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Abstract: Federated learning has been a hot topic in the field of artificial intelligence in recent years
due to its distributed nature and emphasis on privacy protection. To better align with real-world
scenarios, federated class incremental learning (FCIL) has emerged as a new research trend, but it
faces challenges such as heterogeneous data, catastrophic forgetting, and inter-client interference.
However, most existing methods enhance model performance at the expense of privacy, such as
uploading prototypes or samples, which violates the basic principle of only transmitting models
in federated learning. This paper presents a novel selective knowledge fusion (FedSKF) model to
address data heterogeneity and inter-client interference without sacrificing any privacy. Specifically,
this paper introduces a PIT (projection in turn) module on the server side to indirectly recover
client data distribution information through optimal transport. Subsequently, to reduce inter-client
interference, knowledge of the global model is selectively absorbed via knowledge distillation and
an incomplete synchronization classifier at the client side, namely an SKS (selective knowledge
synchronization) module. Furthermore, to mitigate global catastrophic forgetting, a global forgetting
loss is proposed to distill knowledge from the old global model. Our framework can easily integrate
various CIL methods, allowing it to adapt to application scenarios with varying privacy requirements.
We conducted extensive experiments on CIFAR100 and Tiny-ImageNet datasets, and the performance
of our method surpasses existing works.

Keywords: federated learning; artificial intelligence; knowledge distillation; deep learning

1. Introduction

Federated learning (FL) has become popular in the field of artificial intelligence due
to the growing focus on privacy protection, and it allows multiple distributed devices or
data centers to cooperatively train a robust global model without transmitting samples [1].
The standard FL typically assumes a fixed class set for all clients, which does not align
with real-world scenarios. For instance, when a new virus emerges and spreads globally,
numerous medical data centers participating in federated learning will update the class set.
Recognizing the need to adapt to such changes, there is a universal call for the integration
of continual learning into federated learning, which is referred to as federated continual
learning (FCL). As a subdivision of FCL, federated class incremental learning (FCIL) has
gained increasing attention in recent years, resulting in a significant amount of excellent
work [2–7]. FCIL presents a more formidable challenge as it must simultaneously address
three key issues: catastrophic forgetting, data heterogeneity, and inter-client interference [5].
Moreover, FCIL also involves more complex privacy protection considerations [7].

Catastrophic forgetting is a challenge inherent in class incremental learning (CIL) [8],
where the model tends to forget the knowledge of the old classes when learning new
classes, leading to a significant decline in overall performance [9]. Over the years of
exploration, techniques in CIL such as knowledge distillation [10], rehearsal [10,11], and
class prototypes [12] have been proven to be effective in mitigating catastrophic forgetting.

Electronics 2024, 13, 1772. https://doi.org/10.3390/electronics13091772 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091772
https://doi.org/10.3390/electronics13091772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1802-4425
https://doi.org/10.3390/electronics13091772
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091772?type=check_update&version=1


Electronics 2024, 13, 1772 2 of 16

In FCIL, local catastrophic forgetting is propagated to the global model through aggregation,
leading to global catastrophic forgetting. On the basis of using local old model knowledge
distillation to weaken local catastrophic forgetting, Ref. [13] introduces global model
knowledge distillation as a strategy to alleviate global catastrophic forgetting. Ref. [14]
uploads a small number of samples to the server in order to create a compact global
dataset, while effective, this approach clearly compromises privacy. Ref. [4] proposed a
compromise solution by uploading perturbed class prototypes to the proxy server to build
additional global knowledge. Simultaneously, the clients utilize the real data rehearsal
method to mitigate forgetting. This approach achieves excellent performance but comes
with increased communication costs and longer training times. A more interesting solution
is generative data replay [7,15], which synthesizes global dataset through GAN [16] models
to avoid uploading additional information about samples. Ref. [7] pre-trains the global
model on the synthesized global data to transfer knowledge between tasks. Unfortunately,
the performance of this method is notably poor.

Data heterogeneity is an inherent problem in FL, stemming from factors such as
non-independent and identical data distributions (non-IID), missing classes, and different
data sources among clients [17]. Due to the non-IID nature of client datasets, local models
initialized with the same parameters will converge into divergent models [3]. This diver-
gence slows down the convergence speed and diminishes the performance of the global
model. Furthermore, in FCIL, the classes of each task among different clients may not
align perfectly, which leads to varying local models across clients. As these local models
are aggregated, they interfere with each other, resulting in bad performance of the global
model. This phenomenon is known as inter-client interference [5].

In FCIL, common methods to address data heterogeneity and inter-client interference
include global dataset [2,4,6,7] and parameter decomposition [5,18]. Creating a global
dataset or knowledge base can not only alleviate forgetting but is also beneficial for address-
ing data heterogeneity. The global dataset or knowledge base is typically class-balanced
and contains the most representative class knowledge. Ref. [4] employs global prototypes
to select the best old model. Ref. [6] pre-trains the global model on global fractal images.
However, these approaches increase the communication burden. Ref. [2] constructs a
global dataset from unlabeled public datasets and uses it to distill knowledge. However, it
requires additional prior knowledge and may not be ideal for all types of data. Parameter
decomposition [5,18] is another feasible and more secure approach to solve the above
problems. In FedWeIT [5], network weights are divided into global federated parameters
and sparse task-specific parameters. Each client receives selective knowledge from other
clients by re-weighting its task-specific parameters. This method not only effectively miti-
gates inter-client interference but also addresses catastrophic forgetting. It is important to
notice that the setting of FedWeIT does not fully adhere to traditional continuous learning.
Specifically, there are overlapping tasks in the FedWeIT setting. Old tasks may appear
in other clients during subsequent training, which reduces the challenge of catastrophic
forgetting. In this paper, we concentrate on a non-overlapping tasks scenario, which presents
greater challenges in terms of catastrophic forgetting and closely aligns with the original
setting of CL.

The privacy challenge in FCIL is more intricate than in traditional federated learning.
This complexity arises from the need to not only safeguard privacy beyond the client
but also carefully consider whether CIL methods within the client might compromise
privacy [7]. From the perspective of FL, privacy protection is its fundamental objective,
and this principle should also hold true for FCIL. Therefore, we advocate for privacy
protection in FCIL to be as stringent as in FL, which means that only the model should
be transmitted, without any additional information about data, such as class prototypes
or samples. However, certain existing approaches have made compromises on privacy in
order to enhance model performance [4,6,14]. While these compromises might be viable
under relaxed privacy constraints, they are not worthy of recommendation. From the
perspective of CIL, privacy protection is not always imperative and varies depending on
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the application scenarios. For instance, real data rehearsal involves storing small batches
of real samples for extended periods, which may not be acceptable in privacy-sensitive
domains like the medical field [7,15]. In order to deal with this problem, we propose the
exploration of a more general and adaptable algorithmic framework that can accommodate
different levels of privacy requirements and seamlessly integrate with various CL methods.

Recalling the original intention of federated learning [19], the exchange of models
without global datasets is crucial for maximizing privacy security. Exploring ways to fully
leverage the model to mitigate both global catastrophic forgetting and data heterogeneity
remains a valuable and ongoing research challenge. Model fusion via optimal transport
(OT), which is based on mathematics and fuses models without accessing training data, has
captured our attention. As far as we know, there has not been any work about OT in FCIL.
Yet, there is already some related work in FL. Refs. [20–22] successfully achieve one-time
knowledge transfer between non-IID neural networks using optimal transport. However,
it is worth noting that while optimal transport has shown promise in addressing data
heterogeneity in FL, it may not effectively tackle the challenges of class missing and global
catastrophic forgetting in FCIL scenarios. We noticed that, in recent years, pre-trained
transformer [23] has gained substantial of attention in the computer vision field and has
achieved state-of-the-art (SOTA) performance on public datasets in FCIL [24]. However,
transformers need substantial training data, which easily leads to over-fitting when dealing
with small datasets [25]. Additionally, their interpretability is poor, which limits application
fields. On the contrary, while the performance of convolutional neural networks may be
slightly lower than pre-trained ViT on public datasets, they still hold broader applicability
in real-world scenarios.

Based on the aforementioned analysis, we consider the following question: How
can three key issues—catastrophic forgetting, data heterogeneity, and inter-client interference—be
effectively mitigated in FCIL without transmitting any additional data except the model?

In this paper, we propose a method called FedSKF (selective knowledge fusion via
optimal transport in federated class incremental learning) within a non-overlapping tasks
setting, which effectively addresses three key issues in FCIL and can flexibly integrate CL
methods to deal with different privacy protection scenarios. Specifically, we introduce
a selective knowledge fusion mechanism to mitigate inter-client interference and data
heterogeneity. This method includes two modules: the selective knowledge synchronization
(SKS) module at the client and the projection in turn (PIT) module at the server. The SKS
module selectively assimilates knowledge through personalized classifiers and global
classification consistency loss. the PIT module sequentially projects the average model
into the feature space of each local model via optimal transport to fuse heterogeneous
knowledge. This process enhances the performance of the global model and facilitates
model convergence. To alleviate global catastrophic forgetting, we propose global forgetting
loss, which treats the old global model as a secondary distillation teacher. These approaches
operate directly on the model or its logit output without depending on specific CIL methods,
thereby ensuring the flexibility of our framework. Throughout the process, only the
model parameters are transmitted, maintaining a communication burden consistent with
traditional FL. Overall, our main contributions are as follows:

• A selective knowledge fusion mechanism with global classification consistency loss is
proposed in this paper which can effectively alleviate data heterogeneity and inter-
client interference in FCIL.

• A novel model aggregation strategy called PIT (projection in turn) is proposed to
improve the performance of the global model. This paper is the first to introduce
optimal transport into FCIL in order to mitigate data heterogeneity.

• Global forgetting loss is designed to reduce global catastrophic forgetting, which
makes use of the potential knowledge in the old global model.

• A universal and flexible FCIL framework is proposed in this paper which can integrate
various CIL methods to cater to different application scenarios with varying privacy
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levels. Furthermore, we conducted numerous experiments on CIFAR100 and Tiny-
ImageNet datasets.

2. Formulation

Before formally defining the FCIL problem, let us revisit the setting of CIL from the
client’s perspective. Traditionally, a client learns T tasks {T (1), T (2), ..., T (T)} in sequence,
where T (t) represents the t-th task and is trained on a labeled dataset D(t) = {x(t)i , y(t)i }Nt

i=1,
where Nt is the size of dataset D(t). The entire class set is denoted as C, and T (t) contains
non-overlapping subsets of classes C(t) ∈ C, which means C(a) ∩ C(b) = ∅ for any a ̸= b.
During the t-th task training phase, the data from previous tasks are unavailable. In
rehearsal-based methods, a small number of representative instances are stored as exemplar
set E ; accordingly, D(t) is updated to D(t) ∪ E . The goal of CIL is to fix a model θ(t) , which
not only acquires knowledge from the current task T (t) but also retains knowledge from
historical tasks {T (1), ..., T (t−1)}.

Now, let us extend CIL to the scene of federal class-incremental learning, which
involves a global server and multiple clients. We denote the number of clients as K. Each
client ci ∈ {c1, ..., cK} trains the t-th task T (t)

i on local dataset D(t)
i ∈ D(t). For any two

clients ca and cb, at the t-th task, D(t)
a ∩D(t)

b = ∅. It is worth mentioning that for each class,
the data from different clients are assumed to be non-IID [3]. After local training, each client
uploads its model θ

(t)
i to the server S , which then aggregates them into a global model θ

(t)
g .

None of the clients or servers are allowed to obtain raw data from each other. The ultimate
objective of FCIL is to aggregate a robust global model θg, which grasps all the knowledge
of all clients, including previous knowledge. Formally, the objective function is defined as:

θ∗g = arg min
θg

K

∑
k=1

T

∑
t=1

L(T (t)
k ; θ

(t)
k ; θg), (1)

where L is the loss function used to measure classification error.

3. Methodology

The overview of our method is depicted in Figure 1. Our framework achieves selective
knowledge fusion through two modules: selective knowledge synchronization (SKS) and
projection in turn (PIT). In the SKS module, each local model is segmented into a general
feature extractor and a personalized classifier. In each communication round, the parame-
ters of the global feature extractor overwrite those of the local feature extractor. However,
the classifier parameters are not directly synchronized. Instead, they are constrained by
global classification consistency loss, which guides local classifiers to selectively assimilate
knowledge from the global model. In the PIT module, we use optimal transport to fuse
models on the basis of FedAvg. Specifically, PIT selects a model from among local models
as the base model. Then, it projects the average of the local models into the feature space of
the base model, effectively projecting the abstract global knowledge into a specific feature
space. To ensure model convergence, PIT iteratively selects each client model as the base
model. Additionally, to address catastrophic forgetting, we employ three forgetting losses
to distill knowledge from the old model. The local forgetting loss and task-semantic distilla-
tion loss both distill knowledge from the old local model, working together to mitigate local
catastrophic forgetting. Thanks to the personalized classifier in SKS, there exist knowledge
discrepancies between the old global model and the old local model. Therefore, we propose
global forgetting loss, which helps alleviate global catastrophic forgetting by distilling
knowledge from the old global model. Each module is described in detail below.
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Figure 1. The presentation of our proposed FedSKF model. Each client selectively absorbs knowledge
from the global model through the SKS module and distills knowledge from both the old local model
and the old global model using three distinct loss functions. After local training, each client sends the
local model to the server. The server then performs model fusion through the PIT module to generate
a new global model, which is subsequently sent back to each client. The SKS module and PIT module
work together to complete the selective knowledge fusion mechanism (Note: ‘fe’ is short for feature
extractor, and ‘cls’ is short for classifier.).

3.1. Server Side: Projection in Turn via Optimal Transport

Optimal transport (OT) [26] is utilized for one-time knowledge transfer in FL. It
treats the parameters of two models as two feature spaces and computes a feature map
between them, thereby projecting the models from the source space to the target space, i.e.,
achieving the soft alignment of neural networks. Several works [20–22] have demonstrated
the effectiveness of OT in knowledge fusion and mitigating data heterogeneity.

In contrast to existing works, we utilize OT not simply for a one-time knowledge
transfer from local models to the global model, but rather to leverage its knowledge fusion
capability for model projection in the reverse direction. Our proposed method transfers
knowledge from the global model to a local model. Data heterogeneity leads to model
heterogeneity in FL [3]. While this is typically viewed as a challenge, it also contains hidden
information: model parameters indirectly encode client data distribution information. In
FedAvg [19], the averaging operation quickly imbues the global model with certain global
distribution insights. However, relying solely on the averaging model to access global
knowledge makes it challenging for clients to accurately learn the data distribution of
other clients, which hinders information transmission efficiency and accuracy. Based on the
aforementioned analysis, we speculate that enriching the global model with more accurate
data distribution information will improve its performance. Therefore, we employ OT
to re-project the averaged model space back into the original client space, thus indirectly
recovering the client’s original data distribution information. The experimental results
confirm the effectiveness of this idea.

We design a module named PIT (projection in turn) for model aggregation. In each
aggregation step, PIT selects a model from the numerous client models as the base model
and computes the average model. Subsequently, we follow the approach outlined in [21]
to leverage OT for computing the feature map and performing layer-wise model fusion.
In this process, the average model is projected into the feature space of the base model,
leading to the creation of a new global model. For fairness and model convergence, we
select the model of each client as the base model in turn, which ensures that the knowledge
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from each client is evenly spread among all clients. Existing work [21] executes OT between
the global model and each client model individually. This results in OT running k times,
leading to high computational complexity. In contrast, our proposed method executes OT
only once in each communication round, significantly reducing computational complexity
and enhancing the scalability.

Let OT(·) denote the model fusion function and θ
(t,r)
base denote the base model in the

r-th aggregation step for the t-th task. Then, the global model can be computed using the
following formula:

θ
(t,r)
g = OT(θ(t,r)avg , θ

(t,r)
base ), (2)

where θ
(t,r)
avg = 1

K ∑K
i=1 θ

(t,r−1)
i . Then, the data distribution knowledge of client i will be

transmitted to all clients through the global model. Each client selectively utilizes the
knowledge of the global model via the SKS module.

3.2. Client Side: Selective Knowledge Synchronization

In traditional centralized deep learning, the model can theoretically capture all features
of the entire dataset, which represents the upper limit of performance in FL [19]. In the
FCIL setting, even though the client class set may not perfectly align, the idealized upper
limit still aims to extract all features across clients. To address inter-client interference,
selectively absorbing knowledge from the global model is a natural approach. Differing
from existing works that allocate task-specific parameters for each task [5], we propose
concentrating inter-client differences within the classifier. We allow the neural network to
autonomously determine what knowledge to learn through a loose consistency constraint.
Additionally, we encourage clients to collaboratively train a robust feature extractor.

We design the SKS module to realize the above idea. Specifically, we segment the client
model into a feature extractor and a classifier, each with distinct updating strategies. For
the feature extractor, we apply the conventional FL process, during which global feature
extractor parameters overwrite local parameters. For local classifiers, parameter alignment
occurs only once in the training process of a task, that is, during local model updating
after the first communication. Throughout subsequent training processes of this task,
the local classifier no longer maintains the same parameters as the global classifier, but
selectively absorbs knowledge via a global classification consistency (GCC) loss, which
controls the distance between the local and global classifier. For the neural network
θ, its number of layers is denoted as |θ|. Furthermore, its parameter set is denoted as
P(θ) = {Wi, Bi}i∈{1,...,|θ|}, which uniformly represents the parameters of all layers in the θ,
including weights and bias. Although the parameters differ, the global classifier shares the
same structure as the local classifier, ensuring consistency in their parameter sets. Then, the
calculation formula for the GCC loss can be expressed as follows:

L(t,r)
GCC =

∥∥∥θ
(t,r)
local_cls − θ

(t,r)
global_cls

∥∥∥2
= ∑

p∈Pg

∥∥Pg[p]−Pc[p]
∥∥2, (3)

where θ
(t,r)
local_cls and θ

(t,r)
global_cls represent the classifiers of the local model and global model,

respectively, Pg = P(θ
(t,r)
global_cls), and Pc = P(θ

(t,r)
local_cls).

In other words, this paper introduces a personalized classifier. However, unlike
the personalization layer in FL [27,28], our goal is not to directly enhance client model
performance (which is not guaranteed here), but rather to alleviate inter-client interference.
Furthermore, unlike typical personalization layers in FL that often do not contribute to
model aggregation, our personalized classifier actively participates in each round of model
aggregation without being overwritten by the global model. The form of GCC may appear
similar to the proximal term of FedProx [29], but they are actually quite distinct from each
other. In FedProx, the local model aims to be consistent with the global model, with the
proximal term restricting updates to the local model. In contrast, at the beginning of local
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training in our proposed method, the local classifier is distant from the global model, and
GCC is intended to guide the local model towards convergence with the global model.
Furthermore, unlike FedProx, which imposes constraints upon the entire model, we allow
the feature extractor to update freely and only apply consistency constraints to the classifier.

By refraining from forcibly overwriting the classifier parameters, our approach can
effectively mitigate the impact of data heterogeneity and inter-client interference dur-
ing training.

3.3. Objective Function

The effectiveness of knowledge distillation (KD) [30] in mitigating catastrophic for-
getting has been demonstrated in numerous studies [2,4,11]. It is often used together with
the rehearsal-based method in CIL. In this paper, KD serves as the primary approach to
mitigate forgetting, and we introduce multiple distillation losses to extract multidimen-
sional historical knowledge. The utilization of samples rehearsal is contingent upon the
privacy demands of the application scenario. When privacy and storage permissions allow,
we endorse this approach, as it significantly boosts model effectiveness. Desensitized
prototypes can substitute for samples in scenarios with stringent privacy requirements.
For privacy-sensitive settings, we solely rely on knowledge distillation to reinforce the
retention of old knowledge. The loss mentioned in this subsection will be calculated in
exactly the same way at each client, so the subscript representing the client’s serial number
is omitted in the following loss function.

The training data of the t-th task is denoted as D(t). Each client trains the local model
θ(t,r) at the r-th round of communication for task t on D(t). The classification loss is denoted
as L(t,r)

cls :

L(t,r)
cls = CE(D(t); θ(t,r)), (4)

where CE(·) is the cross-entropy loss function. We denote the data stored for the previous
task as M, such as exemplars or prototypes. We uniformly express the sum of the loss
on the M and the classification loss on the D(t) as L(t,r)

data , which represents the knowledge
gained directly or indirectly from the samples:

L(t,t)
data = L(t,r)

m (M; θ(t,r); θ(t−1)) + L(t,r)
cls , (5)

where L(t,r)
m (·) is the supplementary loss of memory M.

It does not matter which method is used, real samples or generated samples or
prototypes; all of them can adapt to our framework by simply putting the corresponding
loss in L(t,r)

m .
Local Catastrophic Forgetting. In order to alleviate local catastrophic forgetting, we

distill knowledge from the old local model θ(t−1) at the logits-level by minimizing the local
forgetting (LF) loss:

L(t,r)
LF = −

|C(1:t−1)|
∑
i=1

σ(ẑi/π)(logσ(zi/π)), (6)

where ẑ is the logit output of the old local model θ(t−1), z is the output logit of the current
model θ(t,r), σ is a softmax function, π is the distillation temperature, and

∣∣∣C(1:t−1)
∣∣∣ is the

total number of classes for tasks 1 to t − 1. Moreover, the logits output of θ(t,r) indicates the
semantic similarity relations of classes [4], providing insights into the class-level relationship
between old and new tasks. Inspired by the work of [4], we introduce task-semantic
distillation (TSD) loss to absorb more knowledge from the old local model θ(t−1) . For a
batch dataset {X(t)

b , Y(t)
b } ∈ D(t), we denote the logit output of the current model θ(t,r) as

Z(X(t)
b , θ(t,r)). Similarly, we obtain the corresponding logit output Z(X(t)

b , θ(t−1)) of the
old local model θ(t−1). As shown in Figure 1, we recombine two logit vectors by retaining
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the value of Z(X(t)
b , θ(t−1)) for old classes C(1:t−1) = {C(i)}t−1

i=1 and using the output of

Z(X(t)
b , θ(t,r)) for new classes C t, resulting in a new logical vector Z(t)

b :

Z(t)
b =

{
Z(X(t)

b , θ(t−1,r))i, i ∈ C(1:t−1)

Z(X(t)
b , θ(t,r))i, i ∈ C t

. (7)

Then, for Y(t)
b , we calculate its one-hot encoding labels Y(t)

b . The TSD loss can be calculated
by the following formula:

L(t,r)
TSD = H(Z(t)

b ,Y(t)
b ), (8)

where H(·) is a metric function, which is set as binary cross-entropy in this paper. LF
loss L(t,r)

LF and TSD loss L(t,r)
TSD jointly complete the knowledge extraction from the old local

model θ(t−1).
Global Catastrophic Forgetting. Inspired by the distillation of local models, we

recognize that old knowledge may be embedded within the old global model θ
(t−1)
g . With

our hierarchical architecture, the classifiers of the local old model θ
(t−1)
local_cls and the global

old model θ
(t−1)
global_cls are independent of each other, implying that the classifier of the

global model holds the global old knowledge. Therefore, we follow the example of local
distillation and define the global forgetting loss as

L(t,r)
GF = −

|C(1:t−1)|
∑
i=1

σ(z̃i/π)(logσ(zi/π)), (9)

where z̃ is the output logit of the old model θ
(t−1)
g .

Thus, we obtain the complete loss function for the client as follows:

L(t,r) = L(t,r)
data + α · L(t,r)

GCC + β · (L(t,r)
LF + L(t,r)

TSD) + γ · L(t,r)
GF , (10)

where α is the hyperparameter to ensure global classification consistency, and β and γ are
used to control the distillation weight of the old local model and the old global model,
respectively.

4. Experiments Results
4.1. Dataset

We utilize the two datasets, namely CIFAR100 [31] and Tiny-ImageNet [32], to evaluate
the performance of our method in two data partition settings. The CIFAR100 dataset is
sourced from the “80 Million Tiny Images” collection, containing 100 classes. Each class
consists of 600 color images with dimensions of 32 × 32 pixels, of which 500 images per class
are allocated for training and 100 for testing. The Tiny-ImageNet contains 200 classes, and
each class has 500 training images and 50 test images. Specifically, we divided the CIFAR100
dataset into two data partition settings, consistent with [7]. The first setting involves
10-task continuous learning, with each task containing 10 classes, which is denoted as
CIFAR100_10_10. The second setting consists of 5-task continuous learning, with 20 classes
per task, which is denoted as CIFAR100_5_20. Similarly, Tiny-ImageNet is divided into
5 tasks, each with 40 classes.

To simulate a non-IID setting, we utilize the Dirichlet distribution, a commonly em-
ployed method in FCIL [3,7]. We adjust the hyperparameter λ to control the degree of
non-IID. When λ > 0, the smaller the λ, the higher the degree of data heterogeneity. The
exception is that when λ = 0, it means that the data between clients are independent and
identically distributed, i.e., IID. It is noteworthy that when λ > 0, each client may include
majority, minority, or missing classes. As an example, Figure 2 shows the data statistics
results of the first task on the CIFAR100_10_10 setting with λ = 0.5. It can be seen that
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the data distribution among different clients is irregular and exhibits significant variations,
which is consistent with the real world.

Figure 2. The data statistics results of the first task within the CIFAR100_10_10 setting with λ = 0.5.

4.2. Implementation Details

We implemented all experiments using PyTorch and ran them on a 40GB NVIDIA
PCIE A100 GPU. Following the settings in [7], we set the number of clients to 5, with each
task containing 100 rounds of communication, and the clients trained 5 epochs locally.

We ran the experiment in both IID (λ = 0) and non-IID (λ = 0.5, abbreviated as NIID)
scenarios. We trained models using an SGD optimizer with the learning rate to 0.05. The
distillation temperature was set to π = 2, and the weight of the distillation loss from the
old local model was set to β = 3, as commonly used in other works [7,10,11]. By using grid
search, our proposed method achieves the best performance with the hyperparameters
α = 2 and γ = 1. Additionally, we implemented three client-side privacy scenarios, and
each scenario had its own baselines:

• Privacy—sensitive scenarios, in which only old models can be stored. We selected
five methods as baselines: (1) FedLwf, the integration of CL classical algorithm
LWF [10] and the FL classical algorithm FedAvg [19]; (2) FedLwf, the integration
of LWF and another classical FL algorithm, FedProx [29]; (3) FedLwf2T [13], a simple
method based on FedLwf in FCIL that uses the global model as the secondary teacher;
(4) FedWeIT [5], a regularization-based method in FCIL that maximizes the knowledge
transfer between clients; (5) TARGET [7], a generative-based method in FCIL that
synthesizes global samples through a GAN model and distills knowledge from old
local models without exemplar.

• Privacy—moderate scenarios, which allow prototypes to be stored without any con-
cerns. We selected the integration of an excellent prototype-based method PASS [12]
and FedAvg, i.e., FedPASS, as a baseline.

• Privacy—relaxed scenarios, in which real samples can be stored. We selected FedI-
CaRL (the integration of iCaRL [11] and FedAvg) as a baseline.

In order to make a fair comparison, we employed ResNet18 as the backbone for the
CIFAR100 dataset, with a classifier consisting of a single, fully connected layer. Moreover,
we further utilized VGG16 [33] with three fully connected layers to conduct experiments on
the Tiny-ImageNet dataset. However, only the last fully connected layer is considered as
the classifier in our proposed method. Specifically, for rehearsal-based methods, we set the
exemplar size of each class to 20, following the classic work [4,11]. We ran our experiments
with three random seeds {2021, 2022, 2023} and reported the averaged results.
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4.3. Evaluation Metric

In this paper, the average accuracy Ā and the average forgetting F̄ are utilized to
evaluate the model’s performance, which are the commonly used evaluation metrics for
CL [9,12] and FCIL [4,18,24]. For the t-th task of the client, its accuracy on the previous task
i is ai,t, then the accuracy of the current task At = 1

t ∑t
i=1 ai,t. Thus, the average accuracy of

T tasks can be calculated by the following formula:

Ā =
1
T

T

∑
t=1

At. (11)

The average forgetting F̄ is used to measure the forgetting degree of the model. A lower F̄
indicates better model performance. The calculation formula is as follows:

F̄ =
1

T − 1

T

∑
t=2

1
t

t−1

∑
i=1

(ai,t−1 − ai,t). (12)

4.4. Results and Analysis

To evaluate the universality of our proposed method, we separately integrated LWF [10],
PASS [12], and iCaRL [11] into FedSKF, denoted as ours(Lwf), ours(PASS), and ours(iCaRL),
to address three privacy scenarios, respectively. Furthermore, we compared them with
baselines in diverse settings. Additionally, we present the results of ablation experiments
to analyze hyperparameters and the function of each module in FedSKF.

Experiments on CIFAR-100: We conducted numerous experiments on two data par-
tition settings, namely CIFAR100_10_10 and CIFAR100_5_20, considering both IID and
non-IID settings. The results of comparative experiments are presented in Table 1. On
the one hand, in a vertical comparison of average accuracy and average forgetting, it can
be seen that our method is obviously superior to the baselines in the same scenario. It is
worth mentioning that the comparison across privacy scenarios may not ensure fairness.
For example, when exemplar is permitted, FedICaRL exhibits competitive performance,
surpassing the SOTA method in privacy—sensitive scenarios. On the other hand, when
comparing different settings horizontally, it becomes evident that as the degree of data
heterogeneity or the number of tasks increases, the model’s performance decreases. How-
ever, our method exhibits the smallest decline in performance. Specifically, in the T = 10
setting, when λ increases from 0 to 0.5, the average accuracy of our method decreases by
only 1.43%, whereas the second-best method, FedICaRL, experiences a 3.65% reduction.
This indicates that our method effectively mitigates the challenges posed by data hetero-
geneity. Furthermore, let us go deep into each privacy scenarios. In privacy—sensitive
settings, our method outperforms existing methods by 5.52% to 15.8%. It is important to
note that for three models, FedLwf, FedWeIT, and TARGET, we reference the experimental
results from the literature [7]. Since we maintain consistent implementation details, the
comparison is still fair. Similarly, compared to FedPASS, PASS integrated in FedSKF shows
better performance. Moreover, the same enhancement in performance is also observed
in privacy-relaxed scenarios, even though FedICaRL is already the second-best method.
These results highlight the universality and effectiveness of FedSKF in integrating existing
continuous learning methods.

A more intuitive test accuracy comparison curve is shown in Figure 3, which depicts
the accuracy of different models after completing each task in the non-IID setting. For
instance, for task 3, the accuracy value represents the average test accuracy of the classes
belonging to the first three tasks. Despite varying task numbers, our method consistently
achieves the highest performance, demonstrating its strong resistance to catastrophic
forgetting. Figure 4 depicts the fluctuation in average accuracy across different methods as
data heterogeneity shifts in the CIFAR100_5_20 setting. The Dirichlet parameter γ is set to
{0, 0.1, 0.5, 1.0}. As λ decreases from 1 to 0.1, our proposed method demonstrates notably
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higher accuracy and less performance degradation compared to existing methods across
three privacy scenarios.

Table 1. Comparative experiment results on CIFAR100 within both IID and non-IID settings. Ā refers
to the average accuracy (%) and F̄ to the average forgetting (%). The higher the value of Ā, the lower
the value of F̄, indicating better model performance. The best results are in bold.

Data Heterogeneity IID (λ = 0) NIID (λ = 0.5)

Tasks T = 5 T = 10 T = 5 T = 10

Scenario Method Ā F̄ Ā F̄ Ā F̄ Ā F̄

Privacy-sensitive

FedLwf 30.61 45 23.27 37 27.59 44 17.98 45
FedProx+Lwf 46.12 22 38.71 19 43.78 22 37.65 19

FedLwf2T 37.25 24 25.43 16 35.34 24 21.32 16
FedWeIT 28.45 52 20.39 43 24.57 54 15.45 48
TARGET 36.31 22 24.76 26 33.33 27 20.71 29

Privacy-moderate FedPASS 39.28 20 31.52 20 35.48 21 27.23 21

Privacy-relaxed FedICaRL 58.72 22 48.41 25 52.98 21 44.76 20

Ours
ours(Lwf) 61.15 20 48.06 21 58.18 19 43.17 20

ours(PASS) 45.21 19 34.52 20 42.6 20 31.62 17
ours(iCaRL) 66.52 16 56.14 24 64.84 15 54.71 21

(a) CIFAR100_5_20-NIID (λ = 0.5) (b) CIFAR100_10_10-NIID (λ = 0.5)

Figure 3. Comparison curve of the average accuracy of models for CIFAR100_5_20-NIID (a) and
CIFAR100_10_10-NIID (b).

Figure 4. Comparison curve of the average accuracy of models for various degrees of data hetero-
geneity with CIFAR100_5_20.
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Figure 5 illustrates the performance of ours(iCaRL) within the CIFAR100_10_10-NIID
setting in more detail. Specifically, Figure 5a shows the test accuracy during the first task.
Since the first task is unaffected by catastrophic forgetting, it can better demonstrate the
model’s ability to resist inter-client interference. Compared to the suboptimal method
FedICaRL, the global model of our method can swiftly and accurately acquire knowledge.
Notably, when the model converges, the performance of FedAvg-based methods can
hardly surpass the local optimal model. In contrast, our method efficiently aggregates the
heterogeneous models into the global model with outstanding performance and ensures
that the global model is optimal. This indicates that our model effectively resists inter-client
interference and highlights the effectiveness of our aggregation algorithm, i.e., PIT module.
Figure 5b depicts the training process of the last task, which is most affected by catastrophic
forgetting. A significant performance improvement appears in the later stages of training
of our method, highlighting the effectiveness of knowledge distillation from the old global
model, i.e., global forgetting loss.

(a) The test accuracy of the first task. (b) The test accuracy of the last task.

Figure 5. The detailed test accuracy of ours (iCaRL) in the CIFAR100_10_10-NIID setting.

Experiments on Tiny-ImageNet: To demonstrate the universality and effectiveness
of our proposed method across various datasets and models, we conducted experiments
using VGG16 [33] as the backbone on the more challenging Tiny-ImageNet dataset with
λ = 0.1. The results are similar to those observed on CIFAR-100. Figure 6 presents the
test accuracy across 5 tasks and the average forgetting of different methods. It is evident
that, among all the compared methods in three privacy scenarios, our proposed method
outperforms existing methods in more challenging settings. Ours(iCaRL) achieves the
highest average accuracy Ā = 50.12% and the lowest average forgetting F̄ = 13%. This
underscores the universality and effectiveness of our proposed method across different
models and datasets.

Ablation study: To better illustrate the necessity of each module in our method, we ran
ablation experiments in the CIFAR100_5_20-NIID setting via ours(iCaRL), and the results
are presented in Table 2. When the PIT module is removed, the test accuracy of the first
task and the average accuracy of our proposed method is significantly reduced. Similarly,
the removal of SKS also leads to a decrease in the average accuracy of the model and an
increase in the average forgetting. This indicates the pivotal role of these two modules
in mitigating data heterogeneity and inter-client interference. The impact of the global
forgetting loss is observed in the detailed data of each task; its removal affects the ability to
address catastrophic forgetting, resulting in a 6.1% reduction in the accuracy of the global
model at the last task.
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(a) The test accuracy of tasks. (b) The average forgetting of all tasks.

Figure 6. The test accuracy and the average forgetting on Tiny-ImageNet_5_40 with λ = 0.1.

Table 2. Ablation experimental results in the CIFAR100_5_20-NIID setting. The test accuracy for each
task is listed. Ā refers to average accuracy (%) and F̄ to average forgetting (%). The best results are in
bold.

Method
Tasks

Ā F̄
1 2 3 4 5

Ours 0.808 0.698 0.636 0.568 0.532 64.84 15

W/o SKS 0.771 0.639 0.576 0.503 0.463 59.04 16

W/o PIT 0.762 0.663 0.556 0.451 0.364 55.92 24

W/o GF 0.808 0.687 0.609 0.542 0.471 62.34 19

We also meticulously designed ablation experiments to investigate the impact of
hyperparameters in Equation (10). Herein, α regulates the importance of the GCC loss,
influencing the similarity between the global model and local models. The hyperparameter
β, inherited from traditional continual learning, influences the model’s resistance to local
catastrophic forgetting, while γ strikes a balance between global and local catastrophic
forgetting. Based on existing works [7,11], we set β to 3 and then employed grid search
to determine the optimal values of α and γ. We conducted experiments in two settings:
(1) CIFAR100_5_20, denoted as C, with λ = 0.5 and ResNet18 as the model backbone,
and (2) Tiny-ImageNet_5_40, denoted as T, with λ = 0.1 and VGG16 as the backbone. To
prevent catastrophic forgetting from biasing the results, we measured the influence of α
using the test accuracy of the first task. As depicted in Figure 7a, when α ∈ [0.5, 2], global
models achieved optimal or superior performance. While our method is sensitive to α,
its optimal value remains relatively stable. We recommend using a relatively higher α for
settings with high data heterogeneity. However, setting the α value too high is not desirable,
as this is not conducive in mitigating the interference caused by bad clients on other clients,
thereby impeding the overall performance of the global model. Additionally, the client
accuracy is shown in Figure 7a, which represents the average value of the test accuracy of
all client models. We observed that higher values of α led to closer alignment between client
models and the global model. Conversely, lower α values resulted in a significant disparity
between the local and global models, indicating overfitting of local models. Contrary
to intuition, within the [0.5, 2] interval, the global model exhibits better generalization,
while local models show slight overfitting. We theorize that mild overfitting enhances
other clients’ understanding of the real data distribution, with its negative effects mitigated
through a balance between optimal transport and the SKS module. This observation echoes
the original intention of designing the PIT module, confirming its effectiveness. After fixing
α = 2, the average accuracy of all tasks is used to determine the best value of γ. Figure 7b
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illustrates that when γ = 1, the balance between local and global catastrophic forgetting is
optimal.

(a) The test accuracy of the first task for various α. (b) The average accuracy of all tasks for various γ.

Figure 7. The ablation results of hyperparameters α and γ.

5. Conclusions

In conclusion, this paper introduces a novel selective knowledge fusion (FedSKF)
model to tackle three key challenges in FCIL. FedSKF is the first work to introduce optimal
transport into FCIL to mitigate data heterogeneity. Furthermore, we propose a selec-
tive knowledge fusion mechanism to alleviate inter-client interference through optimal
transport and global classification consistency loss. Unlike most existing methods, our
framework is universal and not strongly coupled with CIL methods, enabling the integra-
tion of different CIL methods to address various privacy scenarios. Numerous experiments
demonstrate the effectiveness and superiority of our proposed FedSKF model compared to
existing works.
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