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Abstract: 3D pattern film is a film that makes a 2D pattern appear 3D depending on the amount
and angle of light. However, since the 3D pattern film image was developed recently, there is no
established method for classifying and verifying defective products, and there is little research in
this area, making it a necessary field of study. Additionally, 3D pattern film has blurred contours,
making it difficult to detect the outlines and challenging to classify. Recently, many machine learning
methods have been published for analyzing product quality. However, when there is a small amount
of data and most images are similar, using deep learning can easily lead to overfitting. To overcome
these limitations, this study proposes a method that uses an MLP (Multilayer Perceptron) model
to classify 3D pattern films into genuine and defective products. This approach entails inputting
the widths derived from specific points’ heights in the image histogram of the 3D pattern film into
the MLP, and then classifying the product as ‘good’ or ‘bad’ using optimal hyper-parameters found
through the random search method. Although the contours of the 3D pattern film are blurred, this
study can detect the characteristics of ‘good’ and ‘bad’ by using the image histogram. Moreover, the
proposed method has the advantage of reducing the likelihood of overfitting and achieving high
accuracy, as it reflects the characteristics of a limited number of similar images and builds a simple
model. In the experiment, the accuracy of the proposed method was 98.809%, demonstrating superior
performance compared to other models.

Keywords: 3D pattern film image; MLP; histogram; image processing; width of histogram

1. Introduction

3D pattern film is a 2D film that appears as a 3D pattern depending on the amount
and angle of light. This film was created for marketing purposes, and it is used to attract
consumer attention and make products look more luxurious by attaching the film to the
exterior of a product. 3D pattern film is shown in Figure 1. Figure 2 shows an example of
the film’s application, where the left image is without the film attached, and the right image
is with the film attached. Since this film was developed recently, the distinction between
good and bad 3D pattern films is currently being made by visual inspection. However,
to facilitate mass production, it is necessary to establish an inspection system capable of
identifying defective products.

3D pattern film requires inspection to determine whether products are good or bad
based on each pattern. For this purpose, research is being continuously published on
methods that can be applied to determine if the shape of the products is defective. Among
the rule-based methods, various approaches have been published, including those using
segmentation to detect objects and assess images, methods employing image luminance or
brightness values for inspection, and techniques based on the width at specific heights in
the image histogram. In research utilizing machine learning, various methods have been
continuously published, including techniques that apply Canny edge detection to detect
objects followed by classifying images using Support Vector Machine (SVM), methods
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employing Canny edge detection followed by inspection with a convolutional neural
network (CNN), approaches using few-shot models for datasets with a small number
of images, and studies that classify products using deep-layer models like VGG16 and
ResNet-50. However, in this paper, since the images used have a small amount of data and
are similar to each other, using deep and complex deep learning models can result in a
high probability of overfitting. Moreover, when dealing with a small amount of data, it is
common to use pre-trained models or data augmentation, but it is challenging to always
obtain a good performance with these methods. Additionally, a challenge with 3D pattern
films is that their contours are not distinct, making pattern detection difficult. Furthermore,
recent machine learning research papers demonstrate high performance and utilize highly
complex model structures, but the experimental data mostly consist of complex image data.
However, the data used in this study consists of images that are very similar each other and
are simpler compared to the data used in other papers. Therefore, using complex models
for such data can lead to overfitting and result in significantly lower classification accuracy.
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Figure 2. Production goods without and with 3D pattern film (left: Product without 3D pattern film;
right: Product with 3D pattern film).

To overcome these limitations, this paper proposes a method that includes a prepro-
cessing step where widths at specific heights in the image histogram are calculated, as
suggested by Lee et al. [1,2]. Following this, an MLP is used to classify the images. At
this stage, the optimal hyper-parameters for the MLP are determined using the random
search method. The proposed method, utilizing the width data obtained from the method
proposed by Lee et al. [1,2], can solve the problem of detecting patterns in 3D films, which
were previously difficult to segment, and can increase accuracy. Additionally, by reducing
the complexity of the MLP model and finding the optimal hyper-parameters through the
random search method, the probability of overfitting can be reduced.

In summary, the contributions of this study are as follows:
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• 3D film data are image data for which object detection is challenging due to the
faintness of the contours. To address this issue, we resolved the problem of object
detection by preprocessing the 3D film image data. Specifically, we calculated the
width of the bins for each interval of the image histogram, allowing us to effectively
obtain information from the 3D film;

• If the method proposed in early work [1,2] is employed, the threshold values and
accuracies for classifying products as ‘good’ and ‘bad’ will vary depending on the
sampled data. To address these limitations, in this study, we propose a method of
classifying images using deep learning instead of threshold values;

• Because of the high similarity between ‘good’ and ‘bad’ images in 3D film image data,
complex structures of deep learning models can lead to overfitting and lower accuracy.
In this study, we achieved high accuracy by employing a simple deep learning model
that considers the characteristics of the data;

• The 3D film images used in this study are a recent development, and as there have
not been many validation methods researched yet, quality verification in industrial
settings still relies on manual inspection by workers. Likewise, in manufacturing and
certain sectors, there is a need for data similar to those used in this study, and there is
ongoing development and utilization of such data, necessitating validation methods.
Therefore, this study will be helpful for quality research on similar products.

The remainder of this paper is organized as follows: Section 2 describes conventional
and recently published methods for classifying good and bad images. Section 3 describes
the method proposed in this paper, and Section 4 presents the experimental results obtained
using the proposed method. Finally, Section 5 presents the conclusions of this study.

2. Related Works

The quality of 3D pattern film images can be inspected using rule-based methods
or machine learning methods. Firstly, in the rule-based method, techniques have been
proposed that classify images using the luminance or brightness of the image [1–4]. Among
these methods, Lee and Kim published a study where they calculated the image histograms
for 3D pattern film images, determined the width at the 10th percentile height, and then
classified the images based on a threshold value [1]. This method was able to compensate
for the issue of blurred contours in 3D pattern films, which makes pattern detection difficult,
and, in experimental results, it demonstrated a high classification accuracy of up to 99.34%.
And in the paper by [2], widths for all heights of the image histogram were calculated
and compared to delineate the ranges of good and bad pattern images. However, these
methods have limitations in that the classification threshold values at specific heights in
the image histogram, ranging from 1/10 to 9/10, can all be different, and these threshold
values can change with varying amounts of data. Michelson contrast differentiates images
based on the maximum and minimum luminance values of the image [3]. The formula for
this is as follows:

MCi = (LVmax − LVmin)/(LVmax + LVmin), i = 1, 2, . . . , n, (1)

where MCi represents the Michelson contrast value of the i-th image, LVmax is the maximum
luminance value of the image, and LVmin is the minimum luminance value of the image.
However, as shown in Equation (1), Michelson contrast only considers the minimum and
maximum luminance values of the image. Unlike the luminance values typically found in
most good or bad images, there can be unusually large or small values in a minority of the
luminance values. This variation can make it difficult to clearly distinguish between good
and bad images.

In research on classifying the quality of images, segmentation, a method for detecting
objects within images, is widely used. Segmentation refers to the process of differentiating
objects in an image based on varying characteristics of pixels, such as color, texture, and
brightness. Among the segmentation methods, there are techniques that allow for the
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morphological detection of objects, with morphological geodesic active contour being a
prominent example. Morphological geodesic active contour is a method that combines
the morphology snake method [4] and the geodesic active contour method [5], and this
method progressively evolves the segmented regions before morphologically segmenting
objects. Recently, studies have been published utilizing morphological geodesic active
contour and image processing techniques to segment and classify welding beads for
evaluating the performance of robots used in welding bead manufacturing [6], as a deep
learning model based on a non-parametric adaptive active contour method called fast
morphological geodesic active contour (FGAC) for segmenting the left ventricle [7], for
automatic segmentation of the aorta from CT images using morphological geodesic active
contour [8], and for segmenting lung images based on ACM without prior training using
FGAC [9]. However, morphological geodesic active contour has the limitation that it
can only achieve high accuracy when the exact position of the segmentation target is
accurately set.

As a traditional approach in segmentation, there is the method of edge detection,
which detects objects by utilizing areas where the brightness values of pixels change
abruptly. There are various types of edge detection, including Sobel edge detection, Canny
edge detection, and Laplacian edge detection. Sobel edge detection detects objects by
highlighting areas where the first derivative of a function exhibits significant changes.
It is more robust in detecting noise compared to other edge detection methods and is
more sensitive to diagonal edges than to vertical and horizontal components. Canny edge
detection is a method that employs a Gaussian filter to remove noise from an image and
applies thresholding twice to determine its edges. It provides sharp edges and is known
for its relatively accurate detection, making it a widely used method by default. Laplacian
edge detection, unlike other edge detection methods, utilizes second-order differential
equations and excels at detecting edges between light and dark regions. Edge detection is
typically used as part of preprocessing, and recently, research combining it with machine
learning techniques has been consistently emerging [10–15]. Mlyahilu et al. proposed
a method where they detected the edges of a 3D pattern film using Canny, Sobel, and
Laplacian edge detection during the preprocessing stage and then classified 3D pattern
images using a convolutional neural network (CNN) [10]. Salman et al. published a study
in which they applied Canny edge detection to detect leaf contours and then used the
Support Vector Machine (SVM) method for classification [11]. Furthermore, Jun and Jung
proposed a method for inspecting the quality of Printed Circuit Board (PCB) products using
a combination of the Laplacian filter and CNN methods [12]. The experimental results
showed an improvement of 11.87% compared to the existing methods. Furthermore, in
segmentation research, studies have proposed methods utilizing drones equipped with
high-resolution proximity cameras for capturing images and then employing methods such
as dual tree complex wavelet transform (DTCWT) and discrete wavelet transform (DWT)
to segment and detect concrete cracks [13], detecting fires and extracting fire features using
different image-processing techniques such as Canny, Sobel, and HSV transformations [14],
and segmenting and detecting concrete cracks in images using edge detectors like Roberts,
Prewitt, Sobel, and deep convolutional neural networks (DCNN) [15]. However, 3D pattern
films pose a challenge for pattern detection due to their blurred contours. Furthermore,
finding optimal hyper-parameters for data classification in deep learning models and SVM
still presents a challenge.

Among machine learning models used for image data classification, popular and high-
performance models include VGG16 and ResNet50 [16–21]. VGG16 is a model composed
of a total of 16 convolutional layers, pooling layers, and fully connected layers, making
it widely used in image recognition and classification research [16]. In their research
using VGG16, Qu et al. proposed a method for detecting defects in paper using VGG16,
particularly focusing on paper data with a small sample size [17]. To overcome the issue
of overfitting, especially when dealing with a small dataset, the authors froze the first
seven layers of VGG16 and fine-tuned the remaining convolutional layers using paper
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defect images. Through this approach, they achieved a classification accuracy of 94.75%
in their experimental results. Althubiti et al. presented a research study in which they
developed a method for detecting defects in circuit manufacturing [18]. They converted
images to the HSV color space, identified regions of interest (ROI), and used VGG16 to
detect faulty products. ResNet50, another widely used model, consists of a total of 50 layers
and addresses the problem of vanishing gradients in deep layers by employing a technique
known as ‘residual connections’ [19]. Feng et al. published a research study in which
they used ResNet50 to classify defects such as slag and scratches occurring on the surface
of hot-rolled strip steel [20]. In this study, to reduce the risk of misclassification during
defect classification, Feng et al. added FcaNet and Convolutional Block Attention Module
(CBAM) methods to ResNet50, achieving an approximate classification accuracy of 94.85%.
Additionally, Kumar and Bai presented a method using ResNet50 to detect and classify
defects (cut, color, hole, thread, metal contamination) occurring during fabric production,
achieving a high accuracy of 96.4% in their experimental results [21]. However, deep
learning models with many layers can still experience overfitting, even when freezing some
layers, especially when the dataset is small and the images are similar. Therefore, achieving
high accuracy in such cases can be challenging.

Recently, research using few-shot learning has been published, using it as a method to
address the challenges of using deep learning models when the dataset is small [22–24].
Few-shot learning is designed to extract and adapt as much information as possible from
a small amount of data, often using transfer learning and meta-learning techniques [22].
Cao et al. proposed a method in which they fine-tuned only the parameters of the deep
layers in a SqueezeNet-based model and integrated batch-size-independent Group Nor-
malization (GN) for stable results. In their experimental results, they achieved accuracies of
97.69% and 82.92% on two different datasets, respectively [23]. Nagy and Czúni proposed
a method that combines few-shot learning using the EfficientNet-B7 deep neural network
with randomized classifiers [24]. In their experiments, they analyzed defect data from
steel surfaces and achieved a high accuracy of over 99%. However, few-shot learning can
be challenging to generalize since it uses a very small number of training samples, and
obtaining a high performance in specific domains or complex problems can be difficult.
Furthermore, recent deep learning models, while exhibiting high performance, tend to
have highly complex structures. However, since the 3D film images used in this study are
very similar to each other, using conventional deep learning models may result in a higher
probability of obtaining a lower accuracy.

3. Proposed Method

The 3D pattern film images used in this study have the characteristics of blurred
contours, similarity between images, and a small dataset, making them prone to overfitting
when performing deep learning. However, as mentioned earlier, due to the characteristics
of 3D pattern films, traditional methods such as segmentation, VGG, and ResNet still face
limitations in image classification of these films. In addition, In the method proposed by
Lee et al. [1], while achieving a very high classification accuracy, there was a limitation
of having different classification thresholds for each 10th percentile height of the image
histogram. This required the cumbersome process of finding the optimal threshold and
height before performing the classification. Furthermore, for the method of Lee et al. [1],
when classifying products into good and bad categories, the accuracy varies depending
on the threshold value. In other words, while the threshold value may be suitable for the
sampled data used in the experiment, the accuracy may vary when additional data are
introduced. To address these challenges, in this study, we propose a method where we
utilize the approach suggested by Lee et al. [1] as a preprocessing step. After that, we
calculate the widths at specific heights for each image and then use deep learning to classify
the 3D pattern film images. The proposed method’s procedure is depicted in Figure 3, and
the details of step 1 are explained in Section 3.1, while step 2 is described in Section 3.2.
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3.1. Calculating the Width at a Specific Height from the Image Histogram

We use the fast Fourier transform method proposed by Mlyahilu and Kim in [25]
to cut images for each pattern in the 3D pattern film, as shown in Figure 2. Then, as
shown in step 1 of Figure 3, we calculate the width at a specific height for each image using
the method proposed by Lee et al. in [1]. In this context, the width, as described in Lee
et al.’s [1] paper, carries information about whether the image is classified as ‘good’ or ‘bad’.
First, for each 3D pattern film image, we calculate the image histogram h(b) representing
the frequency of each pixel value. The formula is as follows:

h(b) = ∑W
i=1 ∑H

j=1 1{pixels|pixelij=b}, b = 0, 1, . . . , 255, (2)

where h(b) represents the number of pixels with a brightness value b in the grayscale image,
W and H are the width and height of the image, and pixelij represents the value of the pixel
at position (i, j). Additionally, the term 1{pixels|pixelij=b} represents an indicator function,
which returns 1 if the pixelij is equal to brightness value b, and 0 otherwise. After obtaining
the image histogram, we calculate the heights hα corresponding to the 10th percentile α of
the image histogram as follows.

hα = α×max(h(b)), α =
1
10

,
2

10
, . . . ,

9
10

, (3)
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Then, in the image histogram, we calculate the minimum value xmin and maximum
value xmax, which are the points of intersection with the x-axis at a specific height hα,
as follows.

xmin = min({b|h(b) ≥ hα, b = 0, 1, . . . , 255}), (4)

xmax = max({b|h(b) ≥ hα, b = 0, 1, . . . , 255}), (5)

Using the previously obtained minimum value xmin and maximum value xmax on the
x-axis, we calculate the width wα at a specific height hα as given by the following equation.

wα = xmax − xmin, (6)

We calculate and store the widths of the image histograms at heights ranging from
1/10 to 9/10 for each 3D pattern film image.

3.2. 3D Pattern Film Image Classification Using MLP

In the second step, we perform a classification using the MLP f(wα) on the width
values at specific heights hα obtained from the previously calculated image histogram.

f(wα) = fL(· · · f2(f1(v, wα))), (7)

where v represents weights and L is the number of hidden layers. In deep learning, there is
a necessary process of setting hyperparameters, which are parameters that determine the
configuration of the method. Hyperparameters have a significant impact on the method’s
performance and learning capability, so finding the optimal values is important. However,
since they are not automatically determined by the training data, users either manually
set them or use hyperparameter optimization techniques to find the optimal values. In
this paper, we use the random search optimization technique, which is well-known for
efficiently exploring hyperparameter space within a given time frame [26]. Among the
hyperparameters, we search for optimal values related to the number of hidden layers,
the number of hidden nodes, and the learning rate. This is because the 3D pattern film
images used in this study have a small amount of data and are similar to each other, which
can lead to the problem of overfitting. Therefore, setting an appropriate model complexity
is crucial, which necessitates finding the optimal number of hidden layers and hidden
nodes. Additionally, in defect detection tasks, processing speed is important in addition
to accuracy, which is why we search for the optimal learning rate value. For the random
search method, we set the ranges for hyperparameters as follows: the number of hidden
layers L ∼ U(2, 4), the number of hidden nodes n ∈ {64, 128, 256}, and the learning rate
ρ ∈ {0.1, 0.01, 0.001} to search for. The range for the number of hidden layers and the
number of hidden nodes was set to values that allow the model to be sufficiently complex
while still being able to learn effectively. The learning rate was chosen from commonly
used values. After finding the optimal values for the number of hidden layers, number of
hidden nodes, and learning rate through the random search method, these values are then
applied to the MLP. The MLP is used to input 3D pattern film images and classify whether
each image is ‘good’ or ‘bad’.

4. Experimental Results

To evaluate the performance of the proposed method in this paper, we conducted an
analysis using 3D pattern film, as shown in Figure 2. As shown in Figure 2, the 3D pattern
film consists of multiple patterns printed on a large film. We used the fast Fourier transform
method to cut images for each pattern, and the results are depicted in Figure 4. Therefore,
the total number of image data is 2850, with 2136 being ‘good’ 3D pattern film images and
714 being ‘bad’ 3D pattern film images. To perform deep learning, we divided the data into
training and test sets in an 8:2 ratio. In this split, the training data consisted of 1710 ‘good’
images and 570 ‘bad’ images, while the test data included 426 ‘good’ images and 144 ‘bad’
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images for experimentation. The PC specifications were as follows: Windows 10 Pro,
Intel® Core™ i7010700k CPU@3.80GHz, NVIDIA GeForce RTX 2080 SUPER, 16GB, and
Python 3.6.
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First, we performed preprocessing using the method proposed by Lee et al. [1]. In the
preprocessing step, we calculated the image histograms for the cropped 3D pattern film im-
ages, as shown in Figure 5. Then, for each corresponding image histogram, we determined
the minimum and maximum values on the x-axis that intersected with the height of 1/10
and used these values to calculate the width. In the same way, we calculated the widths of
the image histograms for heights ranging from 2/10 to 9/10. After calculating the heights
for all images from 1/10 to 9/10, we used deep learning to perform the classification. We
utilized the MLP in deep learning, and to find the optimal hyperparameters used in the
MLP method, we conducted a random search. The hyperparameters experimented with in
the random search method included the number of hidden layers, the number of nodes in
the hidden layers, and the learning rate. In this case, the ranges for each hyperparameter
were: from two to four hidden layers, with each hidden layer having 64, 128, or 256 nodes,
and learning rates of 0.001, 0.01, and 0.1. In addition to the mentioned hyperparameters,
for MLP, the dropout was set to 0.1, the activation function for hidden layers was relu, the
regularization was L2(λ = 0.01), the loss function was binary cross-entropy, epochs were
set to 20, the batch size was 100, and five-fold cross-validation was used; all were kept
constant for the experiments. As shown in Table 1, a total of 10 fittings were performed in
the random search, and all but one achieved an accuracy of over 97%. The third experiment
showed the highest accuracy of 99.3%, with the configuration of three hidden layers, with
node counts of 64, 256, and 128 for each hidden layer, and a learning rate of 0.001. In
addition, both the recall and precision were 99.5%. The total computation time was 3250.7 s,
with 3240.2 s spent on preprocessing and 10.5 s spent on analysis using the MLP method.

Table 1. Classification results for methods with 3D film images (H.L: hidden layers,
H.N: hidden nodes).

Num.
of Exp.

Num. of
H.L

Num. of
H.N

(H.L-1)

Num. of
H.N

(H.L-2)

Num. of
H.N

(H.L-3)

Num. of
H.N

(H.L-4)

Learning
Rate Accuracy Recall Precision

1 2 256 128 0.01 0.986 0.988 0.993
2 2 256 64 0.01 0.987 0.993 0.990
3 3 64 256 128 0.001 0.993 0.995 0.995
4 2 128 128 0.001 0.989 1.000 0.986
5 3 64 256 256 0.001 0.991 1.000 0.988
6 4 64 64 64 64 0.001 0.989 1.000 0.986
7 3 64 128 256 0.01 0.989 1.000 0.986
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Table 1. Cont.

Num.
of Exp.

Num. of
H.L

Num. of
H.N

(H.L-1)

Num. of
H.N

(H.L-2)

Num. of
H.N

(H.L-3)

Num. of
H.N

(H.L-4)

Learning
Rate Accuracy Recall Precision

8 4 64 256 64 256 0.1 0.758 1.000 0.758
9 2 256 64 0.1 0.980 0.974 0.100

10 2 256 256 0.01 0.989 1.000 0.986
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To evaluate the performance of the proposed method, comparative experiments were
conducted. In the comparative experiments, the following methods were used: Michelson
contrast [3], morphological geodesic active contour [6], CNN with Canny [10], SVM with
Canny [11], few-shot (five-shot), VGG16, and ResNet50. In general, it is known that image
data achieve a better performance when using a CNN compared to the MLP method. There-
fore, CNN models were used in the comparison method. Furthermore, Michelson contrast
is a preprocessing method that is similar to the one used in this study, and morphological
geodesic active contour is capable of detecting the desired objects morphologically among
segmentation methods. Therefore, we compared their performance in the experiments.
Among these methods, the Michelson contrast and morphological geodesic active contour
used the similarity index (SSIM) for classifying good and bad images after analysis [27].
The SSIM evaluates the similarity between two images using their structural information,
enabling a comparison of the pixel structures that make up the images. The formula for the
SSIM is as follows:

S(x, y) = s1·s2·s3 = 4µxµyσxy/
{(

µ2
x + µ2

y

)(
σ2

x + σ2
y

)}
, (8)

where s1, s2, and s3 represent the average brightness, contrast, and correlation of the two
images, respectively. For Michelson contrast and morphological geodesic active contour, we
set the SSIM thresholds at 0.5, respectively, to assess the similarity between two images. In
this context, a higher SSIM value indicates greater similarity between the two images, while
a lower SSIM value indicates lower similarity. For the CNN with Canny [10], we followed
the same configuration as in the referenced paper, with two hidden layers and node counts
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of 32 and 64 for each hidden layer. For few-shot, we conducted experiments using a five-
shot approach. Additionally, in the case of the pre-trained models VGG16 and ResNet50,
we augmented the data to increase its quantity before conducting the experiments. The
reason for this is that both models have complex architectures, while the amount of data
used in the experiments is relatively small, which could lead to overfitting.

The experiments were conducted based on defined criteria for comparison, and the
results are presented in Table 2 as average accuracy, average recall, and average precision.
The confidence intervals were calculated using 2000 bootstrap replicates. In the comparative
experiment results, the proposed method achieved an average accuracy of 99.3%, followed
by SVM with Canny at 99.0%, VGG16 at 97.3%, ResNet50 at 83.3%, CNN with Canny at
75.3%, Morphological geodesic active contour at 74.9%, few-shot at 72.8%, and Michelson
contrast at 67.6%. While VGG16 and ResNet50 are known for their good performance, it
was observed that their performance is relatively lower for datasets with few data and
similar-shaped images, as in the experiments conducted in this study. Additionally, few-
shot, which is known as a deep learning model for use with a small number of data,
exhibited an accuracy of 72.8%, which is lower than the 99.3% achieved by the proposed
method. The computational times for each method were as follows: CNN with Canny
took 58.0 s, Michelson contrast took 107.2 s, morphological geodesic active contour took
1931.1 s, and ResNet50 took 2882.9 s, all faster than the proposed method. However,
their accuracy values were all more than 10% lower than that of the proposed method.
On the other hand, SVM with Canny had a similar accuracy to the proposed method
but had a high computational cost of 5238.0 s. Additionally, few-shot and VGG16 had
significantly longer computation times of 26,710.9 s and 27,264.2 s, respectively. Therefore,
in the comparative experiments, the proposed method had the highest accuracy, and among
models that achieved an accuracy of over 90%, the proposed method also had the fastest
computational time.

Table 2. Classification results for methods with 3D film images.

Method Accuracy
(95% C.I)

Recall Precision Time
(s)(95% C.I) (95% C.I)

Proposed method 0.993
(0.986–0.995)

0.995
(0.971–0.999)

0.995
(0.976–0.999) 3250.7

Michelson contrast [3] 0.676
(0.614–0.716)

0.575
(0.529–0.616)

0.987
(0.969–0.995) 107.2

Morphological geodesic
active contour [6]

0.749
(0.697–0.801)

0.691
(0.647–0.749)

0.964
(0.945–0.986) 1931.1

CNN with Canny [10] 0.753
(0.698–0.796)

0.997
(0.959–1.000)

0.748
(0.704–0.771) 58.0

SVM with Canny [11] 0.990
(0.935–0.996)

0.988
(0.973–0.991)

0.995
(0.990–0.999) 5238.0

Few-shot(5shot) 0.728
(0.652–0.790)

0.676
(0.607–0.738)

0.719
(0.651–0.782) 26,710.9

VGG16 0.973
(0.958–0.987)

0.936
(0.906–0.967)

0.938
(0.910–0.967) 27,264.2

ResNet50 0.833
(0.734–0.891)

0.881
(0.818–0.943)

0.883
(0.820–0.945) 2882.9

5. Conclusions and Discussion

In this paper, we proposed a classification method for inspecting 3D pattern film
images. We employed a preprocessing step, where we calculated histogram widths at
specific heights in the image histograms. Then, we used an MLP model to analyze the
width data. In this process, we employed the random search method to find the optimal
hyperparameters for the number of hidden layers, the number of nodes in each hidden
layer, and the learning rate, which were used to build the MLP model. In the proposed
method in this paper, we addressed the limitation of blurry contours in 3D pattern film
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images by using pixel histograms specific to each image in the preprocessing stage, thereby
improving the accuracy of the analysis results. Furthermore, in the proposed method,
we mitigated overfitting by constructing a simple MLP model for data with low sample
sizes and similar image characteristics. In the experiments, the proposed method achieved
an accuracy of 99.30%, which was the highest among the models tested. Comparatively,
models with complex structures like VGG-16, ResNet50, CNN with Canny, and SVM
with Canny had accuracies of 97.3%, 83.3%, 75.3%, and 99.0%, respectively, which were
lower than that of the proposed method. The analysis results from the few-shot method, a
method commonly used when data are scarce, also showed an accuracy of 72.8%, which
was lower than the performance of the proposed method. Furthermore, the Michelson
contrast method achieved an accuracy of 67.6%, while the remaining methods showed
accuracies in the 70% range. Therefore, this paper demonstrated that, by using relatively
simple deep learning models tailored to the characteristics of the data, it is possible to
achieve a good performance.

The 3D film images used in this paper, as mentioned earlier, are a recently developed
product that is continuously evolving. In addition, it is likely that other images currently
under development will have similar characteristics to the images used in this study.
Therefore, the results of this study could serve as foundational research for validation not
only for newly developed 3D film images but also for similar products. In future research,
we plan to conduct further studies to improve the preprocessing stage. The computation
time for the MLP model used in the proposed method was approximately 10 s, but the
preprocessing stage consumed most of the computation time. Therefore, we intend to
conduct research which aims to improve the preprocessing stage to increase accuracy while
reducing computation time.
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