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Abstract: 3D point cloud registration is a crucial technology for 3D scene reconstruction and has been
successfully applied in various domains, such as smart healthcare and intelligent transportation. With
theoretical analysis, we find that geometric structural relationships are essential for 3D point cloud
registration. The 3D point cloud registration method achieves excellent performance only when
fusing local and global features with geometric structure information. Based on these discoveries,
we propose a 3D point cloud registration method based on geometric structure embedding into the
attention mechanism (GraM), which can extract the local features of the non-critical point and global
features of the corresponding point containing geometric structure information. According to the
local and global features, the simple regression operation can obtain the transformation matrix of
point cloud pairs, thereby eliminating the semantics that ignores the geometric structure relationship.
GraM surpasses the state-of-the-art results by 0.548° and 0.915° regarding the relative rotation error
on ModelNet40 and LowModelNet40, respectively.

Keywords: 3D point cloud registration; deep learning; attention mechanism; geometric structure

1. Introduction

Three-dimensional reconstruction provides digital 3D models by presenting a real-
world scene, promoting the development of augmented reality, such as autonomous driving
and digital twins [1–5]. On the other hand, point cloud data is fundamental for building a
digital 3D model because 3D point cloud registration is the core technology for achieving
3D reconstruction by providing stereoscopic models [6,7]. In recent years, the rapid devel-
opment of sensor technologies enables 3D point cloud data to visualize the world, further
promoting technology innovation in practice.

Three-dimensional point cloud registration is a crucial step in the 3D reconstruction
process. It aims to learn the local information of an object from multiple perspectives and
integrate it into a unified perspective to obtain objects with rich global information. Specifi-
cally, it evaluates the correlation of each corresponding point in the point cloud sample by
learning the characteristics of each point cloud sample under multiple visual angles.

Then, it estimates the rigid transformation parameters that ensure all the correspond-
ing points can be directly transformed in 3D space. Subsequently, it obtains the converting
matrix of the point cloud sample, thereby achieving the goal of 3D point cloud registration.

In the latest research, many methods utilize attention mechanisms for learning point
cloud features [8,9]. For instance, the Transformer can extract the local and global features
of the corresponding points between the clouds to obtain the transformation matrix for
point clouds [10–12]. However, the features extracted by the traditional Transformer do not
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contain the critical geometric information for point cloud registration, making it impossible
to achieve better performance. Therefore, for 3D point cloud registration technology,
extracting features containing geometric structure information becomes a solid challenge.

To solve the above challenges, we propose a 3D point cloud registration method that
embeds geometric structure into the attention mechanism, forming an end-to-end regis-
tration framework. More specifically, REGTR [13] is a classic 3D point cloud registration
model. Its famous innovation is to adopt the attention mechanism in the Transformer, which
can effectively obtain the global and local features, to replace traditional feature matching.

Nonetheless, the extracted features do not include information on geometric structure,
which is extremely important for registering point cloud data. To this end, we take REGTR
as the primary architecture and introduce two embedded modules to extract geometric
structures. The two structures are bound with the original two self-attention structures
of REGTR, respectively, to learn more rich features that contain information on geomet-
ric structure. The fusion of global and local features that include geometric structure
information can improve the accuracy of point cloud registration. Extensive experimen-
tal validation demonstrates that the proposed method can significantly outperform the
state-of-the-art mechanisms.

The main contributions of this paper are summarized as follows:

• As far as authors know, this is the first proposal to embed the geometric structure
into an improved REGTR network. The proposed GraM effectively promotes the local
features integrated with information on geometric structure and global features.

• We introduce the attention mechanism to the point cloud registration task and optimize
the feature extraction on the REGTR network, significantly improving the accuracy
and efficiency of the low-overlap point cloud registration task.

• Comprehensive experiments on the reconstructed ModelNet40 and KITTI datasets
show that GraM obtains better accuracy than state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 illustrates the related
work on 3D point cloud registration technology. Descriptions of the problem definition and
the core technology used are in Section 3. Our research methodology and specific imple-
mentation steps are introduced in detail in Section 4. Section 5 evaluates the performance
of our proposed 3D point cloud registration method. Finally, we summarize the paper and
present future research in Section 6.

2. Related Work

Extensive research has been conducted on 3D point cloud registration technologies,
which include optimization-based registration, feature learning-based registration, and
end-to-end learning-based registration.

Optimization-based point cloud registration. Besl et al. [14] proposed the classic
Iterative Closest Point (ICP) algorithm, which iteratively estimates corresponding points be-
tween two point clouds and their transformation matrix to achieve registration. IMLP was
proposed in [15] to improve the corresponding point estimation of ICP by incorporating
measurement noise into the transformation estimation. Segal et al. [16] proposed a gener-
alized version of ICP that allows for the inclusion of arbitrary covariance matrices in ICP
variants using point-to-plane metrics. Zhu et al. [17] proposed a graph registration method
that simultaneously considers vertices and edges to find point-to-point correspondences
between two graphs. Huang et al. [18] introduced a novel pruning module to enhance
deep learning-based point cloud registration in low overlap scenarios (Predator), resulting
in significant performance improvements. However, the computational efficiency and
registration accuracy were significantly decreased when these methods were used to deal
with large-scale datasets and low-overlap scenarios.

Feature learning-based point cloud registration. Zeng et al. [19] introduced 3DMatch,
a parallel network trained from RGBD images, to extract features by combining the local
structure around critical points and further capture the local characteristics of the 3D point
cloud. The network 3DFeatNet [20] uses a weakly supervised approach to learn feature
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correspondences from 3D point clouds. RPMNet [21] can obtain soft correspondences of
points in partially overlapping point clouds from a mixture of features learned from spatial
coordinates and local geometry. A dynamic graph convolutional neural network is em-
ployed in Deep Closest Point (DCP) [22] for feature extraction, which then uses an attention
module to learn the correspondence between two point clouds. It still utilizes an SVD mod-
ule to calculate the rotation matrix and translation vector required for the transformation.
These algorithms cannot optimize post-processing operations through learning methods
during training, resulting in significant limitations in performance. Wang et al. [23] pro-
posed a novel local descriptor-based framework(YOHO). It employs rotation-equivariant
descriptors to achieve robust and efficient point cloud registration with superior perfor-
mance compared to conventional methods. Recently, Zhang et al. [24] presented a novel
approach utilizing rotation-invariant features and spatial geometric consistency for robust
partial-to-partial point cloud registration, outperforming existing methods, particularly in
handling large rotations. Liu et al. [25] proposed a group-wise contrastive learning (GCL)
scheme to extract density-invariant geometric features.

End-to-end learning-based point cloud registration. The core idea of these methods
is to add the transformation matrix to the learning network to avoid the impact of post-
processing operations on the algorithm’s performance. Deng et al. [26] proposed a relative
pose regression network that can directly estimate the relative pose of point clouds based
on features learned from local descriptors. Yasuhiro et al. [27] proposed PointNetLK by
combining PointNet with the Lucas–Kanade (LK) algorithm [28]. DGR [29] utilized fully
convolutional geometric features (FCGFs) [30] for feature extraction from point clouds.
The six-dimensional convolutional network structure was employed to estimate point
correspondences, and a weighted Procrustes model was used to estimate the transformation.
Yu et al. [31] employed rotation-invariant and globally aware descriptors for robust point
cloud registration (RIGA), surpassing state-of-the-art methods, especially in managing
large rotations across diverse datasets. Recently, Yew et al. [13] applied Transformer for
the first time in the point cloud registration. It extracted global and local features through
a multi-headed attention mechanism (REGTR), alleviating the problem of point cloud
registration at low overlap. These methods can achieve higher accuracy but require more
complex network structures and greater computational power.

Although the above methods can complete the point cloud data registration at a certain
level, they ignore the most critical geometric structure information. Only the extracted
features include geometric structure information, and the 3D coordinates obtained will be
more accurate, further improving the registration accuracy.

3. Preliminary
3.1. Problem Definition

Three-dimensional point cloud registration task can be described as follows: there
are two point clouds to be registered, X ∈ RM×3 and Y ∈ RN×3. X represents the source
point cloud. Y represents the target point cloud. M and N are the number of points in
the source and target point clouds, respectively. The task of 3D point cloud registration
involves utilizing a rigid transformation composed of a rotation matrix R ∈ SO(3) and a
translation vector t ∈ R3 to align the source point cloud X with the target point cloud Y.
Therefore, the process of 3D point cloud registration is the process of finding the optimal
rotation matrix R and translation vector t.

3.2. Transformer Model

The Transformer represents a paradigm shift in sequence modeling within the domain
of deep learning. Its core concept lies in utilizing self-attention mechanisms for processing
sequence data. This mechanism enables the model to dynamically allocate attention
weights to various elements within the sequence without needing fixed window sizes
or recurrent structures. Such flexibility allows the Transformer model to better capture
global and local data information. Additionally, its effectiveness has been demonstrated in
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the field of computer vision. The self-attention mechanism comprises scaled dot-product
attention and multi-head attention.

Scaled dot-product attention. Within the self-attention mechanism, attention weights
are computed by scaling the dot product of the query and key vectors and applying the
result to the value vector.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

where Q, K, and V represent the query, key, and value vectors, respectively, with dk denoting
the dimensionality of the keys.

Multi-head attention. Multi-head attention augments the model’s representative capacity
by parallelly applying multiple queries, key, and value projection sets. The results from
multiple attention heads are concatenated and linearly transformed to obtain the final output.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (2)

where each attention head headi is computed as Attention(QWQ
i , KWK

i , VWV
i ) and WQ

i ,
WK

i , WV
i , and WO represent the weight matrices for linear transformations.

4. The Proposed Method

Transformation estimation from the corresponding points in two point cloud samples
is crucial in point cloud registration. Corresponding point estimation involves identifying
the correspondence between points in two point cloud frames corresponding to the same
object or scene in the same location. Transformation estimation determines the rotation
and translation operations required to align the corresponding positions of two point cloud
frames seamlessly. The problem definition, the network architecture, and the loss function
are presented and discussed in detail accordingly.

4.1. The Overall Network Architecture

REGTR is an end-to-end network based on Transformer, which can predict the prob-
ability of being in the overlapping region for each point in the source point cloud and
their corresponding positions in the target point cloud cloud [13]. It could effectively
extract the global and local features and perform well in predicting the rigid transformation.
To overcome the problem of REGTR not obtaining the essential geometric structure, we
propose GraM’s overall network architecture that optimizes the REGTR. Specifically, we
bind two geometric structure embedded modules on the two self-attention layers in the
Transformer cross-coding, respectively. Consequently, they can learn about local features,
including information on geometric structure.

The architecture of GraM is devised by embedding the end-to-end point cloud regis-
tration network with a geometric structure, as shown in Figure 1. The architecture contains
three core modules: (1) Feature extraction module. We utilize the kernel point convolution
backbone [32] to extract critical points’ features from the source and target point clouds
while downsampling the input point cloud. (2) Cross-encoder module. A cross-encoder
embedded with a geometric structure receives the features. It utilizes a multi-head self-
attention layer to learn features of non-critical points within the point cloud itself and
a multi-head cross-attention layer to learn features corresponding to points to be regis-
tered. (3) Output module. The output decoder obtains the predicted corresponding critical
point positions and transformation matrices between the two point clouds using simple
regression operations.
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Figure 1. The overall architecture of the proposed GraM. ×L represents multiple cross-encoder
network layers.

4.1.1. Feature Extraction

KPConv (Kernel Point Convolution) exhibits excellent spatial preservation in feature
extraction in 3D point cloud data. Based on the ability of spatial preservation, it can handle
point cloud data of varying densities and shapes, showcasing outstanding performance
across multiple tasks. With the features of preprocessed point cloud data, we optimize the
feature extraction process using KPConv networks. Specifically, we build a double-input
KPConv network with shared weights to extract the same homogeneous characteristics
from the original and target point cloud data. It can meet the requirements that they come
from the same dataset and can allow swaps. The network iteratively applies a series of
residual blocks, including convolution, kernel point convolution, stridden convolution,
normalization modules, and LeakyReLU activation functions. Specifically, multiple times
of feature extraction and downsampling are firstly performed on the input source point
cloud X ∈ RM×3 and target point cloud Y ∈ RN×3, and then, they are transformed into
critical point sets X̃ ∈ RM′×3 and Ỹ ∈ RN′×3, along with their features FX̃ ∈ RM′×D and
FỸ ∈ RN′×D.

With the above thought, we apply this feature extraction network separately to the
source and target point clouds, obtaining critical points’ features for both the source
and target point clouds. This process supports the subsequent learning of features in
the cross-encoder.

4.1.2. Cross-Encoder

We employ the transformer cross-encoder network to learn features of points in the
point cloud and their correspondences with points in the target point cloud. To solve the
problem that the output dimensions of different depths from the feature extraction network
are diverse, we introduce linear feature projection functions to reduce the dimensions of
the outputs before passing them into the cross-encoder. Figure 2 shows the cross-encoder
structure, which can extract local and global features. One is the local feature of points
outside the key point of a self-point cloud, and the other is the global features that describe
the correlation of the two point clouds.

Although the classical Transformer performs sine positional encoding to embed the
coordinate information, the coordinate-based encoding is unfixed or invariant. As a result,
when executing point cloud registration, the point cloud coordinates change accordingly if
different initial poses are used for the same point cloud pair. In this case, coordinate-based
coding does not work [33].

In this paper, we replace the sine positional encoding of point clouds in the cross-
encoder with geometric structure position encoding. This modification enables the cross-
encoder to learn the geometric structure features between critical points before learning
self-features and relevant features. It can further improve point cloud registration accuracy.
Geometric structure position encoding includes pairwise distance embedding and triangu-
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lar embedding. The former represents the distance of the pair of critical points, and the
latter is the angle of the triple critical points.
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Figure 2. The network architecture of cross-encoder based on geometric structure embedding.

Pairwise distance embedding. We assume that P̂i and P̂j are given points and the
distance between the two points di,j = ||P̂i − P̂j∥2. The distance formula for pairwise
distance embedding rD

i,j should satisfy rD
i,j,2k = sin

( di,j/σd

100002k/dt

)
rD

i,j,2k+1 = cos
( di,j/σd

100002k/dt

) (3)

where dt is the feature dimension and σd is the temperature coefficient controlling the
sensitivity to distance changes.

Triangular embedding. The triangular embedding can be calculated using the same
method. Assuming that the given angles is αk

i,j, the triangular embedding rA
i,j,k can be

calculated based on 
rA

i,j,k,2x = sin
(

αk
i,j/σa

100002x/dt

)
rD

i,j,k,2x+1 = cos
(

αk
i,j/σa

100002x/dt

) (4)

where σa is another temperature coefficient controlling the sensitivity to angle variations.

4.1.3. Output Decoder

This paper’s output decoder differs from the original Transformer’s decoder in ar-
chitecture. Since the cross-encoder has already learned the local and global features,
there is no need to use attention mechanisms for decoding. Instead, simple regres-
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sion operations are sufficient to estimate the corresponding positional coordinates and
transformation matrices.

In estimating corresponding positional coordinates, we use a two-layer MLP to regress
the required coordinates. So, the corresponding position of the critical point X̂ of the source
point cloud in the target point cloud Ŷ ∈ RM′×3 is

Ŷ = ReLU(FX̃W1 + b1)W2 + b2 (5)

where W1, W2, b1, and b2 are learnable weights and biases, respectively. Similar methods
can be employed to obtain the predicted positions X̂ ∈ RN′×3 after receiving the critical
points Ŷ of the target point cloud. Simultaneously, we utilize a fully connected layer with
the sigmoid activation function to predict overlap confidences ÔX ∈ RM′×1 and ÔY ∈
RN′×1. This design eliminates interference from points outside the overlapping region that
cannot accurately predict corresponding relationships, significantly improving the accuracy
of the transformation matrix estimation. After obtaining the predicted transformation
coordinates, the estimation of the transformation matrix can be performed. Connecting the
predicted transformation positions for the two point clouds yields a M′ + N′ dimensional
corresponding point set, as shown in Equation (6):

X̂corr =

[
X̃
X̂

]
, Ŷcorr =

[
Ỹ
Ŷ

]
, Ôcorr =

[
ÔX
ÔY

]
(6)

where X̃ and Ŷ represent sets of critical points and X̂ is the predicted value for the critical
points of the target point cloud Y corresponding to the source point cloud X, while Ŷ is
the predicted value for the critical points of the source point cloud X corresponding to the
target point cloud Y.

R̂, t̂ = argmin
R,t

M′+N′

Σ
i

ôi||Rx̂i + t − ŷi||2 (7)

where x̂i, ŷi, ôi represent i-th rows of matrices X̂corr, Ŷcorr, and ôcorr, respectively. R is
the rotation transformation matrix, t is the translation transformation vector, and R̂ and
t̂ are the minimum predicted values for R and t satisfying the Equation (7). In this
paper, we follow the approach proposed in [21,34] by using a differentiable weighted
Kabsch–Umeyama [35,36] algorithm to solve the equation and obtain the rotation matrix
and translation vector.

4.2. The Loss Function

Three loss functions for the supervised training of an end-to-end network incorporat-
ing attention mechanisms are used in this paper: the feature loss function, the overlap loss
function, and the correspondence loss function.

The feature loss. To obtain the geometric structure when calculating the correspon-
dence of the critical point, we apply InfoNCE loss [37] on the features related to both the
current point cloud and another point cloud. Considering the correspondence between the
critical point set x ∈ X̃ of the source point cloud and the critical point set Ỹ of the target
point cloud, the InfoNCE loss for the source point cloud can be described as follows:

LX
f = −Ex∈X̃ [log

f (x, px)

f (x, px) + Σnx f (x, nx)
] (8)

We follow the work of Oord et al. [37], where the function f (·) in the Equation (8) is a
log-linear model, expressed as follows:

f (x, c) = exp( f
T
x W f f c) (9)

where f x denotes the conditional feature of point x. px and nx denote the sets of critical
points in the target point cloud critical point set Ỹ that match and do not match with x,
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respective, that is, the positive and negative sample sets. These two sets are determined by
the margin values of positive and negative samples (rp, rn), where the values of (rp, rn) are
set to (m, 2m) and m is the voxel distance used in the final downsampling layer of KPConv.
All negative sample points falling outside the negative margin are included in the set nx.

The overlap loss. To calculate the overlap rate of the point cloud and predict the
corresponding point relationships, avoiding some redundant work of critical point extrac-
tion, we use the binary cross-entropy loss to calculate overlap loss. The expression for the
overlap loss function of the source point cloud X is depicted as follows:

LX
o = − 1

M′
M′

Σ
i

o∗x̃i
· logôx̃i

+ (1 − o∗x̃i
) · log(1 − ôx̃i

) (10)

To obtain the true value for the overlap labels o∗x̃i
, we employ the approach proposed

by Huang et al. [18] to calculate the truth labels for the original dense point cloud. Thus,
the truth label for point Xi ∈ X is defined as follows:

o∗x̃i
=

{
1, ||T ∗(xi)− NN(T ∗(xi), Y)|| < ro
0, otherwise

(11)

where T ∗(xi) represents the truth transformation matrix {R∗, t∗}, NN(·) denotes spatial
nearest neighbors, and ro is a predefined overlap threshold. Subsequently, average pooling
is employed to obtain the truth overlap labels o∗x̃i

for the downsampled critical points by
using the same parameters as the pooling operation in the downsampling step of KPConv.

The loss LY
o for the target point cloud Y can be obtained in a similar manner. Thus,

the total overlap loss is given by Lo = LX
o + LY

o .
The correspondence loss. Matching the main points in the overlapping area is used

to calculate the overlapping rate. Therefore, we apply an LX
c loss on the predicted transfor-

mation matrix for critical points in the overlapping region. The LX
c loss for the source point

cloud X is defined as follows:

LX
c =

1
Σio∗x̃i

M′

Σ
i

o∗x̃i
|T ∗(x̃i)− ŷi| (12)

The LY
c loss on the target point cloud is similar to LX, and the overall loss for the

correspondence is Lc = LX
c + LY

c . Therefore, the final loss in this paper is a weighted sum
of these three components: L = Lc + λoLo + λfLf, where λo = 1.0 and λf = 0.1.

5. Experiments

This section presents the dataset, metrics, baselines, experimental setup, main results,
and ablation studies. The code is available at https://github.com/liupin-source/CSR-RegTR
(accessed on 11 May 2024).

5.1. Dataset

We conducted extensive experiments on the representative ModelNet40 and KITTI
datasets. To address issues such as insufficient data volume and information in the Model-
Net40 dataset and inaccuracies in some truth labels in the KITTI dataset, we reconstructed
a dataset more suitable for 3D point cloud registration tasks.

ModelNet40. ModelNet40 is a subset of the ModelNet dataset built by Princeton
University and includes 40 types of point cloud data. We directly sampled the initial
ModelNet40 point cloud dataset [38] twice at complete random to generate the source and
target point clouds, which do not have precisely corresponding points. Then, we selected
4096 points in each sampling. Finally, we applied segmentation operations to the point
cloud data, which can generate datasets with overlap rates of 70% and 50%. These two
datasets are named ModelNet40 and LowModelNet40, respectively, in which sample point
cloud data are shown in Figures 3 and 4.

https://github.com/liupin-source/CSR-RegTR
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(a) Original (b) Source (c) Target (d) Registrated

Figure 3. Example from the ModelNet40 dataset.

(a) Original (b) Source (c) Target (d) Registrated

Figure 4. Example from the LowModelNet40 dataset.

KITTI. KIT (Karlsruhe Institute of Technology) and TTI-C (Toyota Technological
Institute at Chicago) jointly founded the dataset and obtained data from the collection
vehicle equipped with a Velodyne lidar with 0.09 degrees resolution. KITTI contains
multiple datasets, such as 3D object detection and visual ranging. We only use point cloud
data for 3D registration tasks. To address the problem that some truth labels in the KITTI
dataset [39] are not accurate, we perform a manual matching to calibrate the truth labels.
Because of the large scale of the KITTI dataset, we employed voxel filtering with a grid size
of 0.3 m for downsampling to preserve the density of the 3D point cloud after subsampling.
An example of the preprocessed KITTI point cloud dataset is shown in Figure 5.

(a) Original (b) Source (c) Target

Figure 5. Example from the KITTI dataset.

5.2. Evaluation Metrics

Relative rotation error (RRE). RRE is the degree difference between the predicted rotation
matrix and the actual rotation matrix used to measure the error of the rotation matrix.

RRE = cos−1
(

1
2 trace(RT R − 1)

)
(13)

where R represents the true rotation matrix and R represents the predicted rotation matrix.
Relative translation error (RTE). RTE refers to the Euclidean distance between the

predicted translation vector and the actual translation vector, serving to quantify the error
in the translation vector.

RTE = ||t − t||2 (14)

where t represents the true translation matrix and t represents the predicted
translation matrix.

Registration recall (RR). RR measures the accuracy of point cloud registration algo-
rithms predicting the transformation matrix. The larger the value, the higher the accuracy
of the transformation matrix. RR refers to the average ratio of correspondences cor-
rectly matched in the overlapping region to the total ones. This correct match occurs
when the source point cloud is registered with the target point cloud using the predicted
transformation matrix.

RR =
1
M

M
Σ

i=1

[√
1
|e∗| Σ

(p∗xi ,q∗yi )∈e∗
||T̂p∗xi

− q∗yi
||2

2
< τ3

]
(15)
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where e∗ represents point pairs in the true labels with corresponding relationships and
(p∗xi

, q∗yi
) denotes a pair of true corresponding points. T̂ ∈ SE(3) represents the predicted

transformation matrix. Additionally, τ3 represents the error threshold between the pre-
dicted and true values.

5.3. Baselines

3DFeatNet [20]: A network for learning feature correspondences from 3D point clouds
using weak supervision methods.

RPMNet [21]: A deep learning-based point cloud registration method that is less
sensitive to initialization and more robust.

DCP [22]: A learning-based approach that includes a point cloud feature extraction net-
work, point cloud matching prediction based on attention mechanisms, and a differentiable
singular value decomposition layer.

PointNetLK [27]: A 3D point cloud registration method that combines PointNet with
the LK algorithm.

REGTR [13]: An end-to-end 3D point cloud registration network that utilizes
attention mechanisms.

DGR [29]: A differentiable network architecture designed for actual point cloud data.
Predator [18]: A point cloud registration method explicitly designed to handle low

overlap scenarios.

5.4. Experimental Setup

For the ModelNet40 and LowModelNet40 datasets, their training sets included 6316 pairs
of point cloud data. The former’s test set contained 5995 pairs of point cloud data, and the
latter’s test set contained 12,311 pairs of point cloud data. The convolution radius of
KPConv is 2.75, and the initial sampling radius is 0.0375. During the training process, we
trained the network using the AdamW [40] optimizer with an initial learning rate of 0.0001
and weight decay of 0.0001. The training epochs were 80, and each training iteration was
verified in the validation set. For the KITTI dataset, the training and test sets contained
1358 and 555 pairs of point cloud data, respectively. The convolution radius of KPConv
was 4.5, and the initial sampling radius was 0.3. The optimizer settings were consistent
with the ModelNet40 dataset. The training consisted of 200 epochs, with a learning rate
decay of 0.5 every 50 epochs. After each training iteration, the network was tested over the
validation set.

5.5. Convergence Analysis

The core idea of GraM is to extract the global and local features containing geometric
structure information to improve the importance of the 3D point cloud. To analyze whether
it can achieve the above goal, we recorded the losses, creating feature-loss, overlap-loss,
and correspondence-loss curves on the ModelNet40 and KITTI datasets, as shown in
Figure 6. On the one hand, all loss curves quickly converge (i.e., 10 epochs on the Mod-
elNet40 and 40 epochs on the KITTI), which shows that GraM can quickly position and
learn the features related to geometric structure information. On the other hand, all the
loss curves are relatively stable, without oscillation. This indicates that the loss function we
designed can accurately restrict the limited conditions for each feature learning.

5.6. Comparison with State-of-the-Art Methods

To verify the superiority of GraM’s performance, we compare it with those of feature
learning-based methods RPMNet and DCP, as well as end-to-end methods PointNetLK,
basic REGTR, etc. Table 1 shows the experimental results of the ModelNet40, LowModel-
Net40, and KITTI datasets on RRE, RTE, and RR evaluation metrics. The results in Table 1
indicate that our method, GraM, is slightly advantageous compared to basic REGTR. How-
ever, GraM has a significant advantage over DCP and PointNetLK. The main reason is
that processing the ModelNet40 and LowModelNet40 datasets involves only quantitative
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changes. Significantly, the number of point clouds increases, allowing the network to
capture as much sufficient information as possible. In conclusion, our algorithm shows a
certain degree of performance improvement effect, as indicated by the registration results
shown in Figures 7–9.
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Figure 6. The convergence situation of our GraM on ModelNet40 and KITTI datasets; feature_loss,
corre_loss, overlap_loss, and total_loss represent feature loss, overlap loss, correspondence loss,
and their total loss, respectively.

Table 1. The comparison of GraM to the state-of-the-art approaches, where the best results are in bold.

Method
ModelNet40 LowModelNet40 KITTI

RRE (°) RTE (m) RRE (°) RTE (m) RRE (°) RTE (m)

RPMNet 1.712 0.018 7.342 0.124 1.021 0.633
DCP 11.975 0.171 16.501 0.300 0.965 0.583

PointNetLK 29.725 0.297 48.567 0.507 2.352 0.936
REGTR 1.473 0.014 3.930 0.087 0.482 0.425

3DFeatNet 2.057 0.039 4.026 0.073 0.254 0.259
Predator 1.948 0.026 3.568 0.072 0.277 0.068

DGR 2.004 0.024 3.627 0.069 0.373 0.320
GraM 0.925 0.010 2.653 0.049 0.270 0.110

(a) Source (b) Target (c) Before (d) After (e) True value

Figure 7. Example of a registration result using GraM on the ModelNet40 dataset.

(a) Source (b) Target (c) Before (d) After (e) True value

Figure 8. Example of a registration result using GraM on the LowModelNet40 dataset.
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(a) Source (b) Target (c) Before (d) After (e) True value

Figure 9. Example of a registration result using GraM on the KITTI dataset.

5.7. Analysis Sensitivity of Sampling Radius

Downsampling is a critical procedure of 3D point cloud data processing in KPConV.
The sampling radius is an essential parameter of the process. The appropriate sampling
radius can effectively reduce the scale of the point cloud data to facilitate feature learning of
subsequent network structures. To analyze the sensitivity and effectiveness of the sampling
radius, we conducted experiments using GraM with different sampling radii. Table 2
displays three metrics’ performance results and the model training’s time consumption on
the KITTI dataset. From the performance results in Table 2, we can observe that a large
sampling radius does not achieve the high accuracy of our geometrically embedded 3D
point cloud registration algorithm because a massive sampling radius may overlook critical
point information, preventing the cross-encoding network from learning sufficient features.
In particular, the model training time decreases as the sampling radius increases. The core
reason is that the small sampling radius can make the data too large, which causes many
network parameters and eventually increases model training time.

Table 2. Experiment results using GraM with different sampling radii on the KITTI dataset. TC
represents the time consumption (hours) of model training. The best results are in bold.

Method
KITTI

RRE (°) RTE (m) RR (%) TC (h)

radius-0.4 0.352 0.214 97.3 4.27
radius-0.5 0.413 0.325 96.1 6.24
radius-0.3 0.270 0.110 99.8 3.51

5.8. Ablation Studies

The following subsections discuss the ablation studies, including the effectiveness of
each component of GraM and performances with different loss functions.

5.8.1. Effectiveness of GraM’s Each Component

GraM takes the architecture of the REGTR as a carrier and introduces the feature
extraction module (KPConv) and geometric structure embedding (GSE) module of the
shared weight. To analyze the effectiveness of these two modules on GraM’s performance,
we carried out an ablation study and recorded the results on ModelNet40 and KITTI
datasets, as shown in Table 3. Overall, our final GraM (REGTR+KPConv+GSE) achieved
optimal performance on all metrics. The table also shows that the two modules we in-
troduce can effectively improve the performance of 3D point cloud registration. From
the perspective of individual modules on performance effects, compared with GSE-based
(i.e., ‡ relative to †) performance improvement and KPConV-based (i.e., † relative to ∗)
performance improvement, three of the four metrics achieved the optimal result. This
illustrates that the contribution of geometric structure embedding rather than KPConv to
performance improvement is more significant. The results further verify that geometric
structure embedding can effectively extract valuable geometric structure information to 3D
points cloud registration.
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Table 3. Registration result using different components on ModelNet40 and KITTI datasets. GSE
indicates the geometric structure embedding network used to extract geometric structure information.
The best results are in bold. *, †, and ‡ refer to the baseline, GraM, and our final GraM. ↓ means the
RRE and RTE are reduced.

Method
ModelNet40 KITTI

RRE (°) RTE (m) RRE (°) RTE (m)

Baseline (REGTR) ∗ 1.473 0.014 0.482 0.425
Our GraM (REGTR+KPConv) † 1.248 0.013 0.324 0.301

Our Final GraM (REGTR+KPConv+GSE) ‡ 0.925 0.010 0.270 0.110

† relative to ∗ 0.225↓ 0.001↓ 0.158↓ 0.124↓
‡ relative to † 0.323↓ 0.003↓ 0.054↓ 0.191↓

5.8.2. Effectiveness of GraM with Different Loss Functions

We conducted experiments using GraM with different combinations of loss functions
and recorded the results in Table 4. We can observe from Table 4 that any one or any
two of the three loss functions cannot achieve satisfactory accuracy. It is worth noting
that the algorithm can achieve the best performance only when all three loss functions
are used simultaneously for network training. Judging from the analysis of a single loss
function, comparing GraM with (Lc + Lf) to GraM with (Lc + Lo), the former achieves
four maximum values in the four values, which shows that A is more advantageous than
performance improvement (i.e., Lf > Lo). Similarly, Lc > Lo and Lc > Lo. Therefore,
we can sort the contribution of the three loss functions to the point cloud distribution
performance as follows: Lf > Lc > Lo.

Table 4. Registration result of GraM using different loss functions on ModelNet40 and KITTI dataset.
The best results are in bold.

Method
ModelNet40 KITTI

RRE (°) RTE (m) RRE (°) RTE (m) RR(%)

Baseline (Lc loss in Equation (12)) 2.442 0.020 0.302 0.174 98.9
Our GraM (Lo + Lf) 2.206 0.016 0.345 0.142 98.6
Our GraM (Lc + Lf) 2.125 0.015 0.342 0.139 99.1
Our GraM (Lc + Lo) 2.241 0.017 0.351 0.153 98.0

Our Final GraM (Lc + Lo + Lf) 1.623 0.013 0.270 0.110 99.8

6. Conclusions

This paper proposes a 3D point cloud registration method, GraM, which embeds
the geometric structure into the attention mechanism to form an end-to-end registration
framework. The framework can effectively extract local and global features containing the
geometric structure information. With this feature, simple regression is enough to obtain
the corresponding position coordinates and transformation matrix, thereby improving the
registration accuracy of the point cloud. Extensive experiments show that the proposed
method is far superior to existing state-of-the-art methods. In the future, we will explore
techniques to achieve better registration accuracy for large-scale point cloud datasets with
low overlap rates using lightweight models.
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