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Abstract: Underwater wireless sensor networks play an important role in underwater communication
systems. Communication through collaborative communication is an effective way to solve critical
problems in underwater communication systems. Underwater sensors are often deployed in spaces
that overlap with those of marine mammals, which can adversely affect them. For this reason, in
this paper, a marine mammal conflict avoidance method that can be dynamically adjusted according
to the channel idle time duration and sensor node demand is designed, and the derivation of the
maximum occupancy time duration is performed. Meanwhile, in addition, combining the potential
of reinforcement learning in adaptive management, efficient resource optimization, and solving
complex problems, this study also proposes a reinforcement learning-based relay-assisted spectrum
switching method (R2S), which aims to achieve a reasonable allocation of spectrum resources in relay
collaborative communication systems. The experimental results show that the method proposed in
this study can effectively reduce the disturbance to marine mammals while performing well in terms
of conflict probability, interruption probability, and quality of service.
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1. Introduction

With the increasing development of marine resources, the development of the marine
economy is a strong impetus to social progress [1]. In the process of exploring the oceans,
underwater wireless communication plays an important role and can be applied to remote
control of the offshore oil industry, pollution monitoring of environmental systems, collection
of scientific data from submarine stations, disaster detection and early warning, national
security, intrusion detection and defense, and the discovery of new resources in a variety
of fields [2]. Underwater wireless sensor networks are capable of penetrating underwater
environments that are difficult for humans to access, collecting and transmitting data to guide
the development and utilization of marine resources. In view of the special characteristics of
the underwater environment, the sensor nodes mainly communicate with the base station or
buoy through acoustic signals, and the underwater sensor network composed of such sensor
nodes is called a hydroacoustic sensor network [3]. An in-depth study of UWSNs will not
only help to improve the reliability and accuracy of data in underwater communications but
also help to enhance the ability to explore the underwater environment.

Underwater communication systems on which underwater wireless sensor networks
rely differ from terrestrial radio systems in that they are subject to performance constraints
that include, but are not limited to, lower propagation speeds, narrow available bandwidths,
significant multipath delays, and limitations on transmission range and energy [4]. Solving
the difficult problems in underwater communication systems by means of collaborative
communication has gradually become the focus of research in various countries.

The communication methodology of collaborative communication can effectively im-
prove the performance and reliability of the communication system in the face of different
working environments, which gives it a wide range of application scenarios. The applica-
tion of collaborative communication in free-space optical (FSO) communication systems
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has been systematically introduced in the literature [5], and in recent years, the research in
this field has become more and more comprehensive and sophisticated. The literature [6]
has investigated the space–air–ground integrated network (SAGIN) in free-space optical
communication systems. In the study, shadow Rice fading is used to characterize the
shadowing effect of RF signals from satellite–UAV links, and the effect of atmospheric
turbulence on the optical signals of UAV–ground user links is modeled using the Málaga
distribution fading model. The performance of the relay system is also improved with
the help of outlier detection techniques and intensity modulation and direct detection
techniques. The literature [7] has investigated the performance of a UAV-assisted relay
system in a SAGIN for vehicular networking based on an AF-based variable gain relay
protocol and establishes and investigates a UAV-assisted RF/free-space optical commu-
nication system based on variable gain forwarding protocol. It assumes that the RF link
follows κ-µ fading and the FSO link undergoes Málaga fading to characterize atmospheric
turbulence under weak-to-strong conditions, which provides an important reference for
further improving the performance of the SAGIN system. In underwater relay collabo-
rative communication systems, the characterization of the underwater channel is a key
consideration for researchers. It includes transmission loss in the underwater channel
due to a combination of absorption and propagation loss of the acoustic signal in the
underwater environment, communication delay due to the lower propagation speed of the
acoustic signal, and multiple sources of noise such as turbulence, shipping, waves, and
thermal noise. This tests the reliability of underwater communication systems and raises
the performance requirements for collaborative underwater communication systems [8].

In most application scenarios, UWSNs will fully occupy a specific band resource,
but there is a natural acoustic system in the underwater environment, dominated by
marine mammals, with which the activity of artificial acoustic systems may cause harmful
interference. In order to assess such impacts, the United States divided impacts into two
levels, A and B, in the Marine Mammal Protection Act (MMPA) [9]. Class A impacts
primarily include direct harm to marine mammals, while Class B impacts primarily include
disturbance of their behavioral patterns. In fact, the effects of artificial acoustic systems
on marine mammals are not limited to A and B. Therefore, as researchers, it is of great
significance for the conservation of marine ocean biodiversity and the sustainable utilization
of marine resources to study the method of allocating the scarce and unevenly distributed
spectral resources in the underwater environment while avoiding harmful disturbance to
the marine animals.

Aiming at the problem of relative scarcity of underwater spectrum resources, the
dynamic spectrum sharing technology based on vertical sharing in cognitive radio tech-
nology has unique advantages, which include two spectrum sharing modes, overlay and
underlay [10], and realizes the reasonable allocation of the spectrum through prioritization.
Collaborative communication technology in hydroacoustic communication networks can
optimize the underwater spectrum allocation strategy, improve spectrum resource utiliza-
tion, reduce interference, and enhance system reliability and network performance through
cooperation and information sharing among nodes. It also facilitates the development
of dynamic spectrum access and management schemes that provide greater flexibility
and adaptability in spectrum allocation for hydroacoustic communication networks. The
literature [11] has proposed a joint power control and spectrum allocation algorithm called
PCCA, which can increase the channel capacity and reduce the interruption probability by
analyzing multiple user interference scenarios and establishing the relationship between
the interruption probability and the cumulative interference of the channel, adjusting the
transmitter power in order to reduce the interruption probability and, at the same time,
constructing a channel allocation model by using the Lagrangian optimization theory.

Inspired by research on the allocation of non-exclusive spectra, it has become a hot
topic to study how to utilize the spectrum in a way that avoids interference with marine
mammals. The literature [12] has proposed a cognitive acoustic transmission scheme in
multi-hop aquatic acoustic networks, called dolphin-aware data transmission (DAD-Tx),
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which utilizes statistical laws to achieve overlapping spectrum sharing through power con-
trol by means of statistical information about the animal’s location. In [13], the researchers
proposed a mammal-friendly channel power allocation algorithm for hydroacoustic sensor
networks. The interference level of sensor nodes with marine animals was fully considered,
and a game model with a unique Nash equilibrium point was established based on the
network interference level and node residual energy. Finally, a bio-friendly underwater
communication mechanism was designed by improving the network service quality under
the premise of achieving a bio-friendly purpose. The literature [14] developed an effi-
cient deep multiuser reinforcement learning algorithm based on deep neural networks,
Q-learning, and collaborative multi-agent systems for CR access policy, which is a user
selection algorithm that sets the order of agent activation to select the optimal communica-
tion frequency over the appropriate bandwidth. The experimental results show that the
method can make the channel allocation always appropriate, but the performance of the
proposed algorithm is closely related to the algorithm-related parameters and network en-
vironment parameters. The literature [15] introduces the concept of reinforcement learning
into underwater acoustic communication networks and constructs a multi-agent network
by considering nodes as intelligent agents. By dividing the state space and action space,
formulating the reward function and search strategy, a distributed resource allocation
algorithm based on cooperative Q-Learning is proposed and its convergence is verified.
The experimental results prove that the algorithm can effectively enhance the network
transmission capacity and reduce the resource allocation overhead.

In this paper, a marine mammal conflict avoidance method is firstly proposed to
address the problem of underwater sensor networks interfering with marine mammals
during the communication process, and the bio-friendly goal is realized by designing
the stopping occupancy rule and the maximum occupancy duration and predictively de-
occupying the active spectrum for marine animals. Second, the design of conflict avoidance
actions based on spectrum switching is carried out, and a reinforcement learning-based
relay-assisted spectrum switching algorithm (R2S), which includes three steps, biologically
friendly shared spectrum matching, reinforcement learning decision making, and dynamic
spectrum access, is proposed. The proposed method realize the reasonable allocation
of spectrum resources in the relay collaborative communication system, the number of
switches and the interruption probability of the system is reduced, the quality of service of
the sensor nodes is ensured, and harmonious coexistence between the underwater sensor
network and the marine mammals is realized.

2. Design of Marine Mammal Conflict Avoidance Method
2.1. System Model

As shown, the design of this paper is based on a multi-hop cognitive hydroacoustic
network model, as shown in Figure 1, with a buoy or ship as the control center on the sea
surface; multiple sensor nodes arranged underwater, each of which is capable of collaborative
communication; and the presence of multiple types of marine mammals in the sea.

Marine mammal activities often have no specific mathematical model compared
with real-time spectrum sensing to control spectrum switching, statistical information-
based control and prediction through probabilistic models can reduce the computational
overhead of the control center and reduce the energy consumption caused by the exchange
of information between nodes, which is very suitable for the design of marine mammal
retreat methods.

The Markov ON–OFF channel model shown in Figure 2 is a mathematical model used
to describe the stochastic behavior of a communication system, which is often used to
describe the switching of the system between the “ON” and “OFF” states, and it assumes
that the state transfer of the system is based on a stochastic process.

Where a is the probability that the ON state is transferred to the OFF state, 1-a is the
probability of keeping the ON state, b is the probability that the OFF state is transferred to
the ON state, and 1-b is the probability of keeping the OFF state. The use of the channel
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in continuous time is shown in Figure 3, which treats the user’s use of the channel as an
alternating busy–idle switching process.
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When the underwater sensor node generating the communication demand is ON
with the marine mammal at the same time, the communication behavior of the sensor
node will cause interference to the marine mammal, and when the node is ON and the
marine mammal is OFF, it will not cause interference. In the ON–OFF model, the ON and
OFF phases obey an exponential distribution with parameters λON and λOFF, respectively,
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and their durations, t, can be represented by the probability density functions shown in
Equations (1) and (2), respectively.

f (tON) =

{
λONe−λON tON tON ≥ 0
0 tON < 0

(1)

f (tOFF) =

{
λOFFe−λOFFtOFF tOFF ≥ 0
0 tOFF < 0

(2)

There is a close relationship between marine mammal activity and the exponential
distribution, which, as a continuous probability distribution, is commonly used to describe
the time intervals at which independent random events occur. Marine mammals, such as
whales and dolphins, on the other hand, tend to show a certain pattern of time intervals
in their activity patterns, such as feeding, migrating, and resting, i.e., multiple activities
occurring over a short period of time followed by a longer period of rest. When feeding,
marine mammals may strike frequently for a certain period of time and then rest for a period
of time before resuming, a pattern of activity intervals that fits with the characteristics of an
exponential distribution. Similarly, there are differences in the time intervals between their
migrations for a variety of reasons, and such differences fit the description of an exponential
distribution. In addition, the exponential distribution is also suitable for describing the social
behavior of marine mammals. So, in this paper, this channel model is used for the study.

The communication behavior of the sensor nodes may interfere with marine mammals.
However, when the node is in the ON state and the marine mammal is in the OFF state, it
will not cause interference. Th is defined as the time that marine mammals need to be in
the OFF state for the required spectrum to be used, and Tr is the time that the node is in the
ON state. The value of Th can be obtained through analysis and prediction methods, and
Tr can be obtained by Equation (3).

Tr ≈
L

Blog(1 + SINR)
(3)

B represents the bandwidth of the frequency spectrum used, SINR represents the
signal-to-interference-plus-noise ratio during communication of the underwater sensor
node, and L represents the total amount of data for each communication of each underwater
sensor node. When Th is less than Tr, communication of the underwater sensor node i
in the frequency spectrum j (assuming that the time coefficient of frequency spectrum j
follows an exponential distribution with parameter λj) will cause interference to marine
mammals, and the sensor node needs to take evasive actions. The avoidance probability
can be expressed by Equation (4).

Pij = p
(

Th,j < Tr,i

)
=

∫ Tr,j
0 λje

−λjtdt

= 1− e−λjTr,j

(4)

The meaning is that the probability of sensor node i exhibiting avoidance behavior
on spectrum j is equal to the probability of the OFF state time of spectrum j being less
than the ON state time of the sensor node. Next, based on the relationship between Tr
and Th, we will design a method for avoiding conflicts with marine mammals. According
to the characteristics of the underwater channel, avoidance actions will be designed. We
propose a relay-assisted spectrum switching method based on reinforcement learning (R2S)
to achieve low switching frequency, low interruption probability, and high service quality
spectrum switching.
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2.2. Avoidance Algorithm Design

Methods incorporating spectrum sensing have been widely used in bio-friendly spec-
trum sharing research. However, this method needs to sense the occupation of the spectrum
by marine animals first and then perform spectrum switching or pause the occupation
operation, which will lead to back-off delay and spectrum overlapping, forming harmful
interference. Predictive decommissioning methods can utilize statistical information to
decommission the spectrum in advance, eliminate decommissioning delays, and protect
marine mammals in the event of node damage.

Here, we define the probability of communication events occurring for marine mammals
at each independent moment: δ ∈ (0, 1 ], which can be calculated based on factors such
as time, season, species, or location. We define the event of communication occurrence for
marine mammals as A, with time denoted as t. As time t increases, the probability of event A
occurring, P(A|t), gradually increases. This can be expressed using a conditional probability
distribution as P(A|t1) < P(A|t2) < P(A|t3) < ... < P(A|tn), where t1 < t2 < t3 < ... < tn, indicating
that as time progresses, the probability of communication events occurring also increases
gradually. In continuous time, the probability of marine mammals engaging in communication
events will certainly become greater. Therefore, we can define an increasing Function (5) with
respect to t to represent the influence of time on the occurrence of communication events A
for marine mammals.

f (t) = 1− (1− δ0)
t+1 (5)

Its range is (δ, 1), and when time t is sufficient, marine mammals will definitely engage
in communication activities on the occupied spectrum. In other words, lim

t→∞
f (t) = 1 always

holds true.
When it is necessary to communicate on the frequency spectrum where marine mam-

mals are active, the Th value of the spectrum must be greater than the Tr value of the node.
However, the time difference ∆T = Tr − Th does not decrease over time. The node will
continue to occupy the spectrum within Tr, so a time discount factor γ = 1− (1− δ0)

t+1

is designed to avoid prolonged occupation of the marine mammal activity spectrum by
underwater sensor networks. Tγ is defined as the discount time where Tγ = Th − γ·∆T,
and the difference between Tγ and Tr decreases over time but eventually converges to
and is not equal to zero. Therefore, in order to avoid occupying a single spectrum for a
long time, as shown in Equation (6), the stop-occupancy rule is designed based on the
characteristic that the ratio difference can reflect the relative magnitude between Th and Tr.
Defining Γγ as the threshold for the time discount factor when γ = Γγ, stops occupying the
spectrum at that time.

Tr =
∆T

Tr + Th
× Tγ

Tγ =
Th − Tr

Th + Tr
× [Th − γ(Th − Tr)]

T2
r + TrTh = (1− γ)T2

h + (2γ− 1)TrTh − γT2
r

Γγ = 1− 2Tr
2

(Th−Tr)
2

(6)

The design of the above equation allows for dynamic adjustment of the threshold
value γ. When there is a significant difference between Th and Tr (Th >> Tr), the threshold
value is higher, resulting in a longer occupation time. When the difference is relatively small
(Th ≈ Tr), the threshold value is lower, leading to a corresponding reduction in occupation
time. Based on the definition of γ, the derivation of the maximum occupation duration M
is conducted. During the request process, Th and Tr are already determined. For the sake of

derivation convenience, let 2T2
r

(Th−Tr)
2 = b, b ∈ (0, 1), As a constant in the derivation process,

b can also reflect the relative relationship between Th and Tr. That is, with the increase of
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b, ∆T will shrink accordingly, Γγ becoming increasingly smaller and lower, leading to a
shorter maximum available time for the spectrum. The derivation of M is shown in (7),
which means that γ = Γγ for the value of t at the time.

Γγ = 1− b

1− (1− δ)t+1 = 1− b(
1− δ

)t+1
= b

t = log1−δb− 1

(7)

Substituting the equations to find the maximum occupancy duration M is shown in
Equation (8):

M = log1−δ

2Tr
2(

Th
2 − Tr

2
) − 1 (8)

When M > 0, the sensor is able to occupy the spectrum based on the value of M. In
other cases, the spectrum should not be occupied.

The flow of the final proposed evasion algorithm is shown in Figure 4. After the sensor
generates a transmission request, it obtains the idle state of the channel based on the results
of spectrum sensing and calculates the maximum occupancy duration, and it takes evasive
action when it detects the communication activity of a marine mammal or when it reaches
the maximum occupancy duration.
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During the action execution process, the source node will search for other channels that
can reach the destination node and perform switching and access operations. If there is no
available channel, it will pause the current channel occupation and enter a waiting process.
If the waiting time is still within the maximum acceptable delay for each communication,
the above process is repeated; if it exceeds the time threshold for each communication, the
communication is abandoned directly.

After making the decision to avoid, the sensor nodes need to search for an available
spectrum to switch to or temporarily pause usage, which can increase the probability of
communication interruption. To address this issue, we have introduced a relay assistance
mechanism. By selecting cooperative communication, relay nodes’ channels that can reach
the vicinity of the destination node are chosen to form single-hop or multi-hop relay links.
When there is a direct channel to the destination node, competition with the relay link
will be considered, selecting a channel with better service quality and lower switching
probability for communication.

3. Design of Relay-Assisted Spectrum Switching Method Based on Reinforcement Learning

The spectrum switching caused by marine mammal activities implies that sensor
nodes can only transmit on the spectrum not occupied by marine mammals. As cognitive
radio opportunistically utilizes licensed spectra, if only bio-friendly design objectives are
considered throughout the communication process, sensor nodes will frequently switch
frequencies, significantly impacting their service quality. Therefore, the ultimate goal of this
design is to minimize the number of switches, reduce interruption probability, and ensure
high service quality when spectrum switching is needed. The reinforcement learning-based
relay-assisted spectrum switching method (R2S) proposed in this paper includes three
steps: shared spectrum matching, reinforcement learning decision making, and dynamic
spectrum access.

3.1. Shared Spectrum Matching Algorithm

In the shared spectrum matching process, a parameter Pi is defined to represent the
minimum tolerable non-switching probability for sensor node i during communication, and
1 − Pi represents the maximum allowable switching probability for the sensor node during
communication. These parameters serve as the basis for shared spectrum matching. During
shared spectrum matching, the sensor node selects a spectrum or relay link that is closest
to the maximum switching probability. This process can be represented by Equation (9).

Hi = arg
{

min
j

∣∣Pij − (1− Pi)
∣∣}

=
∣∣∣1− e−λjTr,j − (1− Pi)

∣∣∣
=

∣∣∣Pi − e−λjTr,j
∣∣∣

(9)

Here, Hi represents the spectrum hole j chosen by node i with the smallest difference
in switching probability from its maximum allowable value. This matching method ensures
that the spectrum obtained by the sensor node is closest to its desired spectrum characteris-
tics. However, in practical environments, it is possible that the conflict probabilities on all
available spectra are greater than the maximum conflict probability or the conflict probabil-
ity on the spectrum with the smallest difference from the maximum conflict probability is
still greater than the maximum conflict probability. In such cases, the switching and access
decisions made will affect the QoS of the sensor node. Therefore, we need to adopt the
spectrum reservation scheme as shown in Figure 5, where the reserved frequencies with
lower switching probabilities are designated as the targets for switching and access.
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Reserved spectrum switching involves pre-establishing a candidate channel list for spec-
trum switching before the need arises. When a switch is required, a channel is directly selected
from this list for the switch. This approach can avoid wasting time on spectrum sensing in a
dynamic underwater environment and effectively maintain communication continuity.

To facilitate the utilization and research of reserved spectrum, the symbol τi in the
Equation (10) is used to represent the time factor of reserved spectrum holes, which denotes
the duration of reserved spectrum holes needed to exactly meet the requirements of the node.

P(Th > (1− τi)Tr,i) > Pi

1− P(Th < (1− τi)Tr,i) ≥ Pi

e−λ(1−τi)Tr,i ≥ Pi

τi ≥ 1 +
ln(Pi)

λTr,i

(10)

The value range of τi is between 0 and 1. When τi is 0, it indicates that there is no
need to access reserved spectrum holes. When τi is 1, it means that the sensor node needs
to access reserved spectrum holes throughout its communication time Tr,i. The duration
of reserved spectrum holes is closely related to τi. The larger the value of τi, the better
the service quality. This algorithm, which selects suitable spectra for access based on
the time factor of reserved spectrum holes after shared spectrum matching, can make
resource-efficient decisions with good service quality.

3.2. Reinforcement Learning-Based Approach for Spectrum Decision Making

The shared spectrum matching algorithm described in the previous section lacks the
consideration of system time variation in the face of complex and changing underwater
environments, which can have an impact on the final communication quality. For this rea-
son, combining the advantages of reinforcement learning in the field of resource allocation
with the ability to obtain long-term gains, this section designs a spectrum decision-making
method based on the reinforcement learning actor–critic algorithm, which reduces the
number of spectrum switches while obtaining a higher quality of service.

The actor–critic algorithm, which is used in this paper, is based on the traditional
reinforcement learning framework, which divides the intelligent agent into two parts, actor
and critic, where the actor is responsible for selecting the action and the critic is responsible
for evaluating the quality of the decision and providing the feedback signal. In this way,
the actor–critic algorithm is able to achieve more refined decision making while ensuring
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learning efficiency. The principle of the spectral decision-making method based on the
actor–critic algorithm is shown in Figure 6.
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In the actor–critic learning framework, the node obtains the action A at the current
moment by using the perception module to obtain the current environmental state infor-
mation state (quality of service) input into the actor network, which is closely related to
the acoustic modem. At this point, the state changes with the action and feeds back the
reward return Rs,a to the critic network. The critic network receives the reward return Rs,a
and calculates the time-division error based on Rs,a, constantly updating the actor and the
critic network.

In conjunction with the actor–critic framework, a Markov decision process (MDP)
is constructed for the spectrum switching process, which is a process by which an agent
interacts with the environment by making a decision to change the state of the environment
so as to obtain a reward, and in this way, the process is shown in Equation (11).

M =< state, a, Ps,a, Rs,a > (11)

In order to apply the reinforcement learning actor–critic algorithm to the spectral
decision-making process, problem mapping is first performed:

1. Environment state state: In the actor–critic algorithm, the environment state is the key
connecting point between the value function learning and the policy optimization, as
shown in Equation (12), which defines the time factor of the reserved spectrum to be
accessed in the system as the environment variable Q.

Q = 1 + ln(Pi)/λTr,i (12)

The change in the value of Q corresponds to the change in the environmental state STATE
and also represents the quality of service obtained by the node on the reserved spectrum.

2. Action decision a: There are two types of actions that a representing node can make to
affect the state of the environment, the at ∈ {0, 1}. When at = 0, this represents the
decision of accessing the matched shared spectrum, and at = 1 indicates the decision of
needing to switch to the reserved spectrum, totaling two dimensions of output data.

3. p[state(t), a(t), state(t + 1)] ∼ p[state(t + 1)| state(t), a] represents the probability of
choosing action a(t) in state state(t) and getting state state(t + 1). That is, the action is
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made based on the quality of service at the current moment and the quality of service
at the next moment is obtained.

4. Reward value Rs,a(t): Obtaining a reward value is the goal of reinforcement learning.
The Rs,a = E[Rt+1| s, a] denotes the immediate reward obtained by the agent after
taking a certain action. As shown in Equation (13), when accessing the reserved
spectrum or accessing the shared spectrum, the Q value increases, giving it a reward
value to encourage it to continue making decisions that will improve the quality of
service, and when the Q value decreases, the reward value is 0.

Rs,a(t) =
{

1, Q(t + 1) > Q(t)
0, Q(t + 1) < Q(t)

(13)

The core of the actor–critic algorithm is that critic evaluates the actor’s actions based
on the state and calculates the reward value to perform network updates to establish a
more accurate relationship between the state and the action, so that each time a state is
experienced, a better decision can be made by using previous experience to maximize the
return of obtaining the cumulative rewards, as shown in Equation (14).

max
n

∑
t=0

Rt+1 = max
n

∑
t=0

E[Rt+1|St = state, At = a] (14)

The pseudo-code of the running process of the spectrum decision-making method
proposed in this paper is shown in Figure 7.
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In the above process of spectrum decision making, the input of the critic network is
the current state and the output is the state value function under the current state. At the
same time, utilizing the characteristic of a neural network fitting a nonlinear function, a
multilayer neural network is established for state value function fitting, and the current
state value function is calculated by the critic network, as shown in Equation (15).

V
(
statet

)
= E[Rt+1 + γV(statet+1) | St = state] (15)

where γ is the discount rate. Meanwhile, for the next moment, the state value function
V state t + 1 is performed, and the time-division error (TD error) of both is calculated to
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obtain the loss function. Finally, the method shown in Equations (16) and (17) is used to
update the parameters of the critic network with a function optimizer.

FLoss = V(statet)ϕ(t) (16)

w′ ← w + β · FLoss (17)

where β is the critic network learning rate. ϕ(t) is the TD error, which is calculated as
shown in Equation (18).

ϕ(t) = rt+1 + γV(statet+1)−V(statet) (18)

where r is the reward return. In the network design, a fully connected neural network, as
shown in Figure 8, is used to fit the state value function. Among them, the hidden layer
has six neurons, and the activation function adopts the hyperbolic tangent function (tanh),
as shown in Equation (19).

tanh(x) =
1− e−2x

1 + e−2x (19)

Meanwhile, the critic network optimizes the loss function by the gradient descent
method and updates the network parameters. Its structure is shown in Figure 8.
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The input to the actor network is also the current state, but its output is the result of a
spectral decision. With a parameterized behavioral strategy, Pθ denotes the action selected
by the sensor node. θ is a function of the strategy Pθ(state|a), which denotes the strategy
in which the θ parameter shows the probability that the sensor node is in the state state to
perform action a. Also, it can be combined with the TD error obtained in the critic network
ϕ(t) to compute the loss function value as a way to update the parameters of the actor
network, as shown in Equation (20).

θ′ ← θ + α ·
(

rt+1 + γVπ(statet+1)−Vπ(statet)
)
∇ln Pθ(at | statet) (20)

where α is the learning rate of the actor network. The actor network uses a fully connected
neural network, as shown in Figure 9, which also has six neurons in the hidden layer, and
the activation function uses the tanh function and adopts a gradient descent strategy to
optimize the loss function to update the network parameters.

When the loss values converge, the training process is ended and the trained network
is used to make switching and access decisions. Finally, the flowchart of the R2S algorithm
proposed in this paper is shown in Figure 10.

First, the nodes are initialized with the quality of service requirements Pi and rein-
forcement learning parameters, etc., and then the shared spectrum matching is performed,
and after matching the spectrum j to the node i, the judgement is performed by using the
action value a, which is output by the actor–critic network. When a > 0.5, the reserved
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spectrum is accessed according to the size of τi, and when a < 0.5, it is accessed on the
matched spectrum, by which a higher quality of service at the next moment is obtained and
constraints are imposed on the switching behavior. When the execution of the algorithm is
complete, the spectrum or relay link that needs to be accessed has been determined, and
the spectrum switching and access operation can be performed next.
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4. Experimental Results and Analysis

In this section, the proposed algorithm is simulated and evaluated, and the experimen-
tal procedure is carried out in the Windows 10 system through MatlabR2022a. We make
the following assumptions: the upper limit of the number of sensors is M, there is a total of
N available channels, the spectrum and relay link times obey an exponential distribution
with parameters λj and λSD, and the time required for each service is Tr,i. The simulation
parameters used are shown in Table 1.

Table 1. Experimental parameters.

Maximum number of sensor nodes M 50

Number of channels N 10

Time parameters for shared spectrum λj Uniform distribution between [1/2000, 1/200]

Time parameters for relay links λSD Uniform distribution between [1/1000, 1/100]

Tr,i of the sensor nodes Uniform distribution between [10, 300]

In the above parameter settings, the Tr,i of the sensor node is included in the value
domain of the shared spectrum and the relay link, and the difference between the shared
spectrum and the relay link is reflected by the use of exponential distributions of different
parameters. The tmax was set to 50, the discount rate of the actor–critic algorithm used was
set to 0.9, and the actor and critic network learning rates were both set to 0.005. Experiments
were conducted by traversing each sensor node in the sensor network under the condition
that a relay-assisted mechanism has been employed, with the aim of matching the most
appropriate spectrum voids for each service time demand.

In controlled experiments, the algorithm in this paper is compared with the shared
spectrum matching algorithm and the spectrum allocation algorithm based on the VCG
bidding mechanism, which are mentioned as independent algorithms in the previous section.
In the VCG algorithm, the sensor nodes need to calculate the valuation and bidding price
for the spectrum based on the environmental state information such as noise power, channel
coefficient, etc., respectively. When the bidding price is higher than the estimated price, it is
proven that the spectrum being auctioned is applicable to the sensor node. Next, the node with
the largest bidding price is found in the set of nodes applicable to the spectrum to be accessed
into the auction spectrum. The process is looped until all users waiting to be switched are
given a spectrum or the number of spectra used for the auction is zero. This model has a wide
range of applications in the field of economics and also has a relatively good performance in
the study of spectrum resource allocation, which has some reference value.

Next, Figure 11 shows the performance comparison of the algorithms on the switch
count metric:
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In hydroacoustic sensor networks, as the number of nodes increases, the number of
switches in the whole network also increases. The more nodes there are in the network,
the more complex and difficult it is to manage the network, which leads to performance
degradation. The R2S algorithm proposed in this paper shows significant advantages over
the traditional spectrum switching algorithm when the number of nodes is 50. The R2S
algorithm reduces the number of switches by 26.4% compared to the shared spectrum
matching algorithm and also reduces the number of switches by 23.4% compared to the
spectrum switching algorithm based on the VCG bidding mechanism.

The decrease in the number of spectrum switches is attributed to the reinforcement
learning-based spectrum decision-making method in the R2S algorithm, which not only
performs well in selecting the spectrum with a switching probability that meets the require-
ments but also constrains the switching behavior of the spectrum based on the long-term
gain. In this way, the R2S algorithm effectively reduces the number of unnecessary switches,
reduces the extra overhead in the communication process, and improves the overall perfor-
mance of the system.

Next, the system quality of service of each algorithm is comparatively analyzed under
different numbers of nodes to further verify the effectiveness and practicality of the R2S
algorithm in solving the spectrum switching problem of multi-node sensor networks.

From the analysis of Figure 12, it can be concluded that with the gradual increase in
the number of nodes in the hydroacoustic sensor network, the overall quality of service of
the system shows a decreasing trend. This is due to the fact that as the number of nodes
increases, the complexity of communication and the amount of data transmitted in the
network increases, leading to an increased likelihood of network congestion and spectrum
resource conflicts, which in turn affects the overall quality of service.
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When the number of nodes reaches 50, the proposed algorithm in this paper improves
the quality of service of the system by 16.6% compared to the shared spectrum matching
algorithm and also improves by 8.07% compared to the spectrum switching algorithm based
on the VCG mechanism. In this paper, the algorithm is able to improve the performance
of the system by adjusting the allocation strategy of spectrum resources according to
the variation in the quality of service of the whole system in time through the spectrum
decision-making method based on reinforcement learning.

Next, a controlled experiment is designed to focus on the change in the outage proba-
bility of the system as the probability of a marine mammal to engage in communication
behaviors continues to increment in continuous time. This experiment is used to verify
the stability and reliability of the relay assistance mechanism and the proposed algorithm
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in response to different communication demands and network states, and the results are
shown in Figure 13.
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The experimental results show that as the probability of marine mammal commu-
nication increases, the probability of network disruption, although fluctuating due to
the randomness of the experimental process, shows an overall upward trend. This phe-
nomenon is mainly due to the fact that an increase in the probability of marine mammal
communication implies an increase in the communication activity of the primary users in
the network, which leads to an increase in competition and conflict for spectrum resources,
which in turn raises the likelihood of communication disruption.

The results show that compared to the shared spectrum matching algorithm, the
method proposed in this paper decreases the outage probability by 12.4% when the commu-
nication probability of marine mammals is 70%. Meanwhile, compared with the VCG-based
spectrum switching algorithm, the outage probability of this paper’s algorithm under the
same marine mammal communication probability also decreases by 3.95%, which further
validates the advantage of this paper’s algorithm in reducing the outage probability.

Due to the introduction of the relay assistance mechanism, the outage probability of
this paper’s method decreases by 2.85% at a marine mammal communication probability
of 70% and brings about a decrease in outage probability at any marine mammal communi-
cation probability. This shows that the relay assistance mechanism can effectively enhance
the connectivity and stability of the network.

Finally, the effectiveness of the dynamic maximum occupancy duration proposed in
the design of the avoidance algorithm is verified by utilizing the control variable method
and setting b to a fixed value. According to the definition of b, b = 0.3, 0.5, and 0.7 are used
to represent the change in the magnitude of the difference between Th and Tr from large
to small, respectively, and the curve of the maximum occupancy duration M is plotted as
shown in Figure 14.

It can be seen that for any value of b, the proposed recession method reduces the
maximum occupancy duration as the probability of marine mammal vocalization increases.
With the same probability of vocalization in an oceanic mammal, the smaller the value
of b, the longer the maximum occupancy duration, i.e., the larger the Th with respect to
Tr, the larger the maximum occupancy duration. Such results validate the effectiveness
of the proposed method, i.e., the ability to dynamically adjust the maximum occupancy
duration according to the probability of oceanic mammal vocalization at each moment and
the relative relationship between Th and Tr to achieve the goal of bio-friendliness.
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5. Conclusions

In order to reduce the impact of communication activities of underwater sensor
networks on marine mammals, this paper proposes a marine mammal conflict avoidance
strategy and designs a stop-occupancy rule for the active spectrum of marine mammals
to achieve the goal of bio-friendliness. In this paper, we also design a relay-assisted
spectrum switching method (R2S) based on reinforcement learning to dynamically adjust
the spectrum switching and access strategy to reduce the number of switching times and
the interruption probability of the system while ensuring the quality of service of the
sensor nodes, so as to realize the reasonable and efficient use of the limited spectrum
resources. However, the research process is mainly centered on the probabilistic model,
and the performance and overhead of the proposed algorithm should be further examined
in the next step in conjunction with the actual marine environment. Meanwhile, the latest
research results for reinforcement learning algorithms can be further combined with the
algorithms in this paper to improve the performance of the communication system.
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