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Abstract: Fundus image registration plays a crucial role in the clinical evaluation of ocular dis-
eases, such as diabetic retinopathy and macular degeneration, necessitating meticulous monitoring.
The alignment of multiple fundus images enables the longitudinal analysis of patient progression,
widening the visual scope, or augmenting resolution for detailed examinations. Currently, prevalent
methodologies rely on feature-based approaches for fundus registration. However, certain meth-
ods exhibit high feature point density, posing challenges in matching due to point similarity. This
study introduces a novel fundus image registration technique integrating U-Net for the extraction
of feature points employing Fundus Image Vessel Segmentation (FIVES) dataset for its training and
evaluation, a novel and large dataset for blood vessels segmentation, prioritizing point distribution
over abundance. Subsequently, the method employs medial axis transform and pattern detection
to obtain feature points characterized by the Fast Retina Keypoint (FREAK) descriptor, facilitating
matching for transformation matrix computation. Assessment of the vessel segmentation achieves
0.7559 for Intersection Over Union (IoU), while evaluation on the Fundus Image Registration Dataset
(FIRE) demonstrates the method’s comparative performance against existing methods, yielding a
registration error of 0.596 for area under the curve, refining similar earlier methods and suggesting
promising performance comparable to prior methodologies.

Keywords: fundus image registration; feature extraction; blood vessels segmentation; feature matching;
enhanced vascular bifurcations mapping

1. Introduction

The retina is a crucial part of the human visual system, converting optical stimuli
into neuroelectric signals processed by the brain. Fundus imaging is the primary method
for assessing the retina, playing a key role in diagnosing various ocular pathologies like
diabetic retinopathy, age-related macular degeneration, glaucoma, among others [1]. Inte-
grating multiple fundus images and registering them enhances this process significantly.
It complements individual assessments, offering a more comprehensive evaluation that
assists physicians in diagnosing retinal diseases more effectively [2].

Fundus image registration involves aligning images with overlapping regions by
establishing correspondences between them. This feature-based registration is crucial for
various applications in retinal analysis [3,4], such as longitudinal studies, which examine
morphological changes in ocular structures over time by comparing fundus images taken
at different intervals. Another important application is image mosaicking, which combines
multiple fundus images from different viewpoints to broaden the visual perspective. How-
ever, analyzing multiple perspectives is challenging for healthcare practitioners due to
the limited field of view of fundus images [5], typically around 45°. Although wide-angle
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fundus photography offers a solution with a potential field of view exceeding 100° [6],
its adoption is restricted due to requirements like pupil dilation and the high cost of spe-
cialized cameras, especially disadvantaging patients in rural areas [7]. Similarly, efforts
to improve resolution through the super-resolution of fundus images rely on registration
techniques to align low-resolution images from portable fundus cameras often used in
telemedicine initiatives [8]. By synthesizing these slightly different images, resolution
enhancement occurs, improving visual acuity and revealing clinically significant details
that were previously obscured.

Several techniques have been developed for registering fundus images, with some
focusing on initial blood vessel detection. For example, the Straightforward Bifurcation
Pattern-Based Fundus Image Registration method (SBP-FIR) described in [9] relies on pixel-
wise segmentation, while the approach in [10] utilizes the Frangi filter [11] for detecting
tubular structures in fundus images. These methods employ thresholding-based segmenta-
tion and feature-based segmentation using filtering techniques, respectively. While these
approaches offer advantages in terms of ease of implementation, simplicity, and improved
noise robustness for filtering-based methods, this study employs deep learning-based seg-
mentation for its higher accuracy and adaptability to diverse datasets, reducing dependency
on threshold selection.

This paper introduces an algorithm for registering pairs of fundus images. Unlike
previous methodologies that relied on thresholding-based segmentation and the Frangi
filter [9–11] for blood vessel delineation, this approach utilizes U-Net [12] to identify the
specific region of interest within the image. The primary advantage of using U-Net over
the Frangi filter lies in U-Net’s autonomy in sensitivity parameter settings and its more
efficient execution time for the entire segmentation process. Configuring sensitivity pa-
rameters for the Frangi filter limits its adaptability and complex structure detection, while
U-Net segmentation methods proficiently learn intricate features without such constraints.
Additionally, incorporating U-Net ensures accurate identification of bifurcation regions,
a feature occasionally lacking in the Frangi filter application [13]. The process begins
with U-Net identifying the blood vessels’ region of interest, followed by thinning, pattern
detection, and characterization of feature points using the Fast Retina Keypoint (FREAK)
descriptor [14]. Feature matching, outlier removal, and computation of the similarity trans-
formation are accomplished through Random Sample Consensus (RANSAC) [15]. Finally,
a seamless image is generated through blending. This method aims to enhance registration
precision and reduce execution time, crucial factors for introducing new methodologies into
clinical practice for computer-aided diagnosis. Evaluation on both segmentation results
and registration accuracy yields an Intersection over Union (IoU) score of 0.7559 on the
Fundus Image Vessel Segmentation (FIVES) dataset [16] and an Area Under the Curve
(AUC) of 0.596 on the Fundus Image Registration Dataset (FIRE) dataset [17]. It competes
with complex methods and notably reduces execution time by half compared to one of
the top methods in registration accuracy while maintaining competitive performance in
certain categories.

This paper’s main contribution is the novel integration of U-Net and FREAK descriptor
for fundus image registration, aiming to refine existing methods by employing the FIVES
dataset as a new dataset for segmentation of blood vessels in fundus images. This method
initiates region-of-interest identification through U-Net. Subsequent feature extraction
results in a more evenly distributed layout of feature points across fundus images compared
to other state-of-the-art extractors. Although it may exhibit slightly lower accuracy in
certain aspects compared to other methodologies, this technique significantly reduces
execution time. Evaluation across diverse datasets, including the FIVES dataset [16] and
the FIRE dataset [17], highlights its competitive performance against complex methods
while significantly reducing computational load.

The paper is structured as follows: Section 2 offers a comprehensive review of relevant
studies within the field. Section 3 outlines the proposed approach for fundus image
registration. Section 4 provides a detailed examination of the experimental outcomes
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resulting from the application of the proposed technique. Following this, Section 5 presents
the discussion. Lastly, Section 6 concludes the paper.

2. Related Work

In the extensive literature on fundus imaging, numerous methods have been de-
veloped for registering and stitching fundus images. While the Scale-Invariant Feature
Transform (SIFT) [18] is widely regarded as a robust and commonly used technique in
image processing, its application to identifying corresponding points in fundus images
faces challenges. These challenges are particularly evident in scenarios involving fluc-
tuating illumination or when dealing with surfaces that exhibit similar intensity levels.
This difficulty arises because SIFT relies solely on gray information for feature extraction,
making it challenging to distinguish between visually analogous conditions.

However, some studies have utilized the SIFT descriptor, such as in [19], to identify
feature points corresponding to bifurcations in fundus images. Following feature matching
and false match removal, a Voronoi diagram is used to create mosaic images. Yet, these
methods are typically assessed only for this task, overlooking other applications like longi-
tudinal studies and super-resolution imaging. In our study, we assessed these techniques
on the Fundus Image Registration Dataset (FIRE) [17], also employed in [20], a leading
study on this dataset. The approach in [20] integrates blood vessel bifurcations and the
SIFT detector as feature points, initially estimating the camera pose through RANSAC
using a spherical eye model for precise results. Subsequent steps involve parameter es-
timation for an ellipsoidal eye model and further camera pose refinement. While this
methodology is precise, employing two feature detectors leads to an increased number of
detected feature points. Consequently, matching and registration become computationally
complex, resulting in slower processing speeds. On the contrary, Gong et al. in [21] argue
that intensity-based registration outperforms methods reliant on feature-point registration.
In this approach, dimensionality reduction is crucial, transforming input images into a
lower-dimensional space for efficient recognition of global correspondences. Specifically,
in the context of contiguous image pairs, their method optimizes the Mutual Information
metric for registration before synthesizing panoramas through image blending.

Regarding works that have completely excluded the use of SIFT, numerous feature-
based registration methodologies relying solely on landmark identification along blood
vessels have been proposed. In the study referenced as [22], a Convolutional Neural Net-
work (CNN) trained on the Digital Retinal Images for Vessel Extraction (DRIVE) dataset
detects vascular crossovers and bifurcations using the U-Net architecture. This specific
U-Net architecture predicts a heatmap identifying landmarks. Similarly, the use of the Deep
Retinal Image Understanding network (DRIU) alongside pre-trained VGG-16, as described
in [23], involves a preliminary stage of blood vessel segmentation to facilitate subsequent
feature detection. Furthermore, alternative methodologies not utilizing deep learning
have focused on blood vessels as a focal area of interest for finding feature points suitable
to fundus registration. For example, the study detailed in [24] conducted blood vessel
segmentation through fundamental morphological operations and curvature evaluation.
Likewise, in the work explained by [25], the vessel tree served as a focal region for feature
extraction, finding bifurcations extracted from the segmented blood vessel and incorporat-
ing a Bayesian approach as a matching algorithm. A straightforward mosaicking of fundus
images methodology is presented in [26], in which a CNN model segments vascular struc-
tures within fundus images, specifically targeting the detection of vascular bifurcations.
These bifurcations are subsequently extracted as feature points upon the vascular mask,
and the estimation of transformation parameters for image stitching is established among
these vascular bifurcations. While the effectiveness of this method was evaluated across a
limited set of eyes, the primary limitation of this study lies in its absence of comparison
with other methods to support its performance.

The investigation into bifurcations and crossovers in fundus images is crucial for
accurately identifying blood vessel issues and locating clots, essential for precise medical
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intervention [27]. These junction points play a vital role in understanding variations in
blood flow and pressure dynamics within the vessels [28]. In [27], a meticulous approach
involved segmenting patches of 21 × 21 pixels along vessel structures obtained from binary
segmentations. These patches were used as training data for a Res18 convolutional neural
network to distinguish these features. Despite a modest dataset of 40 images from the
DRIVE database (30 for training, 10 for testing), the patch-based method generated an
extensive dataset of over 100,000 patches, ensuring a robust learning process. Similar
techniques were employed in other studies, such as Patwari et al. [29] and others [30,31],
utilizing methods like morphological skeletonization, image enhancement through his-
togram equalization, and the extraction of bifurcation points from blood vessel skeletons,
thereby enhancing the understanding of vessel structures and their features.

Several methods in fundus image analysis focus on blood vessel segmentation to
detect bifurcation points. This paper’s method emphasizes segmenting blood vessels
to identify feature points within the segmentation map. Numerous studies concentrate
on employing Convolutional Neural Networks (CNNs) for this purpose. For instance,
Dharmawan et al. [32] proposed a modified U-Net [12] for patch-based segmentation,
reducing downsampling operations and incorporating dropout layers between consecutive
convolutional layers. They trained this network using cross-entropy loss on datasets such as
DRIVE [33], STARE [34], and HRF [35]. In contrast, Ref. [36] introduces ResWnet, modifying
the U-Net structure by minimizing downsampling layers to two and implementing an
encoding–decoding–encoding–decoding structure. ResWnet enhances feature retention
and semantic extraction by utilizing skip connections and residual blocks, improving
sensitivity across various vessel scales, as evaluated on DRIVE and STARE databases.
Moreover, Ref. [37] presents DRNet, a method inspired by U-Net and utilizing a deep
dense residual network structure. DRNet merges feature maps across blocks, aiding spatial
reconstruction, and introduces DropBlock to address overfitting issues. Each method
showcases innovations in vessel segmentation approaches for fundus image analysis.

Differing from some previous research approaches, this study primarily focuses on
aligning fundus images through a sequential process. Initially, it employs the traditional
U-Net architecture [12] for segmenting blood vessels, utilizing the Fundus Image Vessel
Segmentation (FIVES) dataset [16]. This unique dataset contains a significant collection
of annotated fundus images, reportedly offering superior accuracy in labeling compared
to other publicly available datasets designed for blood vessel segmentation in fundus
images. The detection of bifurcations occurs along the blood vessel skeleton to establish the
geometric relationship between the images. Subsequently, an image blending technique is
applied to generate the final aligned result.

3. Proposed Method

This section introduces the conceptual framework of the proposed method, which
aims to develop a feature-based fundus image registration technique. The key objective
of this paper is to leverage bifurcations and crossovers along the morphological skele-
ton of blood vessel segmentation as feature points. The SBP-FIR method outlined in [9]
demonstrated promising performance in registering pairs of fundus images. This pro-
posal initially employs a pixel-wise segmentation method to define a region of interest
over blood vessels, commonly used for detecting bifurcations and crossovers in fundus
images [27–31]. After skeletonization, a pattern detection process is utilized to locate bi-
furcations and crossovers, followed by their characterization using Histogram of Oriented
Gradients (HOG). This characterization facilitates establishing a geometric relationship
between the fundus images, ultimately enabling image warping and blending for reg-
istration purposes. The proposed method unfolds across four principal stages: feature
extraction, feature matching, computation of the transformation matrix and subsequent
image warping, concluding with image blending, as illustrated in Figure 1. Unlike the
approach in [9], this method utilizes a deep learning-based technique for blood vessel seg-
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mentation. The primary objective is to enhance segmentation accuracy while concurrently
reducing processing time, complemented by the utilization of the FREAK descriptor.

Figure 1. The flowchart illustrating the proposed method delineates sequential stages for processing
both source and target images. Each step is accompanied by paired images, with stages shadowed in
the background indicating steps applied individually to images.

3.1. Flowchart Description

Figure 1 presents an outline of the proposed method. Initially, a pair of color fundus
images constitutes the input. Feature point extraction prioritizes the blood vessels area,
followed by blood vessels segmentation on the original fundus images. This is succeeded
by thinning or skeletonization to detect bifurcation patterns in the thinned images. Subse-
quently, descriptors represent feature points in each image, facilitating their matching for
identification of shared points between the source and target images. Once the relationship
between points in the source and target images is established, a transformation matrix
is computed and applied to warp the source image. Finally, a blending process ensures
seamlessness in the resulting image, mitigating visible seams due to potential exposure
variations in the overlapped regions.

The proposed method demonstrates significant advancements compared to its pre-
decessor [9], primarily attributed to a shift in the segmentation approach and feature
extraction techniques. Transitioning from a pixel-wise segmentation to leveraging U-Net
for blood vessel segmentation markedly heightens accuracy [38] and accelerates processing
times. This adoption of deep learning enhances segmentation precision and optimizes com-
putational demands. Additionally, employing the FREAK descriptor in feature extraction
replaces the Histogram of Oriented Gradients (HOG) descriptor, aiming to accelerate the
process without compromising accuracy [39]. Moreover, refining the matching process
by omitting certain verification methods from the previous approach increases efficiency,
allowing for faster registration while preserving potential matches. These strategic modifi-
cations collectively enhance the speed and precision of image registration, positioning the
new method as a significant improvement over its predecessor. Further elaboration on the
method is provided in subsequent sections.

3.2. Feature Extraction

Methods in fundus image registration that utilize the entire image for alignment and
determine error based on similarity measures often struggle when aligning the complete
fundus image surface [40]. In the proposed method for fundus image registration, feature
point detection relies on vessel extraction from the fundus image. Hence, a robust method
for detecting the vascular structure is necessary.

For this, the preprocessing stage begins with extracting the green channel of the fundus
image, as it typically exhibits greater contrast between blood vessels and background.
However, fundus images often appear dark, so to enhance brightness and contrast, gamma
correction is applied first, as described by Equation (1):

y = 255
( x

255

) 1
γ (1)

where x is the original pixel, y is the resultant pixel and γ is the gamma correction value.
For the proposed method, γ was set to γ = 1.5 [41]. Through this process, the tonal
response of the image is adjusted, emphasizing the darker areas of the fundus image while
compressing the brighter ones. Subsequently, preprocessing continues with the application
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of Contrast Limited Adaptive Histogram Equalization (CLAHE) [42], enhancing the visual
quality of the fundus image while avoiding artifacts that other traditional histogram
equalization methods may produce. The preprocessing steps are illustrated in Figure 2.

Figure 2. Preprocessing steps preceding blood vessel segmentation within the fundus image.

Following preprocessing, the subsequent stage in feature extraction for the fundus
image involves blood vessel segmentation. For this task, patch-based segmentation is
conducted using U-Net [12], as employing the entire image for both training and prediction
strategies hinders U-Net from achieving satisfactory results in vessel segmentation [43].
Traditional segmentation methods are avoided in the proposed method due to evidence
indicating that deep learning-based approaches are often faster and more accurate [44],
showcasing superior performance compared to human experts in retinal vessel segmenta-
tion [38].

Processing an entire high-resolution fundus image in one go can require significant
memory resources, especially for deep learning models. Therefore, to reduce the memory
usage demanded during training or inference, patch-based segmentation is conducted. This
type of segmentation involves three basic steps: partitioning (dividing the fundus image
into smaller patches), processing (performing blood vessel segmentation), and aggregation
(combining the segmented patches to generate a final segmented output for the entire
fundus image). It offers several benefits, such as the ability to handle large images, enhance
local context capture, robustness to variations, data augmentation, and generalization,
among others.

The proposed methodology utilized the classical U-Net architecture, structured with
convolutional blocks employing a downsampling schema facilitated by max pooling. Each
block integrates 3 × 3 convolutional layers activated by Rectified Linear Units (ReLU) to
ensure feature extraction and representation. The upsampling component restores the
spatial resolution while preserving vital skip connections, culminating in an output layer
comprising 1 × 1 convolutional layers with sigmoid activation. Designed to the task of
blood vessels segmentation within fundus images, this approach performs a patch-based
segmentation strategy using U-Net. The focus is on bifurcation detection, so the network
undergoes exclusive training on patches containing at least one bifurcation, guiding the
model to recognize these essential points. By utilizing the FIVES dataset [16]—a repository
containing 800 high-resolution color fundus images, meticulously annotated at the pixel
level—the network navigates its learning process.

The training consists of distinct phases aimed at refining the model’s understanding.
Initially, 2000 patches are utilized, with a learning rate of 1 × 10−4 over 20 epochs. This
initial training is followed by two fine-tuning stages, involving entirely new patch imagery.
The first fine-tuning phase utilizes 2000 new patches, extending through 20 epochs with a
reduced learning rate of 3 × 10−5. Subsequently, the second fine-tuning phase intensifies
the learning with 3000 patches, reduced to 5 epochs while refining towards a learning rate
of 1 × 10−5. This detailed approach aims to enhance the U-Net model’s ability to delineate
blood vessels and increase its sensitivity to identifying crucial bifurcation points within
fundus images, leveraging a sequenced training methodology for optimal performance.
Figure 3 illustrates the segmentation result for patches and for the entire image after the
aggregation step, producing the blood vessel segmentation mask.
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Figure 3. (On the left side) Depicted are the original fundus images and the patches extracted
after preprocessing. (On the right side) Presented are the predictions of the preprocessed patches
and the final fundus image segmentation with composite result derived from integrating all the
segmented patches.

Next, the Zhang-Suen thinning algorithm [45] is employed to perform thinning on the
image, with the aim of extracting the center lines of blood vessels previously segmented by
the U-Net model. This specific algorithm works by isolating the central pathways within
a binary image, achieved through the elimination of image contour points and retaining
only those points that constitute the skeleton structure, thus preserving the bifurcation
points within the skeleton of the fundus image blood vessels. Through multiple iterations,
the algorithm progressively refines and consolidates these skeletons to derive the final
representation of vascular centerlines. The outcome of applying this algorithm to the blood
vessel segmentation of a fundus image is visually depicted in Figure 4.

Figure 4. Segmentation mask illustrating blood vessels within a fundus image alongside the outcome
post-application of the thinning algorithm to derive the vessel segmentation skeleton.

Finally, feature points are identified by analyzing patterns within the skeleton. Dif-
ferent orientations of T- and Y-shaped patterns are established to detect these specific
configurations of foreground and background pixels within the vessel segmentation skele-
ton. The Hit-or-Miss transform, a binary morphological operation using two structuring
elements (B1 and B2), is employed to represent both the foreground (i.e., the morphologi-
cal skeleton of blood vessel segmentation) and the background of the searched patterns.
Equation (2) defines the bifurcation patterns observed across the skeleton image (A):

A ⊛ B = (A ⊖ B1) ∩ (Ac ⊖ B2) (2)
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Here, symbols ⊛, ⊖, and ∩ denote convolution, erosion, and intersection operators,
respectively. B combines structuring elements, where B1 signifies the pattern’s skeleton and
B2 signifies its background. Additionally, Ac denotes the complement of the skeleton image.

In this context, bifurcations are identified by finding vessel pixels in their 8-neighborhood
that have three non-adjacent vessel pixels. These particular patterns are illustrated in
Figure 5.

Figure 5. The structuring elements (top) illustrate the patterns (bottom) used to detect bifurcations
within the skeleton of fundus images, where in the structuring elements, 1 represents the foreground
(i.e., blood vessel skeleton) and −1 represents the background.

3.3. Feature Matching

Once the feature points within the fundus image are identified, establishing the geo-
metric relationship between images involves associating features from the source image
with their counterparts in the target image. Initially, bifurcation points undergo characteri-
zation via a feature descriptor to identify their corresponding points in the other image.
Given the limited texture in fundus images, primarily dominated by the background,
a robust feature descriptor becomes crucial. For this purpose, the FREAK descriptor is
employed, known for its computational and storage efficiency, as well as its effectiveness
in matching through Hamming distance [46], ensuring reliable accuracy and robustness.

The FREAK descriptor is inspired by the human retina, with the goal of mimicking
retinal photoreceptors using pixels. To accomplish this, the descriptor utilizes a configura-
tion of partially overlapped receptive fields arranged in seven rings, each containing six
receptive fields. This arrangement simplifies the construction of the descriptor.

Each receptive field undergoes filtering using a Gaussian kernel with a standard de-
viation of σ = 3.0. When combined with the central feature point position, these filtered
receptive fields result in a total of 43 receptive fields forming the descriptor, as illustrated in
Figure 6. In this particular application, the distances from each of the 7 rings to the bifurca-
tion point, arranged from the innermost to the outermost, are 4, 6, 8, 13, 18, 26, and 33 pixels,
with their respective radii being 1, 2, 3, 4, 6, 9, 13, and 18 pixels. These measurements play a
crucial role in determining the spatial arrangement and relative positioning of the receptive
fields concerning the bifurcation point within the descriptor’s construction.

In initiating the construction of a descriptor using FREAK, the initial step involves
calculating the intensities of the receptive fields to ascertain the orientation, denoted as O,
of the feature point. This orientation determination follows Equation (3):

O =
1
M ∑

Po∈G

(
I
(

Pr1
o

)
− (I

(
Pr2

o

)) Pr1
o − Pr2

o
∥Pr1

o − Pr2
o ∥

(3)

where G is the set of all pairs used to compute the local gradient, which are show in Figure 7,
M is the number of pairs in G, and Pri

o is the vector of the spatial coordinate of the center of
the receptive field.
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Figure 6. Receptive fields utilized to characterize each feature point within fundus images.

Figure 7. Receptive field pairs employed for computing the orientation of feature points within
fundus images.

To construct the binary descriptor for each bifurcation, each of the 43 receptive fields
is compared with the others, resulting in a 903-bit descriptor. The value of each bit is
determined according to Equation (4):

T(Pa) =

{
1 I

(
Pa

r1)− I
(

Pa
r2) > 0

0 otherwise
(4)

where the intensities I(Pa
r1) and I(Pa

r2) correspond to the centers of the smoothed re-
ceptive fields within a pair. In prior research [14], it was noted that a 512-bit descriptor
provided effective results. Consequently, a selection process is implemented to identify the
most relevant pairs. This selection process involves learning, where the determination of
the best pairs depends on their correlation, denoted as ρ. For this particular application,
a correlation threshold of −0.2 < ρ < 0.2 is set.

Each feature point is paired with its corresponding nearest neighbor in the other im-
age. In contrast to an alternative approach [9], this proposed method omits the utilization
of cross-checking and the Second Nearest Neighbor (SNN) verification techniques. Al-
though cross-checking provided advantages by minimizing false positives and improving
match reliability, it runs the risk of discarding potentially valid matches lacking mutual
correspondence due to perspective differences, occlusion, or scene discrepancies between
fundus images. Similarly, while SNN might also result in the exclusion of valid matches, its
effectiveness depends on establishing a reliable threshold between the nearest and second
nearest neighbor. Additionally, both these verification methods increase the computational
load of the feature matching process. Figure 8 illustrates on the top the resulting matches
between two fundus images, illustrating the application of the previously described con-
siderations in the matching process.
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Figure 8. Matches acquired for a pair of fundus images using the nearest neighbor approach (top)
and matches identified as inliers following the application of RANSAC (bottom).

3.4. Transformation Matrix Computation

The process of determining the geometric relationship between the images involves
computing the transformation matrix. Initially, RANSAC distinguishes between inliers
and outliers to derive this transformation matrix. Traditionally, RANSAC randomly se-
lects matches to compute a transformation and then determines the number of inliers and
outliers for that specific transformation. Yet, in this application, the random selection is
restricted, exclusively selecting pairs with a distance greater than a predefined thresh-
old—experimentally set to 20 pixels in this context. This restriction aims to mitigate the
influence of localization error on registration error, as outlined in [9]. Figure 8 illustrates on
the bottom the resulting inlier matches between the matches shown on the top, demonstrat-
ing the application of the previously described considerations in the RANSAC process for
separating inliers from outliers.

Some applications may opt for complex transformation models; however, the selection
of the best mapping primarily relies on the unique pair of registered images [47]. Hence,
considering the advantages associated with a similarity transformation—which includes
computational simplicity and requiring minimal correspondences—this model becomes
the choice for registering fundus image pairs. This preference is particularly beneficial
when faced with challenges inherent in fundus images, such as hidden blood vessels due
to disease progression, which restricts the availability of adequate correspondences.

In longitudinal studies and super-resolution imaging involving fundus images, the fo-
cus usually centers on aligning images captured from similar or identical perspectives,
leading to considerable overlap between the images being registered. Unlike the complexi-
ties faced in fundus image mosaicking, where merging multiple images requires meticulous
consideration of the retina’s curvature and intricate structures, longitudinal studies and
super-resolution tasks face less influence from curvature during the registration process.

The considerable overlap found in these scenarios naturally mitigates the impact
of the retina’s curvature on the alignment process. With significant overlap, the areas
of interest within the images display similar perspectives, reducing the impact of the
retina’s curvature-induced non-linear deformations. Consequently, the need for complex
transformation models that precisely address these non-linear distortions diminishes in
longitudinal studies and super-resolution imaging. Instead, focus shifts to optimizing
computational efficiency, preserving structural integrity, and ensuring consistent and
accurate alignment of overlapping regions. This approach simplifies the registration
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process, facilitating clearer interpretations and comparative analyses over time or across
various image resolutions within these specific applications of fundus imaging.

3.5. Image Blending

When aligning fundus images to a unified coordinate system, the blending process
aims to create a seamless image, eliminating visible image boundaries. Pixel intensities at
corresponding locations across different fundus images are expected to match precisely,
but practical scenarios deviate from this ideal state. Despite compensating for variations,
certain issues may persist, such as the visibility of fundus image edges due to factors like
vignetting, misregistration, and radial distortion. Burt and Adelson’s work on multiband
blending [48] is a well-established and effective method for creating mosaics, notably
reducing blurring and ghosting artifacts.

This multiband blending method, often known as Laplacian pyramid blending, intro-
duces a pyramid-based approach for seamlessly merging images. The approach involves
decomposing images into multiple levels or bands of varying spatial frequencies using a
Laplacian pyramid. The pyramids consist of numerous layers capturing diverse scales of
details, ranging from coarse to fine. The blending process entails combining corresponding
layers from these Laplacian pyramids extracted from the fundus images to be merged,
from the coarsest to the finest details. By weighting and merging these layers at each
pyramid level, the method gradually reconstructs the merged image. This approach utilizes
the frequency domain representation of images to smoothly transition low-frequency com-
ponents from one image to the high-frequency components of another, thereby achieving
a seamless and artifact-free blend. Additionally, Laplacian pyramid blending effectively
preserves edge details and enhances the visual quality of the resulting merged image.
The results derived from the application of this method to registered fundus images are
demonstrated in Section 4.5.

4. Experimental Results

In this section, an extensive evaluation of the proposed methodology is conducted
through experimentation using a well-established public database. Initially, a detailed
explanation behind the choice of the specific databases for segmentation and registration
evaluation is provided. Subsequently, the evaluation criteria and metrics employed in the
analysis of these two tasks are explicated. This is followed by a comprehensive quantita-
tive analysis of the segmentation process, alongside a comparison between the proposed
approach for fundus image registration and existing methodologies. Furthermore, no-
table instances showcasing successful outcomes achieved through the application of the
proposed method are presented.

4.1. Datasets

The initial step in the fundus registration process involves segmenting blood vessels
from the fundus image. This constitutes the basis of feature extraction, achieved through
the traditional U-Net architecture trained with the FIVES dataset.

This dataset comprises 800 fundus images, each with a resolution of 2048 × 2048
and a field of view of 50°. Within this set, 200 images are specifically designated for
testing purposes. Sourced from 573 patients aged between 4 and 83 years, the dataset
encompasses various retinal diseases, including Age-related Macular Degeneration (AMD),
Diabetic Retinopathy (DR), and glaucoma, as well as images depicting healthy retinas.
The dataset ensures an even distribution of images across each disease category. Notably,
approximately 5% of the images were deliberately included due to their poor readability by
experienced ophthalmic doctors, aiming to simulate real clinical scenarios. Table 1 offers a
comprehensive overview of the FIVES dataset’s characteristics, alongside those of other
datasets like STARE, DRIVE, ARIA, and CHASEDB1, which were utilized for evaluating
the segmentation in the registration method employed in this study. Additionally, Figure 9
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presents image examples from each category within the FIVES dataset, along with their
corresponding ground-truth blood vessel segmentation masks.

Table 1. Summary of publicly available datasets used to evaluate the blood vessel segmentation
network for the fundus image registration task.

Dataset Year Number
of Images Resolution Disease Annotators

STARE 2000 20 605 × 700 10 healthy, 10 diseases 2
DRIVE 2004 40 768 × 584 33 healthy, 7 DR 3
ARIA 2006 161 576 × 768 61 healthy, 59 DR, 23 AMD 2

CHASEDB1 2011 28 990 × 960 28 healthy 2
FIVES 2021 800 2048 × 2048 200 healthy, 200 AMD, 200 DR, 200 glaucoma Group

Figure 9. Images from the FIVES dataset utilized for both training and testing data during the
segmentation phase in the fundus image registration methodology, accompanied by their respective
ground-truth annotations.

This analysis exclusively utilizes the Fundus Image Registration (FIRE) dataset for as-
sessment. The choice of this dataset is driven by the limited availability of public databases
explicitly designed for fundus image registration. Currently, only four databases contain
images suitable for registration (e-ophtha [49], RODREP [50], VARIA [51], and FIRE [52]).
Among these datasets, FIRE stands out as the only repository offering ground truth
for registration, featuring ten control points. This distinctive attribute enables quanti-
tative evaluation of method performance and facilitates meaningful comparisons with
prior research.

The FIRE dataset comprises 129 fundus images, each with a resolution of 2912 × 2912
and a field of view spanning 45°, resulting in 134 image pairs. These images originate from
39 patients, ranging in age from 19 to 67 years, distributed across three distinct classes,
each serving a specific registration purpose: category S for super resolution, category P
for mosaicking, and category A for longitudinal studies. Notably, category A contains
registrable pairs reflecting anatomical changes such as vessel tortuosity, microaneurysms,
and cotton-wool spots. Table 2 provides an overview of the dataset’s characteristics, while
Figure 10 visually represents the registrable image pairs, accompanied by their respective
ground-truth control points, divided by category.
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Table 2. Description of each category comprising the FIRE dataset.

Total Image Pairs Aproximate Overlap Anatomical Changes

Category S 71 >75% No
Category P 49 <75% No
Category A 14 >75% Yes

Figure 10. Fundus image pairs designated for registration within the FIRE dataset are classified into
three distinct categories, each accompanied by its corresponding annotated control points. These
control points are established based on the provided coordinates within the dataset, serving as the
ground truth.

4.2. Evaluation Metrics

The accuracy of blood vessel segmentation is evaluated utilizing the Intersection over
Union (IoU) metric, also known as the Jaccard Index. This metric quantifies the extent of
overlap between the predicted blood vessel mask and the ground truth mask, as described
by Equation (5):

IoU =
predicted ∩ ground truth
predicted ∪ ground truth

(5)

where ∩ represents the intersection operation, denoting the common region where the
predicted blood vessels and ground truth masks overlap, while ∪ denotes the union
operation, encompassing the entirety of both masks, including their overlapping and
non-overlapping areas.

The IoU metric is a fundamental measure for evaluating blood vessel segmentation in
fundus images, offering a precise quantitative assessment of their accuracy in delineating
blood vessel structures.

In evaluating the extraction of feature points, the uniformity of their spatial distribution
is quantified. This assessment employs entropy, a measure reflecting the randomness or
disorder within the distribution. Entropy computation involves partitioning the images into
fixed-size bins and tallying the points within each bin to establish a probability distribution.
Subsequently, this distribution is used to compute the Shannon entropy, as represented in
Equation (6):

H(X) = − ∑
x∈X

p(x) log2 p(x) (6)



Electronics 2024, 13, 1736 14 of 24

where H is the entropy and p(x) is the probability of finding a feature point in bin x. In this
application, the bin size was set to 32 × 32. Concerning the distribution of feature points,
higher entropy values signify a more uniform and evenly spread distribution, while lower
entropy values suggest a clustered or biased distribution.

Expanding the spatial coverage of feature points in fundus image registration provides
multiple advantages. It enhances the robustness of the registration process against deforma-
tions, rotations, scaling, or perspective alterations. Additionally, evenly distributed feature
points reduce ambiguity in the matching process and are advantageous in situations where
fundus image segments may be occluded or altered, such as in longitudinal studies. This
dispersion of feature points guarantees the availability of reference points for matching,
even in affected or obscured areas of the image.

On the other hand, the fundus registration evaluation method follows the guidelines
outlined in [17], leveraging strategically positioned control points identified by experts
across overlapping fundus image pairs. Registration error is computed as the average
distance between each control point in the target image and its corresponding point in the
source image after registration. This assessment was conducted across the entire dataset
and separately for different categories.

To illustrate accuracy across different error thresholds, a 2D plot was created. Here,
the x-axis indicates the error thresholds, while the y-axis shows the percentage of image
pairs successfully registered at each threshold. Successful registration occurs when the error
is below the defined threshold. The resulting curve displays the success rate concerning
the desired accuracy, enabling comparison between methods and assisting in selecting the
most appropriate approach based on specific accuracy needs. Additionally, the curve offers
a thorough evaluation by assessing the area under the curve (AUC).

4.3. Segmentation Performance

Accurate segmentation of blood vessels in fundus images is crucial for facilitating
precise image registration. This subsection presents an evaluation of the blood vessel
segmentation performance achieved through the proposed methodology. Leveraging a
robust segmentation framework that integrates U-Net architecture, this approach aims
to delineate blood vessel structures accurately. Through comprehensive evaluation using
diverse metrics, including visual assessments and quantitative evaluation, a detailed
examination of the segmentation results is provided.

The U-Net model for blood vessel segmentation underwent several training iterations
using various datasets and adjustments. Initially, 1000 randomly chosen patches from
the untreated green channel were trained for 20 epochs, resulting in an IoU of 0.5152.
To improve performance, the training was extended to 30 epochs, leading to an IoU
increase to 0.5436, with loss and accuracy scores of 0.1078 and 0.9670, respectively, along
with comparable validation results.

To refine the segmentation quality, CLAHE was applied to the same 1000 patches,
resulting in an average IoU of 0.6165 after 20 epochs. Subsequently, 2000 preprocessed
patches, with an emphasis on bifurcation areas, were utilized, achieving an IoU of 0.7178.
However, this approach displayed slightly reduced training and validation scores for loss
and accuracy. This experiment demonstrated improved IoU by concentrating on more
extensive blood vessel areas during training. Figure 11 depicts the accuracy and loss curves
for this experiment, which are crucial metrics for evaluating the model’s performance.
These curves illustrate the initial training phase before the fine-tuning phases.

Employing the weights from the most successful experiment, a fine-tuning stage
was initiated. The first fine-tuning utilized 2000 patches focusing on bifurcation areas,
integrating Gamma correction and CLAHE, resulting in an IoU of 0.7491 over 20 epochs,
demonstrating improved scores across all metrics. Subsequently, the second fine-tuning,
featuring a reduced learning rate and additional patches, achieved an IoU of 0.7559 after
5 epochs, maintaining competitive loss and accuracy values. Notably, this final fine-tuning,
limited to 5 epochs, did not yield a significant increase in IoU beyond this point.
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Figure 11. The loss curve and accuracy curve generated during the initial phase of training for the
U-Net model in the blood vessels segmentation process within the fundus image registration method.

Figure 12 showcases sample qualitative outcomes of the segmentation phase, com-
plemented by Table 3, which outlines the IoU results across various datasets utilized for
evaluating this segmentation network.

Figure 12. Example results for the segmentation with U-Net employed as part of the fundus image
registration method.

Table 3. Datasets utilized to evaluate the performance of the U-Net architecture in blood vessel
segmentation.

Dataset Number of Images Intersection over Union

STARE 20 0.5402
DRIVE 40 0.5602
ARIA 161 0.4532

CHASEDB1 28 0.6326
FIVES 200 0.7559

The disparity in performance between the U-Net model trained on the FIVES dataset
and its applicability to established fundus blood vessel segmentation datasets highlights
the intricate challenges associated with model adaptability and generalization in medical
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image analysis. While the model excels within the controlled parameters of the FIVES
dataset—characterized by unique imaging conditions and diverse pathology presenta-
tions—its translation to other datasets reveals intricate challenges. Variations in dataset
characteristics, including differences in image quality, diverse pathologies, and demo-
graphic representations, present challenges for seamless model generalization. Addition-
ally, differences or inconsistencies in annotation quality and precision across evaluation
datasets pose significant obstacles, potentially impacting the model’s adaptability. This
issue is highlighted in [16], where improper labeling from the DRIVE dataset is noted.
Furthermore, the U-Net model’s effectiveness within the FIVES dataset may arise from
a degree of overfitting, in which it has adjusted to the specific unique features of that
dataset during training, resulting in reduced adaptability to the distinct characteristics
presented by evaluation datasets. These challenges underscore the urgent need for more
comprehensive, diverse, and meticulously annotated datasets, representative of real-world
variability, to foster the development of robust and adaptable segmentation models in
fundus image analysis. This approach can help mitigate issues related to dataset bias,
annotation quality, domain shift, and overfitting.

Quantitative evaluation of blood vessel segmentation in the FIRE dataset is not possible
because there is no ground truth data available for vessel segmentation. However, Figure 13
displays examples from every category of fundus images in the FIRE dataset, showing their
respective segmentations produced using the proposed method.

Figure 13. Example results for the segmentation with U-Net for different categories of FIRE dataset.

4.4. Feature Extraction and Feature Description

The evaluation of feature extraction involves analyzing the spatial distribution across
fundus images, comparing methods such as SIFT [18], Oriented FAST and Rotated BRIEF
(ORB) [53], and SBP-FIR [9]. Table 4 outlines the average detection of feature points within
the FIRE dataset’s fundus images for these methods and the proposed approach, along
with their respective mean entropy values.

Table 4. Comparison of mean feature point count and entropy values among ORB, SIFT, SBP-FIR,
and the proposed method.

ORB SIFT SBP-FIR Proposed Method

Average number of feature points 241 164 125 222
Average entropy 5.6809 5.9600 6.4245 7.0137
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The findings from Table 4 reveal that the proposed method achieves a balance in
feature extraction. It consistently detects more features on average than SIFT but fewer than
ORB, yet it achieves a superior distribution across fundus images. In image registration,
an abundance of feature points poses disadvantages, including increased memory usage
and processing time due to the need for describing and matching more features, thus
escalating computational complexity. Conversely, a scarcity of feature points limits method
coverage and robustness, potentially compromising the capture of sufficient information
to tolerate deformations or viewpoint changes. Moreover, a reduced number of feature
points could amplify the impact of even a small number of incorrect correspondences
on alignment accuracy. Therefore, the aim in registering fundus images is to maintain a
balance, as evidenced by comparing this method with other state-of-the-art approaches like
SIFT and ORB. An example of feature extraction for each method from Table 4 is illustrated
in Figure 14.

Figure 14. Examples showcasing feature extraction methodologies corresponding to each method
detailed in Table 4.

Finally, the FREAK feature descriptor method demonstrates the least correlated recep-
tive fields, an essential aspect in reducing the descriptor to 512 bits. Figure 15 displays the
paired receptive fields used to construct the descriptor across at least 50% of the fundus
image pairs in the FIRE dataset.

The observation from Figure 15 reveals a clear vertical pattern in the pairs employed
to construct the descriptor. This trend arises from the rotational adjustment made during
the angle computation of the points, demonstrating the FREAK descriptor’s capacity to
maintain invariance despite pattern rotations.
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Figure 15. Receptive field pairs employed during the feature description stage of the FREAK
descriptor, illustrating those utilized in at least 50% of the feature points across the entire FIRE dataset.

4.5. Registration Performance on the FIRE Dataset

This section explores the assessment of registration accuracy, a fundamental criterion
in assessing the effectiveness of the proposed fundus image registration method. The reg-
istration error is a crucial metric that reflects the alignment quality between registered
images, serving as an essential measure of the method’s precision and reliability. This
comprehensive analysis examines the registration success across different thresholds, re-
vealing the method’s robustness under varied alignment conditions and specifications.
Supported by visual representations displaying registered images from diverse categories
within the FIRE dataset, this section provides an evaluation providing valuable insights
into the method’s performance across a range of alignment scenarios.

Figure 16 displays the performance of various registration methods on the FIRE
dataset, assessing accuracy for each category and overall. Additionally, Table 5 presents
the area under the curve (AUC) for all compared methods, along with details on execution
time and the transformation model used in each approach.

Figure 16. Evaluation of retinal image registration techniques on the FIRE dataset, encompassing the
outcomes of the proposed approach.
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Table 5. Comparison of the Area Under the Curve (AUC) values for diverse fundus image registration
methods, along with their corresponding execution times in seconds and the respective transformation
models utilized.

Category
S

Category
P

Category
A FIRE Execution

Time
Transformation

Model

REMPE (H-M 17) [20] 0.958 0.542 0.660 0.773 198 Ellipsoid eye model
Harris-PIIFD [54] 0.900 0.090 0.443 0.553 13 Polynomial

GDB-ICP [55] 0.814 0.303 0.303 0.576 19 Quadratic
ED-DB-ICP [56] 0.604 0.441 0.497 0.553 44 Affine

SURF+WGTM [57] 0.835 0.061 0.069 0.472 – Quadratic
RIR-BS [58] 0.772 0.004 0.124 0.440 – Projective

EyeSLAM [59] 0.308 0.224 0.269 0.273 7 Rigid
ATS-RGM [60] 0.369 0.000 0.147 0.211 – Elastic

SBP-FIR [9] 0.835 0.127 0.360 0.526 – Similarity
Proposed Method 0.903 0.159 0.562 0.596 96 Similarity

Yang et al., as detailed in [55], developed a technique aimed at registering diverse
scenes, from natural landscapes and built environments to medical imagery such as fundus
images. Their method relies on feature points such as corners. Depending on the partic-
ular image pair being examined, they utilize different transformation models, including
similarity, affine, homography, and quadratic models.

Similarly, the study by Chen et al. [54] utilizes corners identified through a Harris de-
tector as feature points for registration. Their approach adjusts different models depending
on the number of matches obtained from the feature extraction, description, and matching
processes. Their descriptor emphasizes the primary orientation of the points and relies
on gradients.

Other comparative studies, such as [56], are inspired by [55], refining the generation of
keypoint matches during initialization. This adjustment involves extracting Lowe keypoints
from the gradient magnitude image and enhancing the keypoint descriptor by integrating
global-shape context through edge points. The purpose is to overcome a limitation in [55],
where its performance faces challenges when dealing with image pairs showing substantial
non-linear intensity differences.

In [58], a novel approach to fundus image registration is presented, focusing on a
unique structural feature. Unlike traditional methods that depend on single bifurcation
point angles, this approach employs a structure-matching technique. It employs a master
bifurcation point and its three connected neighbors to create a distinct vector, consisting
of a normalized branching angle and length. This vector remains stable under typical
transformations, minimizing uncertainty in matching and helping to resolve ambiguous
matching situations. Its simplicity and efficiency enable autonomous implementation or
integration with other methods, providing versatility in hybrid or hierarchical setups.

Figure 16 shows significant differences in results among different categories. Cate-
gories S and A, characterized by extensive overlapping regions, naturally produce more
correspondences, resulting in improved matching performance. In contrast, category P
presents challenges due to the limited potential matches within the overlapping area of
fundus images. Likewise, category A encounters potential reductions in matches due to
morphological changes observed in longitudinal studies.

In category S, the GDB-ICP method demonstrates exceptional performance, achieving
numerous successful registrations with minimal errors. However, it achieves successful
registration for only 84.5% of the category. In contrast, the proposed method, along with
Harris-PIIFD and REMPE, achieves a 100% success rate.

In category A, REMPE emerges as the leader, boasting a success rate of 92.85%. It
is followed by Harris-PIIFD and the proposed method, achieving 78.57% and 71.42%,
respectively. However, the proposed method outperforms both alternatives in scenarios
with lower thresholds.



Electronics 2024, 13, 1736 20 of 24

In category P, REMPE surpasses other methods, except for GDB-ICP, which outper-
forms REMPE in registration error thresholds less than 10 pixels. The proposed method
achieves a 51.02% success rate in category P, while GDB-ICP and REMPE achieve 34.69%
and 95.91%, respectively.

Table 5 provides a comprehensive examination of the registration performance of
these methods, incorporating the AUC metrics alongside details about the transformation
model and execution time. It is worth noting that despite REMPE’s high success rate
in registering fundus images, it exhibits considerably slower execution times compared
to the other methods discussed. Our proposed method, while achieving comparable
performance with REMPE in certain categories, significantly reduces the execution time
by over 50%, improving efficiency without compromising efficacy. Figure 17 illustrates
sample results for each category within the FIRE dataset, showcasing matches and the
results after registration.

Figure 17. Image pairs within the FIRE dataset showcase registration outcomes for super-resolution
imaging (top row), image mosaicking (central row), and longitudinal study (bottom row).

5. Discussion

This study aimed to create a novel fundus image registration method, leveraging
bifurcations as feature points alongside a deep learning-based approach for blood vessel
segmentation. The main objective was to establish a geometric relationship between fundus
images by extracting features to aid in their alignment. Furthermore, the effectiveness of
FREAK as a keypoint descriptor in the registration process was investigated.

The investigation produced significant insights. Particularly, the binary descriptor
FREAK proved highly effective in fundus images, surpassing expectations given the texture
limitations. Moreover, a clear correlation emerged between the quality of blood vessel seg-
mentation, facilitated by U-Net, and the subsequent registration accuracy. This relationship
was underscored by a qualitative comparison with previous methodologies [9,10].

This aligns with the existing literature, demonstrating that bifurcations acquired from
blood vessel segmentation using a similarity transformation can compete with approaches
employing more complex feature extraction and models. These results imply that even
simpler methods can achieve competitive outcomes in fundus image registration.
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The practical implications of this research are significant. The decrease in the execution
time of fundus image registration moves it closer to integration into clinical practice. Addi-
tionally, the comprehensive evaluation conducted in this study establishes a benchmark for
future methodologies, assisting in assessing their suitability for clinical adoption.

However, a notable limitation of this study is the use of separate datasets for blood ves-
sel segmentation and registration evaluation. This setup makes it challenging to establish a
direct correlation between enhanced segmentation and improved registration accuracy. Fu-
ture research efforts should prioritize creating and utilizing datasets that include both blood
vessel segmentation ground truth and control points, enabling integrated evaluations.

In terms of future directions, investigating the possibility of automatically choosing
transformation models according to fundus image attributes presents an exciting prospect.
Since the most suitable transformation model might differ depending on the characteristics
of fundus images, creating adaptable models could greatly improve registration accuracy
across various fundus image types.

In conclusion, this study highlights the potential of simplified approaches in achieving
effective fundus image registration and suggests possible research directions for refining
registration techniques suitable for practical clinical implementation.

6. Conclusions and Future Work

This study reveals the potential of simplified yet robust fundus image registration
techniques, utilizing bifurcations derived from blood vessel segmentation. The substantial
progress in reducing execution time represents a significant step towards the practical
integration of these methods into clinical workflows. However, a critical limitation arises
from the use of different datasets for segmentation and registration evaluation, hindering
a complete demonstration of the causal relationship between improved segmentation
and registration accuracy. Future investigations require unified datasets containing both
ground truth segmentation and registration control points to enable a more comprehensive
validation of these techniques.

Research in this field necessitates attention on multiple fronts. Firstly, refining reg-
istration algorithms to achieve an optimal balance between reduced execution times and
sustained accuracy is crucial. This effort would enable smooth integration of these method-
ologies in clinical practice. Secondly, defining precise accuracy benchmarks is a critical
task. Establishing these benchmarks is essential not only for validation but also for the
integration of these methodologies into clinical workflows. The absence of defined accuracy
standards poses a significant challenge in determining the suitability of these methods for
real-world clinical applications. Hence, future research must prioritize the establishment of
these accuracy benchmarks to optimize the validation and adoption of these techniques in
clinical practice.
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