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Abstract: Matrix multiplication plays a crucial role in various engineering and scientific applications.
Cannon’s algorithm, executed within two-dimensional systolic arrays, significantly enhances compu-
tational efficiency through parallel processing. However, as the matrix size increases, reliability issues
become more prominent. Although the previous work has proposed a fault-tolerant mechanism, it is
only suitable for scenarios with a limited number of faulty processing elements (PEs). This paper
introduces a pair-matching mechanism, assigning a fault-free PE as a proxy for each faulty PE to
execute its tasks. Our fault-tolerant mechanism comprises two stages: in the first stage, each fault-free
PE completes its designated computations; in the second stage, computations intended for each
faulty PE are executed by its assigned fault-free PE proxy. The experimental results demonstrate that
compared to the previous work, our approach not only significantly improves the fault tolerance of
systolic arrays (applicable to scenarios with a higher number of faulty PEs) but also reduces circuit
areas. Therefore, the proposed approach proves effective in practical applications.

Keywords: fault tolerance; integrated circuits; parallel processing; processing elements; reliability

1. Introduction

Matrix multiplication plays a vital role in diverse engineering and scientific applica-
tions. For example, in convolutional neural networks, convolutions can also be depicted as
matrix multiplications. To fulfill the needs of high-speed processing, minimizing the com-
putation time for matrix multiplication is crucial. Therefore, several algorithms have been
introduced in the past to accelerate matrix multiplications, such as Cannon’s algorithm [1]
and Winograd’s algorithm [2].

A systolic array [3–7] serves as a general matrix multiplication accelerator, achieving
matrix multiplication in a regular and parallel manner via data transmission between pro-
cessing elements (PEs). Each PE is primarily responsible for executing multiply–accumulate
computations [8,9]. Cannon’s algorithm can also be implemented through a systolic array.
Taking a 4 × 4 systolic array as an example, if matrix operations are performed using
the traditional algorithm, it would require 10 clock cycles, whereas utilizing Cannon’s
algorithm for matrix operations would only require four clock cycles.

Although a systolic array reduces computation time through parallel processing, it also
increases the likelihood of hardware failures. Note that these hardware failures are caused
by latent manufacturing defects [10,11] or circuit aging effects [12,13], potentially resulting
in functional errors. We can employ post-manufacturing testing mechanisms [14,15] to
identify latent manufacturing defects. Additionally, run-time detection mechanisms [16,17]
can be used to identify the effects of circuit aging.

As the size of the matrix increases, the probability of hardware failures also increases.
Therefore, besides identifying hardware failures, it is imperative to incorporate fault-
tolerance mechanisms to enhance the reliability of the systolic array for matrix multi-
plication. Especially in applications such as healthcare, aviation, autonomous driving,
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underwater communication, etc., where system reliability is crucial, fault-tolerance mecha-
nisms are indispensable [18–20].

The research area of fault tolerance has a rich history, starting with early work on
addressing permanent faults in memory systems using error-correcting codes [21,22] or
redundant memories (such as spare rows and columns) [23,24], as well as triple modular
redundancy strategies [25,26], to mitigate faults in computational logic. Nevertheless, these
fault-tolerant design methodologies do not directly extend to systolic arrays.

Kim and Reddy [27] delved into fault-tolerant systolic array design, focusing on the no-
tion of treating a faulty systolic array as a simplified version with fewer rows and columns.
Stojanovic et al. [28] achieved fault tolerance through triplicated computations and majority
voting, offering two hardware solutions for the voting process. Milovanovic et al. [29] in-
troduced a systematic approach to designing fault-tolerant systolic arrays with orthogonal
interconnects and unidirectional data flow for matrix multiplication. It is important to note
that all of these methods [27–29] require the inclusion of redundant PEs.

Jan and Huang [30] discuss the fault-tolerant design of a systolic array executing
Cannon’s algorithm [1] for matrix multiplications. Their basic idea involves assigning the
task of a faulty PE to a fault-free PE for execution. Therefore, their approach does not
require redundant PEs. In [30], they propose a mapping algorithm to implement both a
twisted column scheme and a column replacement scheme. If the number of faulty PEs is
small, their method can achieve very high fault tolerance.

However, the approach proposed by Jan and Huang [30] cannot be applied when there
is a large number of faulty PEs. The main reason is that their method requires the existence
of at least one fault-free column (even in the form of a twisted column). However, if there
are many faulty PEs, it may not be possible to find a fault-free column (even in the form of
a twisted column). For certain application domains, such as space or deep sea exploration,
it is difficult to repair even if many PEs fail. Therefore, we need to develop design methods
with higher fault tolerance to enhance the lifespan of systolic arrays.

In this paper, we propose a highly fault-tolerant approach for a systolic array executing
Cannon’s algorithm for matrix multiplication. We observe that the main limitation of the
previous work [30] lies in the necessity to find a fault-free column (even in the form of a
twisted column). Consequently, the previous work is only suitable for situations where
the number of faulty PEs is relatively low. In contrast to the previous approach [30], our
method does not require the existence of a fault-free column, thus enabling its application
in scenarios with a higher number of faulty PEs.

Our fundamental idea is to pair each faulty PE with a corresponding fault-free PE
to act as its proxy. Therefore, our matrix multiplication computation is divided into two
primary stages: in the first stage, each fault-free PE completes the computations that it
should perform. In the second stage, the computations that each faulty PE should carry out
are completed by the fault-free PE for which it is acting as a proxy. Since the data required
by each fault-free PE are directly transmitted by the controller, the proposed approach does
not require a fault-free column.

This paper introduces two pair-matching schemes: row-based pair-matching and
column-based pair-matching. Based on these schemes, we propose two pair-matching
algorithms: one-dimensional pair-matching (i.e., utilizing only row-based pair-matching)
and two-dimensional pair-matching (i.e., utilizing both row-based pair-matching and
column-based pair-matching). Employing two-dimensional pair-matching offers higher
fault tolerance compared to using one-dimensional pair-matching, but it also increases the
controller area.

We used the TSMC 40nm cell library to implement the proposed approach. The exper-
iment results demonstrate that compared to the previous work [30], the proposed approach
(whether utilizing one-dimensional pair-matching or two-dimensional pair-matching) not
only enhances the fault tolerance but also reduces the circuit area. This is attributed to
the fact that the previous work [30] requires consideration of the twisted column scheme,
which not only complicates the data path design for each PE but also complicates the
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controller design for the systolic array. Therefore, the proposed pair-matching method can
simplify the design of both the controller and PEs.

The primary contributions of our work are elaborated below.

1. We introduce a fault-tolerant approach using pair-matching, with the analysis results
showcasing a notable enhancement in the fault-tolerance capabilities compared to
those in the previous work [30].

2. We implemented the pair-matching approach in circuitry, with the experimental
results indicating reduced areas for both the controller and PEs in comparison to those
in the previous work [30].

Note that, in recent years, there have also been some studies [31–34] exploring fault-
tolerant designs for systolic-array-based deep neural network (DNN) accelerators. Due to
the inherent fault-tolerant nature of artificial intelligence applications, these studies’ fault-
tolerant designs may allow for some errors. Unlike these studies [31–34], we must ensure
the correctness of the matrix multiplication results. Therefore, the fault-tolerance issues
that we investigate in matrix multiplication differ fundamentally from those addressed in
the literature on the fault tolerance of DNN accelerators.

The remainder of this paper is structured as follows. Section 2 offers background
materials. Section 3 introduces the proposed fault-tolerance approach, encompassing one-
dimensional pair-matching and two-dimensional pair-matching. Section 4 showcases our
experimental results. Lastly, concluding remarks are provided in Section 5.

2. Preliminaries

In this section, we present background materials. Section 2.1 introduces the systolic
array architecture. Section 2.2 presents Cannon’s algorithm. Section 2.3 discusses the
fault-tolerant mechanism proposed by Jan and Huang [30].

2.1. The Systolic Array Architecture

Suppose that n × n matrices A and B are represented as Equations (1) and (2),
respectively:

A =

 A0,0 . . . A0,n−1
...

. . .
...

An−1,0 . . . An−1,n−1

 (1)

B =

 B0,0 . . . B0,n−1
...

. . .
...

Bn−1,0 . . . Bn−1,n−1

 (2)

Then, the n × n matrix multiplication A × B can be expressed as Equation (3):

Ci,j =
n−1

∑
k=0

Ai,k × Bk,j (3)

A systolic array functions as a versatile accelerator for matrix multiplication, accom-
plishing the task in a structured and parallel fashion through data exchange among PEs.
Each PE is primarily tasked with performing multiply–accumulate computations. Addi-
tionally, each PE also requires interconnection circuits for data transmission. Taking a 4 × 4
systolic array as an example, with each clock cycle, matrix A moves one step to the right,
and matrix B moves one step downward, as shown in Figure 1. After 10 clock cycles, matrix
multiplication can be completed.
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Figure 1. A 4 × 4 systolic array for matrix multiplications.

2.2. Cannon’s Algorithm

Cannon’s algorithm can be used to accelerate matrix multiplications. It primarily
involves three steps:

1. Initial alignment: The rows of matrix A are shifted to the left by i steps (0 ≤ i ≤ n),
with the 0-th row shifted 0 steps, the 1-st row shifted 1 step, and so forth; the columns
of matrix B are shifted upwards by j steps (0 ≤ j ≤ n − 1), with the 0-th column
shifted 0 step, the 1-st column shifted 1 step, and so forth.

2. Multiplication and accumulation: The two aligned matrices are overlapped, and
multiply–accumulate operations are conducted on the PEs.

3. Global matrix shifting: All elements in matrix A are shifted one step to the left, and all
elements in matrix B are shifted one step upward. Then, one proceeds to step 2.

In Cannon’s algorithm, step 2 must be executed a total of n times, and step 3 must be
executed n − 1 times in total. Then, the resulting matrix C is obtained.

In conjunction with Cannon’s algorithm, each PE is connected to two registers, which
store a value from the aligned matrix A and a value from the aligned matrix B, respectively.
The PEs in the 0-th row are connected to those in the last row, and similarly, those in the
0-th column are connected to those in the last column, as illustrated in Figure 2.

Based on the initial alignment of matrix A and matrix B, corresponding values are
simultaneously transmitted to each PE. Subsequently, multiply–accumulate operations are
executed in all PEs. During each global matrix shifting, the values of matrix A are sent to
the left neighboring PEs, while the values of matrix B are sent upward to the neighboring
PEs. As a result, only n clock cycles are needed to complete the matrix multiplication.

We illustrate an example using 4 × 4 matrix multiplication. Figure 3a overlaps the
aligned matrix A and the aligned matrix B. For example, at this point, the elements
overlapping at PE1,2 are A1,3 and B3,2. Next, we shift all elements of matrix A one step
to the left and all elements of matrix B one step up. For clarity, in Figure 3a, we use the
0-th row as an example to indicate the shift direction of the elements in matrix A and the
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0-th column as an example to indicate the shift direction of the elements in matrix B.
Figure 3b gives the results after the first global matrix shifting is performed. As shown
in Figure 3b, the elements overlapping at PE1,2 become A1,0 and B0,2. This process is
repeated 4 times for multiply–accumulate and 3 times for global matrix shifting to obtain
the final result. For instance, at the position PE1,2, we obtain the final result of C1,2 as
A1,3 × B3,2 + A1,0 × B0,2 + A1,1 × B1,2 + A1,2 × B2,2.

Figure 2. The systolic array architecture applied to Cannon’s algorithm.

Figure 3. (a) The overlap of aligned matrices A and B. (b) The results after the first global matrix
shifting.

2.3. Fault-Tolerant Matrix Multiplier Design

Jan and Huang [30] studied the fault-tolerant design of a systolic array executing
Cannon’s algorithm for matrix multiplications. Their approach requires identifying fault-
free columns, including those in the form of twisted columns.

Figure 4 is taken as an example. The PEs shaded in gray indicate faulty PEs. There are
two twisted columns. One twisted column comprises PE0,1, PE1,1, PE2,2, and PE3,1, while
the other twisted column comprises PE0,2, PE1,3, PE2,3, and PE3,2. From Figure 4, it can be
observed that PE0,1 performs the tasks that originally belonged to PE0,0 and PE0,1, PE1,1
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performs the tasks that originally belonged to PE1,0 and PE1,1, PE2,2 performs the tasks
that originally belonged to PE2,0 and PE2,1, and so forth.

Figure 4. An example of twisted columns.

In [30], it is assumed that there exists a controller, referred to as a host control circuit,
capable of directly transmitting data to each PE. This assumption is necessary because the
systolic array must have data that correspond to aligned matrices to execute Cannon’s
algorithm. Moreover, for each PE, the host control circuit needs to manage two multiplexers
(in this PE) for data selection.

1. To circumvent faulty PEs when data flows from bottom to top, each PE can transmit
data to the upper-left PE, the upper PE, and the upper-right PE, respectively. This
means that in each PE, a multiplexer is required to select the data coming from the
bottom-left PE, the bottom PE, the bottom-right PE, and the host control circuit.

2. To bypass a faulty PE when data flows from right to left, the data will pass through
the faulty PE (without executing any multiply–accumulate operations) and enter the
next PE in the subsequent cycle. This implies that in each PE, another multiplexer is
necessary to choose the data arriving from the multiply–accumulate unit (MAC unit),
the right PE, and the control circuit.

From the above discussion, we find that in the previous work, to support twisted
columns, data may come from different directions, making the design of the host control
circuit complex and adding extra circuits to each PE. Moreover, the previous work must
find a fault-free column, which also limits the capability for fault tolerance.

3. The Proposed Approach

With analysis, we observe that in [30], there already exists a data transmission path
between the host control circuit and each PE. Therefore, we propose a new fault-tolerant
approach that utilizes the existing data transmission path between the host control circuit
and each PE for data transfer, eliminating the need to search for a fault-free column. This
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approach not only simplifies the host control circuit but also streamlines the data path
design of PEs.

It should be noted that our objective is to ensure the accuracy of matrix multiplication
results. Therefore, the fault-tolerance issues that we address in matrix multiplication are
different from those in the literature on DNN accelerators [31–34], which may tolerate
some errors.

In this section, we introduce the proposed approach. Section 3.1 covers our fault-
tolerance mechanism while also discussing the corresponding PE architecture. Section 3.2
presents two pair-matching algorithms: one-dimensional pair-matching and two-dimensional
pair-matching.

3.1. Fault-Tolerance Mechanism and Corresponding PE Architecture

Note that, after post-manufacturing testing [14,15], the host control circuit can establish
information about faulty PEs. Then, throughout the circuit’s lifespan, the number of faulty
PEs may increase as the circuit ages. Hence, the host control circuit can incorporate run-time
detection mechanisms [16,17] to dynamically update the information on faulty PEs.

The main drawback of the previous work [30] is the necessity to find at least one
fault-free column (even in the form of a twisted column), which limits the potential for
fault tolerance. Additionally, to support twisted columns, both the host control circuit and
the data path of each PE incur significant additional circuitry, resulting in area overhead.

In contrast to the previous work, we adopt a pair-matching mechanism. For each
faulty PE, we assign a fault-free PE to act as its proxy. In other words, this fault-free PE
not only needs to complete its own task but also the task of its corresponding faulty PE.
The proposed pair-matching mechanism does not require the identification of a fault-free
column. Therefore, the proposed approach exhibits higher fault tolerance.

The proposed fault-tolerance mechanism follows the assumptions outlined in [30].
Firstly, we assume that faults in each PE can only occur in the MAC unit and not in the
data transmission paths or storage components. Secondly, we assume the existence of data
transmission paths between the host control circuit and each PE.

The proposed fault-tolerance mechanism consists of two stages:

1. In the first stage, Cannon’s algorithm is executed in the systolic array. Each fault-free
PE completes the computations that it should perform. However, each faulty PE does
not engage in computations. Nevertheless, during the process of global shifting, both
faulty PEs and fault-free PEs engage in data transmissions.

2. In the second stage, the computations that each faulty PE should carry out are com-
pleted by the fault-free PE that it is acting as a proxy for. Since there are data trans-
mission paths between the host control circuit and each PE, the data required by each
fault-free PE can be directly transmitted by the host control circuit.

To implement the proposed fault-tolerance mechanism, we need to identify a fault-free
PE to replace each faulty PE. The pairing of faulty PEs with fault-free PEs is managed by the
host control circuit, which takes the matrix size and the list of faulty PEs as input. It then
executes the pair-matching algorithm to establish the corresponding pairs. In Section 3.2,
we will present two pair-matching algorithms. These two algorithms offer a trade-off
between fault tolerance and controller area overhead.

In [30], the authors do not discuss the bandwidth of data transfer between the host
control circuit and PEs. Therefore, here, we also assume no limitation on the data transfer
bandwidth. It is worth noting that even if the data transfer bandwidth is limited, it does
not affect the fault tolerance of our approach. However, if the data transfer bandwidth
is limited, the time that it takes for the host control circuit to transmit data to PEs will be
longer. For example, if the host control circuit can only transmit data to a maximum of
4 PEs at a time, it will need to transmit data to 8 PEs in two separate transmissions.

We illustrate our fault-tolerance mechanism with an example. In the first stage, the sys-
tolic array executes Cannon’s algorithm. Initially, based on the results of the initial align-
ment, the host control circuit sends data to each PE. Figure 5a depicts the overlap between
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the aligned matrix A and the aligned matrix B. For example, PE0,0 receives data A0,0 and
B0,0, PE0,1 receives data A0,1 and B1,1, PE0,2 receives data A0,2 and B2,2, and so on. It is
worth noting that PEs shaded in gray are faulty PEs. In other words, PE0,1, PE0,3, and PE3,3
are faulty PEs. Faulty PEs are unable to perform MAC operations but can still transmit data.

Figure 5. The first stage of our fault-tolerance mechanism.

All fault-free PEs simultaneously perform MAC operations. Then, we conduct the
first global matrix shifting. To clarify, in Figure 5a, we use the 0-th row as an example
to demonstrate the shift direction of the elements in matrix A and the 0-th column as
an example to demonstrate the shift direction of the elements in matrix B. The results
of data transmission to each PE are shown in Figure 5b. Subsequently, all fault-free PEs
simultaneously perform MAC operations again. Then, we conduct the second global
matrix shifting, and the results of data transmission to each PE are shown in Figure 5c.
Then, all fault-free PEs simultaneously perform MAC operations again. Following this,
we proceed with the third global matrix shifting, and the results of data transmission to
each PE are shown in Figure 5d. Finally, all fault-free PEs simultaneously perform MAC
operations. At this point, each fault-free PE has completed its originally assigned task.
For example, the accumulation result of PE0,0 corresponds to the value of C0,0, where
C0,0 = A0,0 × B0,0 + A0,1 × B1,0 + A0,2 × B2,0 + A0,3 × B3,0.

Next, we proceed to the second stage. Based on the outcomes of the pair-matching
algorithm, the host control circuit assigns a fault-free PE to manage the tasks of each faulty
PE. In Section 3.2, we will introduce two pair-matching algorithms. Here, we assume that
the matching pairs are as follows: <PE0,1, PE0,0>, <PE0,3, PE0,2>, and <PE3,3, PE3,0>, where
PE0,0 takes over the task of PE0,1, PE0,2 takes over the task of PE0,3, and PE3,0 takes over
the task of PE3,3.
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In the second stage, only fault-free PEs serving as proxies perform MAC operations.
Initially, the host control circuit sends data A0,1 and B1,1 to PE0,0, data A0,3 and B3,3 to
PE0,2, and data A3,2 and B2,3 to PE3,0. The data transmission results are shown in Figure 6a.
Subsequently, PE0,0, PE0,2, and PE3,0 simultaneously perform MAC operations. Then,
the host control circuit sends data A0,2 and B2,1 to PE0,0, data A0,0 and B0,3 to PE0,2, and data
A3,3 and B3,3 to PE3,0. The data transmission results are shown in Figure 6b. Afterwards,
PE0,0, PE0,2, and PE3,0 simultaneously perform MAC operations. Next, the host control
circuit sends data A0,3 and B3,1 to PE0,0, data A0,1 and B1,3 to PE0,2, and data A3,0 and
B0,3 to PE3,0. The data transmission results are shown in Figure 6c. Then, PE0,0, PE0,2,
and PE3,0 simultaneously perform MAC operations. Following that, the host control circuit
sends data A0,0 and B0,1 to PE0,0, data A0,2 and B2,3 to PE0,2, and data A3,1 and B1,3 to PE3,0.
The data transmission results are shown in Figure 6d. Subsequently, PE0,0, PE0,2, and PE3,0
simultaneously perform MAC operations. As a result, PE0,0, PE0,2, and PE3,0 complete
their proxy tasks.

Figure 6. The second stage of our fault-tolerance mechanism.

We illustrate with the pair <PE0,1, PE0,0>. PE0,0 acts as the proxy for the tasks of PE0,1.
Therefore, in this stage, PE0,0 computes the value of C0,1, where C0,1 = A0,1 × B1,1 + A0,2 ×
B2,1 + A0,3 × B3,1 + A0,0 × B0,1.

Finally, let us discuss the architecture design of each PE. Our PE design is depicted in
Figure 7. Essentially, each PE primarily executes MAC operations. For each PE, data for
matrix A can be sourced either from the host control circuit (referred to as Controller-A in
Figure 7) or from the PE located to the right (referred to as the east PE in Figure 7) because
global matrix shifting necessitates shifting each element of matrix A to the left. Therefore,
a two-to-one multiplexer is required to select the data source for matrix A. Similarly,
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for each PE, data for matrix B can be sourced either from the host control circuit (denoted
as Controller-B in Figure 7) or from the PE located below (referred to as the south PE in
Figure 7) because global matrix shifting requires shifting each element of matrix B upward.
Thus, a two-to-one multiplexer is also necessary to select the data source for matrix B.

Figure 7. The architecture of our PE.

For each PE, due to global matrix shifting requiring each element of matrix A to shift
left by one position, the data of matrix A need to be transmitted to the left-side PE (referred
to as the west PE in Figure 7). Similarly, due to global matrix shifting necessitating each
element of matrix B to shift upward by one position, the data of matrix B need to be
transmitted to the PE above (referred to as the north PE in Figure 7). Upon completing all
multiplications and accumulations, the final result is sent back to the host control circuit
(referred to as Controller-R in Figure 7).

In comparison to the previous work [30], the data path of our PE is relatively simple,
resulting in circuit area savings for the PE. Additionally, since our control logic is also
relatively simple, the area of the controller (i.e., the host control circuit) can also be saved.

3.2. Proposed Pair-Matching Algorithms

In the proposed fault-tolerance mechanism, for each faulty PE, we must find a fault-
free PE to act as its proxy in execution. Therefore, the host control circuit must employ
a pair-matching algorithm. Considering hardware efficiency, we use the following two
principles to develop the pair-matching algorithms:

1. Each fault-free PE can only proxy for at most one faulty PE. Thus, all tasks of faulty
PEs can be executed simultaneously by fault-free PEs acting as their proxies.

2. We perform pair-matching independently for each row (or each column). Hence,
pair-matching can be conducted in parallel for all rows (or all columns).

We refer to the scheme of performing pair-matching independently for each row
as row-based pair-matching. Similarly, the scheme of performing pair-matching inde-
pendently for each column is referred to as column-based pair-matching. Essentially,
the concepts of row-based pair-matching and column-based pair-matching are identi-
cal. Without loss of generality, we illustrate the row-based pair-matching scheme using
Figure 8.

For each row, the number of matching pairs is the minimum of the number of faulty
PEs and the number of fault-free PEs in that row. In Figure 8, we illustrate this using row
0. Since there are 3 faulty PEs (i.e., PE0,0, PE0,2, and PE0,5) and 4 fault-free PEs (i.e., PE0,1,
PE0,3, PE0,4, and PE0,5) in this row, the number of matching pairs is 3 (i.e., min(3,4) = 3).
We scan from left to right in our row-based matching approach. The first faulty PE is PE0,0,
and the first fault-free PE is PE0,1, so the first matching pair is <PE0,0, PE0,1>. The second
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faulty PE is PE0,2, and the second fault-free PE is PE0,3, so the second matching pair is
<PE0,2, PE0,3>. The third faulty PE is PE0,5, and the third fault-free PE is PE0,4, so the third
matching pair is <PE0,5, PE0,4>.

Figure 8. Illustration of the row-based pair-matching scheme.

Based on the row-based pair-matching scheme and the column-based pair-matching
scheme, we present two pair-matching algorithms.

1. One-dimensional pair-matching algorithm: This algorithm only executes the row-
based pair-matching scheme.

2. Two-dimensional pair-matching algorithm: This algorithm first executes the row-
based pair-matching scheme. If there are faulty PEs that fail to complete pairing, this
algorithm then attempts pairing using the column-based pair-matching scheme.

Clearly, the control logic of the one-dimensional pair-matching algorithm is simpler,
but its fault tolerance is lower. Conversely, the control logic of the two-dimensional pair-
matching algorithm is more complex, but its fault tolerance is higher.

Algorithm 1 displays the proposed one-dimensional pair-matching algorithm. For each
row, the number of matching pairs corresponds to the minimum value between the number
of faulty PEs and the number of fault-free PEs in that row. We define rp[i] as the number of
matching pairs in row i. Each matching pair is assigned a unique index (starting from 0).
We define index[i] as the index of the first matching pair in row i. In other words, we have
index[0] = 0. For index i, where i > 0, we have Equation (4) as follows:

index[i] =
i−1

∑
s=0

rp[s] (4)

Algorithm 1 One-Dimensional Pair-Matching

1: for i from 0 to n − 1 do
2: for j from 0 to n − 1 do
3: k = index[i];
4: p = 0; q =0;
5: if PEi,j is faulty then
6: if p < rp[i] then
7: assign PEi,j as the faulty PE of pair[k + p];
8: p = p+1;
9: end if

10: else
11: if q < rp[i] then
12: assign PEi,j as the fault-free PE of pair[k + q];
13: q = q+1;
14: end if
15: end if
16: end for
17: end for

We use the PE array shown in Figure 9a for illustration. In Figure 9a, row 0 has 3
faulty PEs and 4 fault-free PEs. Thus, we have rp[0] = 3. Since we start indexing from 0,
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we have index[0] = 0. Row 1 has 3 faulty PEs and 4 fault-free PEs. Thus, we have rp[1] = 3.
The index of the first matching pair in row 1 is 3, so index[1] = 3. Row 2 also has 3 faulty
PEs and 4 fault-free PEs. Thus, rp[2] = 3. The index of the first matching pair in row 2 is 6,
so index[2] = 6.

Figure 9. An example of our one-dimensional pair-matching algorithm.

The controller (i.e., the host control circuit) can easily determine the value of index[i]
for each row i. Since each row knows the index of its first matching pair, in hardware
implementation, each row can proceed in parallel using the row-based pair-matching
scheme. In Algorithm 1, we employ an array named “pair” to store matching pairs. Each
matching pair within this array comprises a faulty PE and a fault-free PE, organized based
on their respective indices.

We illustrate the proposed one-dimensional pair-matching algorithm (i.e., Algorithm 1)
using the PE array in Figure 9a. From Figure 9a, we have index[0] = 0, index[1] = 3,
index[2] = 6, index[3] = 9, index[4] = 12, index[5] = 15, and index[6] = 18. Then, we can
perform the row-based pair-matching scheme for each row. As a result, we can obtain the
results, as displayed in Figure 9b.

Next, we extend the proposed one-dimensional pair-matching algorithm to a two-
dimensional context. Our two-dimensional pair-matching algorithm includes two phases:
in the first phase, we apply the row-based pair-matching scheme for each row. The task of
this phase is the same as that of our one-dimensional pair-matching algorithm. However,
we must mark the PEs that have been paired. In the second phase, we apply the column-
based pair-matching scheme for each column. In this phase, we only need to perform
pair-matching for unmarked PEs (i.e., PEs that have not yet been paired).

In the second phase, since we only consider unmarked PEs, for each column, the num-
ber of matching pairs is the minimum value of the number of unmarked faulty PEs and
the number of unmarked fault-free PEs in this column. We define cp[j] as the number of
matching pairs in column j. We also continue to assign a unique index to each matching
pair (continuing from the numbering in the first phase). We define col_index[j] as the index
of the first matching pair in column j. In other words, we have Equation (5) as follows:

col_index[0] =
n

∑
s=0

rp[s] (5)

For j > 0, we have Equation (6) as follows:

col_index[j] =
n

∑
s=0

rp[s] +
j−1

∑
s=0

cp[s] (6)
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We illustrate the proposed two-dimensional pair-matching algorithm using Figure 10
as an example. In the first phase, we apply the row-based pair-matching scheme. The results
of the first phase are displayed in Figure 10a. Upon completion of the first phase, we have
21 matching pairs (numbered from 0 to 20). However, we find that in column 5, there are
still 3 faulty PEs that have not been paired.

Figure 10. An example of our two-dimensional pair-matching algorithm.

In the second phase of the proposed two-dimensional pair-matching algorithm, we
only consider unmarked PEs. Thus, we have cp[0] = 0, cp[1] = 0, cp[2] = 0, cp[3] = 0,
cp[4] = 0, cp[5] = 3, and cp[6] = 0. Therefore, since we continue numbering from the first
phase, we have col_index[0] = 21, col_index[1] = 21, col_index[2] = 21, col_index[3] = 21,
col_index[4] = 21, col_index[5] = 21, and col_index[6] = 24.

Then, we apply the column-based pair-matching scheme for each column. After ap-
plying the column-based pair-matching scheme, the three faulty PEs in column 5 can be
paired (the indices of these matching pairs are 21, 22, and 23). Upon completion of the
second phase, we obtain the results, as displayed in Figure 10b. We find that all of the
faulty PEs have been paired.

It is noteworthy that the proposed pair-matching algorithms, including both our one-
dimensional and two-dimensional approaches, can be implemented in either software or
hardware. However, for real-time applications, it is essential to implement these algorithms
in hardware circuits to achieve high speed.

4. Experimental Results

In the experiments, we address the fault-tolerance capability and circuit area overhead
of the proposed approach. For comparison, we also implemented the approach presented
by Jan and Huang [30].

Regarding the fault-tolerance capability, we conducted separate analyses on an 8 × 8
systolic array, 16 × 16 systolic array, and 32 × 32 systolic array. We randomly assume the
positions of faulty PEs within the systolic arrays. Then, we can evaluate the fault-tolerance
capabilities of different methods (including the proposed one-dimensional pair-matching
algorithm, the proposed two-dimensional pair-matching algorithm, and the approach
proposed by Jan and Huang [30]).

The detailed analysis methodology is as follows. Given a specific number of faulty
PEs, we randomly generate the locations of these faulty PEs. Additionally, for each specific
number of faulty PEs, we generate 10,000 cases randomly. For each case, we analyze
whether various methods (including the proposed one-dimensional pair-matching algo-
rithm, the proposed two-dimensional pair-matching algorithm, and the approach proposed
by Jan and Huang [30]) can successfully tolerate faults. Subsequently, we can calculate the
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probability of success (i.e., the success rate) of each method concerning a specific number
of faulty PEs.

Figure 11–13 depict our analysis results for the 8 × 8 systolic array, 16 × 16 systolic
array, and 32 × 32 systolic array, respectively. In these figures, 1-D represents the proposed
one-dimensional pair-matching algorithm, 2-D represents the proposed two-dimensional
pair-matching algorithm, and Jan an Huang (2012) represents the method presented in [30].
Moreover, in these figures, the x-axis represents the probability of success (i.e., the success
rate), and the y-axis represents the allowable quantity of faulty PEs. For instance, as shown
in Figure 11, to attain a success rate of 90% in an 8 × 8 systolic array, the permissible num-
bers of faulty PEs for our one-dimensional pair-matching algorithm, our two-dimensional
pair-matching algorithm, and the method proposed in [30] are 14, 21, and 4, respectively;
as shown in Figure 11, to attain a success rate of 80% in an 8 × 8 systolic array, the per-
missible numbers of faulty PEs for our one-dimensional pair-matching algorithm, our
two-dimensional pair-matching algorithm, and the method proposed in [30] are 16, 23,
and 6, respectively.

From Figures 11–13, we observe that our two-dimensional pair-matching algorithm
exhibits the highest fault-tolerance capability. Furthermore, we also note that both the
proposed one-dimensional pair-matching algorithm and the proposed two-dimensional
pair-matching algorithm outperform the approach presented in [30] in terms of fault
tolerance. Essentially, the approach presented in [30] is only suitable for scenarios with
a smaller number of faulty PEs. In contrast, both our one-dimensional pair-matching
algorithm and our two-dimensional pair-matching algorithm can be applied in situations
with a higher number of faulty PEs.

Figure 11. The fault-tolerance capabilities of different methods in an 8 × 8 systolic array. The bar Jan
and Huang (2012) denotes the method proposed in [30].

Figure 12. The fault-tolerance capabilities of different methods in a 16 × 16 systolic array. The bar Jan
and Huang (2012) denotes the method proposed in [30].
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Figure 13. The fault-tolerance capabilities of different methods in a 32 × 32 systolic array. The bar Jan
and Huang (2012) denotes the method proposed in [30].

Next, we explore the circuit area overhead. For our implementations, we assume
that the size of the systolic array is 8 × 8. The circuits are implemented using the TSMC
40 nm cell library. We begin by analyzing the area of the controller (i.e., the host control
circuit). Table 1 presents the controller area for executing the proposed one-dimensional
pair-matching algorithm (referred to as 1-D), the proposed two-dimensional pair-matching
algorithm (referred to as 2-D), and the method proposed in [30]. As depicted in Table 1,
the controller area utilizing the proposed one-dimensional pair-matching algorithm is the
smallest. Conversely, the controller area of the approach proposed in [30] is the largest.
This is because their twisted column scheme is more complex than the proposed pair-
matching scheme.

Table 1. Comparison of the areas of controllers.

Algorithm Area

1-D 9553 µm2

2-D 11,675 µm2

[30] 14,589 µm2

We also examine the areas occupied by PEs. Table 2 presents the areas of various PE
designs, including the conventional PE design (i.e., without any fault-tolerance mechanism),
our PE design, and the approach proposed in [30]. In comparison to the conventional PE
design, our area overhead is only 6%. It is noteworthy to mention that the conventional
PE design lacks a fault-tolerance mechanism. On the other hand, when compared with
the conventional PE design, the area overhead of the approach proposed in [30] reaches
70% (owing to the twisted column scheme). Therefore, the area overhead of our PE design
is small.

Table 2. Comparison of the areas of different PE designs.

PE Design Area Normalization

Conventional 434 µm2 100%
Ours 462 µm2 106%
[30] 736 µm2 170%

Note that Table 2 refers to the area of a single PE. When considering a PE array, its total
area can be determined by multiplying the area of a single PE by the array size. Therefore,
for PE arrays of the same size, compared to utilizing the conventional PE design, the area
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overhead of employing our PE design remains at 6%, while the area overhead of utilizing
the approach proposed in [30] also stands at 70%.

5. Conclusions

This paper introduces a highly fault-tolerant approach designed for a systolic array
executing Cannon’s algorithm for matrix multiplication. Our core concept involves pairing
each faulty PE with a corresponding fault-free PE to serve as its proxy. We propose two pair-
matching algorithms: one-dimensional pair-matching and two-dimensional pair-matching.
These two pair-matching algorithms offer a trade-off between fault tolerance capability and
circuit area overhead. We employed the TSMC 40 nm process technology to implement the
proposed approach. The experimental results demonstrate that, compared to the previous
work, our approach (whether employing our one-dimensional pair-matching algorithm
or our two-dimensional pair-matching algorithm) not only improves fault tolerance but
also reduces circuit area overhead. In certain application domains, such as space or deep-
sea exploration, repairs are challenging even if many PEs fail. Therefore, the proposed
approach is particularly well-suited for these applications.

Since our current pair-matching algorithms necessitate finding a dedicated fault-free
PE to substitute for each faulty PE, the number of faulty PEs cannot exceed half of the
total PE count. Our future work will concentrate on developing methods to overcome
this limitation.
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