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Abstract: In this paper, a novel weighted block sparse method based on the signal subspace is
proposed to realize the Direction-of-Arrival (DOA) estimation under unknown mutual coupling in
the uniform linear array. Firstly, the signal subspace is obtained by decomposing the eigenvalues of
the sampling covariance matrix. Then, a block sparse model is established based on the deformation of
the product of the mutual coupling matrix and the steering vector. Secondly, a suitable set of weighted
coefficients is calculated to enhance sparsity. Finally, the optimization problem is transformed into
a second-order cone (SOC) problem and solved. Compared with other algorithms, the simulation
results of this paper have better performance on DOA accuracy estimation.

Keywords: weighted block sparse; signal subspace; mutual coupling; DOA

1. Introduction

DOA estimation is widely used in radar [1], communication [2], sonar [3], and other
fields [4–6], which is one of the most important topics in array signal processing [7]. In
the past decades, there has been rapid progress, such as the multiple signal classification
(MUSIC) algorithm [8], the estimation of signal parameters via the rotational invariant
technique (ESPRIT) algorithm [9], the maximum likelihood algorithm (ML) [10], and so on.
However, in the real environment, there are many non-ideal factors such as gain and phase
error [11], mutual coupling error [12], etc., which lead to the deviation between the actual
steering vector and the ideal steering vector of the received signal [13]. This deviation
seriously affects the accuracy of DOA estimation [14], and consequently, the performance
of the above algorithms is seriously affected [15].

In order to solve these problems, Ye in [16] proposes a preprocessing algorithm that
sacrifices the array aperture to suppress the negative influence of mutual coupling between
array elements [17]. After preprocessing, the array steering vector can be equivalent to
the ideal Vandermonde vector form, and the direction-finding performance is obviously
improved [18]. Dai in [19] uses the proposed preprocessing method of [16] to achieve
coherent signal DOA estimation, but the essence of this method is still array smoothing
technology, and preprocessing and smoothing result in a significant loss of array aperture.
Liao in [20] proposes a method for estimating DOA under unknown mutual coupling
using the rank deficiency method. After obtaining DOA, we reverse calculate the mutual
coupling error coefficient, which opens up new ideas for research. Li in [21] simultaneous
preprocessing technology reduces mutual coupling, and the ESPRIT algorithm achieves
DOA estimation. In recent years, signal sparsity theory has been widely applied in the
field of array signal processing. Compared with the algorithms based on the subspace
decomposition technique, the DOA estimation algorithms based on sparse theory require a
smaller number of snapshots and have better performance at low SNR [22]. In addition,
Bilik in [23] explained the rationality of using sparse theory for array signal processing.
Dai in [24] uses the proposed preprocessing method of [16] to achieve ideal steering vector
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that has a Vandermonde matrix structure, and a block sparse structure was constructed
to achieve DOA estimation, but there is still room for improvement in the performance
of this method. Wang in [25] was the first to propose using block sparsity to achieve
DOA estimation under unknown mutual coupling, providing an important theoretical
reference for researching DOA estimation under array mutual coupling. However, facing
different parameters, this algorithm may not always be able to successfully estimate the
DOA of the incident signal, so there is still significant room for improvement in stability
methods. Zhang in [26] and Tang in [27] achieve DOA estimation under unknown mutual
coupling from the perspective of numerical iteration while also achieving relatively ideal
performance. Dai in [28] has achieved real-value DOA estimation under array mutual
coupling error, reduced computational complexity, and achieved relatively ideal DOA
estimation performance. Meng in [29] proposes a sparse solution method under the
coexistence of signal coherence and mutual coupling, but the algorithm will have different
performance when facing different parameters, so it still needs to be improved. Meng
in [30] proposes a novel block sparse estimation DOA method based on weighted signal
subspace, and Antonello in [31] proposes a lightweight technique for artifact correction
and compensation in DOA Estimation, which provides us with a new perspective.

To sum up, whether it’s in classical theory or sparse signal processing, significant
progress has been made in mutual coupling DOA estimation. However, there is still room
for improvement in DOA estimation techniques [32]. The purpose of this paper is to realize
the DOA estimation under unknown mutual coupling based on signal subspace. Different
from traditional sparse DOA estimation methods, our proposed method utilizes the specific
deformation of the production of MCM and steering vector to construct a novel block
sparse model and seeks a set of weighted coefficients to enhance sparsity, thereby achieving
better DOA estimation performance. For specific comparisons, please refer to Section 4.

The arrangement of this paper is as follows: in Section 2, the received signal model and
MUSIC algorithm under mutual coupling are introduced. In Section 3, a novel weighted
block sparse DOA estimation method based on signal subspace is realized. In Section 4,
simulation results are given, and the advantages of our proposed algorithm are illustrated
by simulation effectiveness. Finally, in Section 5, conclusions are given.

2. Data Model
2.1. Signal Model

As shown in Figure 1, assuming that Q far-field narrowband signals are incident on
a uniform linear array composed of M array elements with a spacing of λ/2, the array
received snapshot data at time t is

X(t) =
Q

∑
q=1

sq(t)Ca(θq) + n(t) = CAS(t) + n(t) (1)

where, X(t) ∈ CM represents the received snapshot data at time t that contains noise, a(θq) =

[1, e−j
2πd sin θq

λ , . . . , e−j
2π(M−1)d sin θq

λ ]
T
∈ CM is the ideal steering vector of the q-th incident signal,

λ is the signal wavelength, [·]T is transpose operation, A = [a(θ1), a(θ2), . . . , a(θQ)] ∈ CM×Q

is the ideal array manifold matrix, S(t) ∈ CQ is the source signal, n(t) represents Gaussian
additive white noise ~CN (0, σ2

nIM), σ2
n is the noise variance, signal and noise are indepen-

dent of each other, C represents the mutual coupling matrix (MCM) composed of mutual
coupling coefficients, C = Toeplitz([c, 0T

M−p]), C ∈ CM×M, where c = [1, c1, . . . , cp−1],
and satisfying 1 >

∣∣c1
∣∣>∣∣c2

∣∣> · · · >
∣∣cp−1

∣∣. Taking into account the influence of mutual
coupling, the received signal can be represented as

X(t) = Ãβs(t) + n(t), Ã = [Ca(θ1), . . . , Ca(θQ)] ∈ CM×Q (2)
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2.2. Eigenvalue Decomposition and MUSIC Algorithm

Since signal and noise are assumed to be independent and uncorrelated, the covariance
matrix can be expressed as

R = E
{

X(t)XH(t)
}

= CAE
{

s(t)sH(t)
}

AHCH + σ2
nIN

= CARsAHCH + RN

(3)

In Formula (3), Rs = E
{

s(t)sH(t)
}

is signal correlation matrix, RN = σ2
nIN is noise

correlation matrix, and eigenvalue decomposition processing is performed on R

R =
Q
∑

q=1
λququH

q +
M
∑

q=Q+1
σ2

q uquH
q

= UsΣsUH
s + UnΣnUH

n

(4)

After R eigenvalue decomposition, eigenvalues are divided into M-Q small eigen-
values and Q large eigenvalues. In Formula (4), Us = span

{
uq, q = 1, 2, · · · , Q

}
∈ CM×Q

denotes the signal subspace composed of eigenvectors corresponding to Q large eigenval-
ues, Un = span

{
uq, q = Q + 1, Q + 2, · · · , M

}
∈ CM×(M−Q) denotes the noise subspace

constructed by eigenvectors corresponding to M-Q small eigenvalues, and because the
steering vector is orthogonal to the noise subspace [8], it can be expressed as

span
{

uq, q = Q + 1, Q + 2, . . . , M
}
⊥span

{
Ca(θq), q = 1, 2, . . . , Q

}
(5)

Simplified Formula (5), we can get

(Ca(θq))
HUn = 0 (6)

Without unknown mutual coupling errors, the spatial spectrum estimation of the
MUSIC algorithm is

PMUSIC =
1

aH(θ)UnUH
n a(θ)

(7)

In practical applications, the theoretical covariance matrix is often replaced by a
sampling covariance matrix, which can be expressed as

R̂ = 1
K

K
∑

t=1
X(t)XH(t)

= ÛsΣ̂sÛ
H
s + ÛnΣ̂nÛH

n

(8)

Due to the influence of finite samples, both Ûs and Ûn have certain errors, which
leads to the fact that the steering vector is not completely orthogonal to the noise subspace.
Therefore, the maximized power peak spectrum search is generally used to complete DOA
estimation. However, not only the number of sampling snapshots is limited, but also
the mutual coupling matrix C seriously affects the orthogonality of the signal steering
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vector and the noise subspace. Therefore, the spatial spectrum under mutual coupling is
specifically expressed as:

P̂MUSIC =
1

aH(θ)CHÛnÛH
n Ca(θ)

(9)

However, C is unknown, the performance of the music algorithm has significantly
decreased.

3. Proposed Method
3.1. The Connection between the Signal Subspace and the Array Manifold Matrix

According to [33], the array manifold matrix and signal subspace span into the same
subspace, and they have a certain mathematical connection since

UsUH
s + UnUH

n = IM, UH
s Us = IQ (10)

According to Formula (3), we can get

CARsAHCH = R − σ2
nIM

= UsΣsUH
s + σ2

nUnUH
n − σ2

nIM

= Us
(
Σs − σ2

nIM)UH
s

(11)

Right-multiplying both sides of the equation by Us, we can obtain

Us = CARsAHCHUs

(
Σs − σ2

nIM)
−1

= CAB = ÃB (12)

where B = RsAHCHUs
(
Σs − σ2

nIM)
−1 ∈ CQ×Q. The Formula (12) is an important math-

ematical expression that bridges the gap between the signal subspace and the array
manifold matrix.

3.2. Novel Weighted Block Sparse DOA Estimation

The mutual coupling matrix C is unknown, fortunately, according to the special
structure of MCM and steering vector, Ca(θq) can be represented as

Ca(θq) = H(θq)c (13)

where c = [1, c1, . . . , cp−1]
T ∈ Cp×1 is the mutual coupling coefficient,

H(θq) = [E1a(θq), . . . , Epa(θq)] ∈ CM×p is the special deformation of a(θq), and the number
of its column vectors is related to the number of mutual coupling coefficients, Ema(θq) is
m-th column of H(θq), where Em is defined as

[Em]ij =

{
1, if[C]ij = [c]m

0, otherwise
(14)

[c]m represents the m-th element of c, [C]ij represents the element in the i-th row
and j-th column of C, [Em]ij represents the element in the i-th row and j-th column of
Em. Obviously, the number of H(θq) column vectors depend on the number of mutual
coupling coefficients. Therefore, with the help of a special form of Ca(θq) and Us, Us can
be deformed as [34]

Us = CAB = H̃(θ)(B ⊗ c) (15)

where H̃(θ) = [H(θ1), . . . , H(θQ)] ∈ CM×Qp, B ⊗ c ∈ CQp×Q is block signal after special
deformation, which is related to the mutual coupling coefficient and signal B. Formula (15)
shows that DOA information is required for the establishment of H̃(θ).
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Due to the sparse model of the DOA estimation problem in the spatial domain, a
sparse model can be established to solve this problem, assuming that the grid points are
set as follows Θ = [θ1, . . . , θG]. H(θq) is not a column vector, so a block sparse model is
established to solve the DOA estimation problem under the unknown mutual coupling.
In order to reconstruct the sparse signal space spectrum from Formula (15), we need to

construct a new over-complete matrix
–
H(θ) that contains all possible DOA.

–
H(θ) = [H(θ1), . . . , H(θG)] ∈ CM×Gp (16)

G represents the number of grid points in the over-complete set, G ≫ M > Q. Therefore, in
the sparse model, Us can be represented as

Us = CAB =
–
H(θ)(

–
B ⊗ c) =

–
H(θ)

⌢
Bθ (17)

–
B ∈ CG×Q is the mathematical model based on B under the sparse model, most of its

elements are 0 elements. Whether a certain row of elements in
–
B is all zero depends on

whether there is a signal incident at the corresponding DOA.
⌢
Bθ = (

–
B ⊗ c) ∈ CGp×Q, at

this point, whether the elements in the (p(g − 1) + 1)−th to pg-th rows of matrix
⌢
Bθ are

all 0 depends on whether the elements in the g-th row of
–
B are all 0, g = 1, . . . , G.

–
H(θ) can be established based on the angles corresponding to grid points in the

overcomplete set, while
⌢
B is unknown. To recover the block sparse matrix

⌢
B, a block sparse

optimization model is established. In this model, the l0 norm penalty is selected as an ideal
measure of sparsity, and considering it as the objective function, considering the constraint
function, the corresponding optimization problem can be specifically represented as

min ∥
⌢
B

lF

θ ∥0 s.t. ∥ Us −
–
H(θ)

⌢
Bθ ∥F ≤ ξ (18)

where ξ is regularization parameter, which controls the upper bound of the fitting error.
⌢
B

lF

θ = [
⌢
B

lF

θ1
,
⌢
B

lF

θ2
, · · · ,

⌢
B

lF

θG
]
T

∈ RG, and
⌢
B

lF

θg is the lF norm value of
⌢
Bθg ,

⌢
Bθg is g-th

block of
⌢
Bθ , which is composed of the (p(g − 1) + 1)-th to the pg-th rows of

⌢
Bθ . Since

⌢
Bθ is block sparse signal, after recovering signal

⌢
Bθ , finding the top Q largest

⌢
B

lF

θg can
obtain DOA. l0 norm constrained scheme can achieve the optimal recovery performance,
however, the l0 norm problem is an Non-deterministic Polynomial (NP) hard problem that
is extremely difficult to solve in mathematical theory. To make the problem solvable, the l1
norm is used instead of the l0 norm to relax the constraint conditions. At this point, the
optimization problem can be expressed as

min ∥
⌢
B

lF

θ ∥1 s.t. ∥ Us −
¯
H(θ)

⌢
Bθ ∥F ≤ ξ (19)

Formula (19) is a convex optimization problem; however, the l1 norm affects the
performance of sparse recovery, so the solution result is not always ideal. In order to
enhance the sparsity of the solution, a weighted matrix was designed for the weighted l1
norm minimization problem to obtain a more ideal solution, which improves the accuracy
of DOA estimation. In order to enforce the sparsity of the solution and the performance of
DOA estimation, a weighted matrix based on the orthogonality between the signal steering
vector and the noise subspace is designed. The product of the steering vector and the noise
subspace can be expressed as

δ = aH(θg)CHUnUH
n Ca(θg) (20)
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Transform Formula (20), we can obtain

δ = cHQ
(
θg
)
c (21)

where Q
(
θg
)
= HH(θg)UnUH

n H(θg) ∈ Cp×p, the rank of H(θg) is p, g = 1, . . . , G, the rank
of UnUH

n is M − Q. When M − Q ≥ p, rank Q
(
θq
)
= p. However, when θg = θq, that is,

when the angle corresponding to the grid point is equal to the DOA of the incident signal,
according to Formula (6), we can get that

cHQ
(
θq
)
c = aH(θq)CHUnUH

n Ca(θq) = 0 (22)

Q
(
θq
)
= HH(θq)UnUH

n H(θq) ∈ Cp×p, Q
(
θq
)

is no longer full rank [35], therefore, the
determinant of Q

(
θq
)

is 0, i.e.,
det

[
Q
(
θq
)]

= 0 (23)

where det [·] stands for the determinant of a matrix. In summary, the matrix of Q
(
θg
)

only
exhibits rank deficiencies at specific grid points. Therefore, the corresponding values are
calculated as weighted values to enhance sparsity, which is based on the orthogonality
principle between the steering vector and noisy subspaces. The weighted value is defined as

w̃g = det[Q
(
θg
)
] = det[HH(θg)UnUH

n H(θg)] (24)

Utilizing the w̃g, a weighted matrix is defined as

W = diag{W} (25)

where diag{·} represents taking a diagonal matrix, W = [w1, w2, · · · , wG],
wg = w̃g/max{w̃1, w̃2, · · · , w̃G}. In the optimization problem of l1 norm, the small en-

tries of
⌢
B

lF

θ , who are more closer to zero, are punished by large weights, and those larger

entries of
⌢
B

lF

θ are reserved by small weights. Then a reweighted optimization model based
on l1-norm is given as follows:

min ∥ W
⌢
B

lF

θ ∥1 s.t. ∥ Us −
–
H(θ)

⌢
Bθ ∥2

F ≤ ξ2 (26)

In order to better solve this optimization problem, the second-order cone (SOC) model
can be established as

min
δ,r,

⌢
Bθ

δ, s.t.1Tr ≤ δ,
⌢
B

lF

θg ≤ rg∥ Us −
–
H(θ)

⌢
Bθ ∥F ≤ ξ, g = 1, 2, · · · , G (27)

where δ is the objective function and is a real number, r = [r1, r2, . . . , rG]
T , 1T is a row vector

that is all 1, 1T ∈ R1×G. The regularization parameter ξ2 has been suggested to choose the

upper bound of ∥ Us −
–
H(θ)

⌢
Bθ ∥2

F with 99% confidence interval. The optimization problem
(27) can be solved by using the convex optimization toolbox CVX in MATLAB R2023a.

4. Simulation

This paper includes simulation experiments as follows: comparison of the weighted
and unweighted spatial spectrum, comparison of DOA estimation accuracy under different
input signal-to-noise ratios (SNR), comparison of DOA estimation accuracy under different
input snapshots; comparison of the probability of resolution (PR) under different input
SNR; and comparison of the probability of resolution under different input snapshots. All
simulation environments are MATLAB R2023a with an Intel Core i7-13620H, 2.40 GHz
processor with 16 GB of memory.
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The first experiment is to demonstrate that the weighted spatial spectrum is sharper
and can improve the accuracy of DOA estimation, assuming that there is a uniform linear
array composed of 9 array elements with a spacing of half a wavelength, i.e., M = 9.
There are two far-field narrowband signals incident from θ1 = −30.1◦ and θ2 = 40◦,
respectively. The initial radio frequencies were set to 0.301 GHz and 0.305 GHz. After
the down-conversion stage, the signal frequencies were 1 MHz and 5 MHz. The number
of sampling snapshots is fixed at K = 200, and the input SNR = 10 dB. The number of
grid points is 181 with an interval is 1◦, that is, G = 181. In the mutual coupling error
coefficient matrix c = [1, 0.684 + 0.563i], it should be noted that the mutual coupling errors
of all experiments in this paper are the same as those mentioned above.

As shown in Figure 2, the red line represents the weighted spatial spectrum obtained
by solving Formula (27); the black lines are the unweighted spatial spectrum obtained by
solving Formula (19). We can observe that the weighted peak spectrum is sharper, thus
having better resolution, and the spectrum peaks correspond to the DOA of the incident
signal to be solved, thus having higher DOA estimation accuracy.
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The second experiment is in order to illustrate the advantages of the proposed algo-
rithm in terms of the accuracy of DOA under different SNRs: set the simulation parameters
as follows: the number of uniform linear array elements M = 9, there are two far-field
narrowband signals that are incident from θ1 = −30.1◦ and θ2 = 49◦, respectively, and
the signals are uncorrelated with each other, i.e., Q = 2. The two signal powers are equal,
the number of sampling snapshots of the two signals is K = 200, and the input SNR is
0~15 dB, with an interval of 5 dB. The mutual coupling coefficient is consistent with the
first experiment. we compare it with other DOA estimation algorithms, i.e., select sparse
representation (SR) method [24], block sparse representation (BSR) method [25], robust
weighted subspace (RWS) method [30], mutual coupling special deformation (MCSD)
method [20], mutual coupling preprocessing (MCP) method [16], mutual coupling based
on the ESPRIT (MCE) method [21] and Cramér-Rao Bound (CRB) [36].

The root mean square error of DOA is used to quantitatively analyze the accuracy of
DOA estimation. The expression is:

RMSEθ =

√√√√ 1
NQ

N

∑
n=1

Q

∑
q=1

(θq − θ̂n,q)
2

(28)

N represents the number of Monte Carlo experiments, all experiments in this paper, N = 200.
θ̂n,q denotes the calculated θq by the n-th Monte Carlo experiment.

As shown in Figure 3, the performance of methods SR, MCP and MEC is not as good
as the proposed methods, possibly because these methods are based on pre-processing,
which results in a certain loss of array aperture. The performance of methods BSR and
SR is not ideal, which may be because the sparsity of the block sparse model established
by these methods is not ideal. Compared with the other algorithms, the DOA estimation
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performance of our proposed algorithm has the minimum RMSE of DOA estimation in
different SNRs. Especially at low signal-to-noise ratios, the performance of the proposed
algorithm is significantly superior to other performance factors. This is because, after
eigenvalue decomposition, the noisy subspace has been removed, and the algorithm is less
affected by noise. Starting at 5 dB, the DOA estimation error of the proposed algorithm
no longer changes. This is because DOA estimation is affected by the grid point setting.
If the incident signal DOA is not at the corresponding DOA of the grid point, there will
inevitably be errors. The accuracy of sparse DOA estimation is affected by the grid spacing.
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Figure 3. The DOA estimation performance with different SNR.

The third experiment is in order to illustrate the advantages of the proposed algorithm
in terms of the accuracy of DOA under different snapshots: set the simulation parameters
as follows: the number of uniform linear array elements M = 9, there are two far-field
narrowband signals of equal power that are incident from θ1 = −30.1◦, θ2 = 49◦, Q = 2
and the signals are uncorrelated with each other. The two signal powers are equal; the
input SNR is 0 dB and the number of snapshots is 200~800, with the interval being 200. The
mutual coupling coefficient is consistent with the first experiment.

As shown in Figure 4, the proposed method has the best DOA estimation perfor-
mance under any snapshot, and as the snapshot increases, the DOA estimation error
gradually decreases.
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The fourth experiment is in order to illustrate the advantages of the proposed algorithm
in the PR under different SNR: set the simulation parameters as follows: the number of
uniform linear array elements M = 9, there are two far-field narrowband signals that are
incident from θ1 = −30.1◦ and θ2 = 49◦, respectively, and the signals are uncorrelated with
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each other, Q = 2. The number of sampling snapshots of the two signals is K = 200, and the
input SNR is 0~15 dB, with an interval of 5 dB. PR is defined as:

PR = (
N

∑
n=1

Pn(θ))/N (29)

Pn(θ) represent whether θq are successfully estimated in the n-th Monte Carlo experiment.
If the estimation is successful, Pn(θ) = 1, otherwise Pn(θ) = 0. The limiting condition for
successful estimation of Pn(θ) is: any θ̂n,q satisfies

∣∣θ̂n,q − θq
∣∣ ≤ 0.5. The mutual coupling

coefficient is consistent with the first experiment.
The experiment sets the success condition for DOA estimation to be that any θq satisfies∣∣θ̂n,q − θq

∣∣ ≤ 0.5. This experiment is to compare the stability of different algorithms. As
shown in Figure 5, the input SNR gradually increases, and the PR of all algorithms gradually
improves. At the same time, our proposed algorithm has the highest PR under any SNR, so
it has the best stability under different SNRs.
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The fifth experiment is in order to illustrate the advantages of the proposed algorithm
in the PR under different snapshots: set the simulation parameters as follows: the number
of uniform linear array elements M = 9, there are two far-field narrowband signals that are
incident from θ1 = −30.1◦ and θ2 = 49◦, respectively, and the signals are uncorrelated with
each other, Q = 2. The number of sampling snapshots of the two signals is K = 200~800,
with an interval of 200, and the input SNR is 0 dB. The mutual coupling coefficient is
consistent with the first experiment. The successful condition for DOA estimation is the
same as in the fourth experiment.

As shown in Figure 6, as the input snapshot gradually increases, the PR of all algo-
rithms gradually improves. At the same time, our proposed algorithm has the highest PR
under any snapshot, so it has the best stability under different snapshots.
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5. Conclusions

In this paper, a novel weighted block sparse method for DOA estimation under
unknown mutual coupling is proposed based on signal subspace and utilizing the special
deformation of MCM and steering vector product to achieve excellent DOA estimation
performance. Firstly, the signal subspace is obtained by decomposing the eigenvalues
of the sampling covariance matrix. Then, a block sparse model is established based
on the signal subspace. To enhance sparsity, a suitable set of weights is calculated to
enhance the performance of DOA estimation. Finally, to facilitate the solution of the
optimization problem, it is transformed into a SOC problem. Simulation has demonstrated
the performance advantages of the proposed algorithm. It should be noted that the block
sparsity method is solved using CVX, and more efficient solving methods still need to be
studied in the future. The noise subspace is essential to the proposed method, so it is not
suitable for scenarios of coherent signals.
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