(t), yi2(t) yi3(t), yi3(t)yi1(t))T , the control gain be α = 10, and the common cou-
pling strength be c = 0.01.

Matrices L, Ξ, y(0), and X(0) can be assigned by the following steps:
Step 1. Let li = −m ∗ rand(1), i = 1, 2, · · · , 30, where m is an adjustable parame-

ter. We choose m = 10, P ∈ R30×30 as a randomly generated invertible matrix, and
L = Pdiag{l1, l2, · · · , l30}P−1.

Step 2. Let matrix Q = s ∗ IN . The positive matrix (Ξ) can be solved by the equation
LTΞ + ΞL = −Q, where s is an adjustable parameter and s = 5.

Step 3. Set the initial values as y(0) = randn(90, 1) and X(0) = randn(30).
To demonstrate the superiority of the method proposed in our work, the results of a

comparison with Ref. [31] are shown in Figures 3–5.
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Figure 3. The comparison results of NS’s state (y(t)) response curves in Example 1: (a) under the
control method proposed in Ref. [31]; (b) under the proposed control method.
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Figure 4. The comparison results of synchronization error (e(t)) response curves in Example 1:
(a) under the control method proposed in Ref. [31]; (b) under the proposed control method.
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4.2. Example 2

Consider a continuous analog Hopfieldneural network [35] consisting of 50 nodes; the
dynamic equation of the neuron reads as follows:

ẏi(t) = − 1
τi

yi(t) +
1
Ci

Di(t) +
1
Ci

N

∑
j=1

xij(t)hj(yj(t)), i = 1, 2, · · · , 50. (27)

where the i-th neuron’s state is yi(t) ∈ R, Ci is the input capacitance, τi = RiCi, Ri is the
effective resistance, Di(t) is the input current, and the activation function is hj(yj(t)) =

1−e−yj(t)

1+e−yj(t)
.

Let Ci = C = 1, Ri = R = 1, c = 1
C , τi = τ = 1

RC , Di(t) = D(t) = cos(t),
f (yi(t)) = − 1

τ yi(t) + 1
C D(t), (1 ≤ i ≤ 50), γ = 1, and α = 5. The initial values of y(0) and

X(0) and matrices L and Ξ are obtained following Steps 1–3 in Example 1.
The results of the comparison with Ref. [32] are shown in Figures 6–8.
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Figure 5. The comparison results of ES’s state (X(t)) response curves in Example 1: (a) under the
control method proposed in Ref. [31]; (b) under the proposed control method.
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Figure 6. The comparison results of NS’s state (y(t)) response curves in Example 2: (a) under the
control method proposed in Ref. [32]; (b) under the proposed control method.

4.3. Example 3

To further demonstrate the effectiveness of the method proposed in this work in a
practical application, we take fixed-wing unmanned aerial vehicles (FWUAVs) as the nodes.
As shown in [36,37], the attitude dynamics of the FWUAVs are described as follows:
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 ẏi1(t)
ẏi2(t)
ẏi3(t)

 =

 δ1yi1(t)yi2(t)− δ2yi2(t)yi3(t)
δ3yi1(t)yi3(t)− δ4(yi1

2(t)− yi3
2(t))

δ5yi1(t)yi2(t)− δ1yi2(t)yi3(t)

+ Bui(t), i = 1, 2, · · · , 100. (28)

where yi1, yi2, and yi3 are the roll, pitch, and yaw angular rates of the i-th FWUAV, respectively;

ui(t) is the control input; B =

 δ6 δ7 0
0 0 δ8
δ7 δ9 0

; and yi(t) = [yi1, yi2, yi3]
T is the state variable.

During the flight of FWUAVs, the states of edges (distance, communication speed,
etc.) are constantly changing. We assume that the states of edges between FWUAVs are
governed by (2), then verify the effectiveness of the design method.

We set the following parameters: δ1 = 0.001, δ2 = −0.0107, δ3 = 0.0107, δ4 = 0.0103,
δ5 = 0.0102, δ6 = 0.0181, δ7 = 0.0030, δ8 = 0.0004, and δ9 = −0.0011. The control input is

˜u(t) = B−1u(t), the inner coupled function is hi(yi(t)) = yi(t), the common connection
strength is c = 0.01, control gain is α = 0.5, and γ = 0.5. The initial values of y(0) of X(0)
and matrices L a d Ξ are obtained via Steps 1–3 in Example 1.

The results of the comparison with Ref. [32] are shown in Figures 9–11.
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Figure 7. The comparison results of synchronization error (e(t)) response curves in Example 2:
(a) under the control method proposed in Ref. [32]; (b) under the proposed control method.
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Figure 8. The comparison results of ES’s state (X(t)) response curves in Example 2: (a) under the
control method proposed in Ref. [32]; (b) under the proposed control method.
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4.4. Comparative Analysis of Simulation Results

By observing Figures 3–11, the following conclusions can be drawn:
(1) Using the control method proposed in [31,32], the simulation results for the three

examples are shown in Figures 3a, 4a, 5a, 6a, 7a, 8a, 9a, 10a and 11a. It can be seen that
it is neither possible to drive the NS to achieve asymptotic state synchronization nor to
ensure the stability of the states of the ES. However, under the controller and coupling
term designed in this article, we can see from Figures 3b, 4b, 6b, 7b, 9a, and 10a that
the synchronization error and node state are stable. Compared with [31,32], the results
demonstrate the effectiveness and advantages of the method proposed in this paper.

(2) The state of the ES is bounded in Figures 5b, 8b, and 11b, which implies that
the interconnected parts of nodes will converge asymptotically to zero. The results are
consistent with Theorem 1 and most existing research.
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Figure 9. The comparison results of NS’s state (y(t)) response curves in Example 3: (a) under the
control method proposed in Ref. [32]; (b) under the proposed control method.
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Figure 10. The comparison results of synchronization error (e(t)) response curves in Example 3:
(a) under the control method proposed in Ref. [32]; (b) under the proposed control method.
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Figure 11. The comparison results of ES’s state (X(t)) response curves in Example 3: (a) under the
control method proposed in Ref. [32]; (b) under the proposed control method.

(3) In this section, we set the number of nodes (N) to 30, 50, and 100 in examples 1,
2, and 3, respectively, and all simulation results indicate that the control objectives can
be achieved. Therefore, in both theory and simulation, it has been demonstrated that the
method proposed in this paper is not limited by the number of nodes.

5. Conclusions

This paper discusses a synchronization control mechanism for CDNs with dynamic
edges. The proposed interconnected coupled model, composed of an ES and an NS, can
reveal the auxiliary effect of the ES on the controlled NS and provides a new approach to
studying synchronous evolution. Due to the improved matrix ES model and the expanded
matrix inequality lemma, the design method of the coupling term is no longer limited
by the node model and the associated relationship of the tracking targets between the
ES and NS. Moreover, both the theoretical analysis and simulation results of this article
prove the effectiveness of the proposed method and its superiority to existing methods.
The research findings of this article will contribute to the development of research on the
dynamic behavior of CDNs.

In the future, we will expand our research work in the following two areas: (i) Nonlin-
ear ES models and pinning control methods will be developed. This paper mainly discusses
the auxiliary mechanism of a linear ES model, assisting in the emergence of synchronization
of controlled nodes, without considering nonlinear models of the ES. We will establish
a more general nonlinear edge model and use the pinning control method to study the
emergence mechanism of synchronization. (ii) A model-free, data-driven method will be
developed. Under the unknown models of the ES and NS, the collected complex state
information of the CDN and data-driven methods will be used to design control laws and
achieve state synchronization.
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