
Citation: Koots, R.; Pérez-Ríos, J.

PyQCAMS: Python Quasi-Classical

Atom–Molecule Scattering. Atoms

2024, 12, 29. https://doi.org/

10.3390/atoms12050029

Received: 22 January 2024

Revised: 9 April 2024

Accepted: 7 May 2024

Published: 11 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Article

PyQCAMS: Python Quasi-Classical Atom–Molecule Scattering
Rian Koots 1,2 and Jesús Pérez-Ríos 1,2,∗

1 Department of Physics, Stony Brook University, Stony Brook, NY 11794, USA
2 Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794, USA
* Correspondence: jesus.perezrios@stonybrook.edu

Abstract: We present Python Quasi-classical atom–molecule scattering (PyQCAMS v0.1.0), a new Python
package for atom–diatom scattering within the quasi-classical trajectory approach. The input consists
of the mass, collision energy, impact parameter, and pair-wise/three-body interactions. As the output,
the code provides the vibrational quenching, dissociation, and reactive cross sections along with the
rovibrational energy distribution of the reaction products. We benchmark the program for a reaction
involving a molecular ion in a high-density ultracold gas, RbBa+ + Rb. Furthermore, we treat H2 + Ca →
CaH + H reactions as a prototypical example to illustrate the properties and performance of the software.
Finally, we study the parallelization performance of the code by looking into the speedup of the program
as a function of the number of CPUs used.

Keywords: atom–molecule scattering; quasi-classical trajectory calculations; molecular dissociation;
vibrational quenching; reactive scattering

1. Introduction

For decades, one of the main approaches to studying molecular dynamics has been
via the quasi-classical trajectory (QCT) method [1,2]. This technique treats collisions semi-
classically. The nuclear dynamics in the underlying potential energy surface are treated
classically. However, the initial and final states are chosen following the Bohr–Sommerfeld
quantization rule, yielding accurate predictions at significantly less cost than quantum
dynamics as long as they fall within given conditions—i.e., a high collision energy with
a large number of contributing partial waves [3]. QCT has been used in a multitude of
scenarios relevant to chemical physics [4–10] and cold and ultracold chemistry [11–13],
ranging from the ultracold to the hyperthermal regimes. In particular, it has been used
to study the relaxation and reaction dynamics of cold atom–ionic molecule [11,12] and
atom–molecule collisions [14].

We present an open-source object-oriented program written in Python to perform
QCT calculations on atom–diatom systems called Python Quasi-Classical Atom–Molecule
Scattering (PyQCAMS). While chemical dynamics programs such as Gaussian [15] and
VENUS [16] are capable of performing QCT calculations, we introduce a more accessible,
user-friendly, and dedicated path to performing these simulations. Our program consists
of completely open-source software and relies mainly on the NumPy [17] and SciPy [18]
packages. We use matplotlib [19] for data visualization, pandas [20] for data storage and
analysis, and multiprocess [21,22] for parallel implementation.

The outline of this paper is as follows: In Section 2.1 we discuss the theory behind
the quasi-classical trajectories method, including the initial conditions, trajectory reactions,
and analysis. In Section 2.2, we discuss the PyQCAMS program as separated into the
inputs, main code, and outputs. We also discuss the implementation and performance of
the program. In Section 3, we provide a benchmark study on the reaction RbBa+ + Rb as
well as an example of a typical workflow to study the reaction H2 + Ca, where we outline
how a user can obtain reaction rates and product distributions using the program.

Atoms 2024, 12, 29. https://doi.org/10.3390/atoms12050029 https://www.mdpi.com/journal/atoms

https://doi.org/10.3390/atoms12050029
https://doi.org/10.3390/atoms12050029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atoms
https://www.mdpi.com
https://orcid.org/0000-0002-9020-532X
https://orcid.org/0000-0001-9491-9859
https://doi.org/10.3390/atoms12050029
https://www.mdpi.com/journal/atoms
https://www.mdpi.com/article/10.3390/atoms12050029?type=check_update&version=2

Atoms 2024, 12, 29 2 of 15

2. Materials and Methods
2.1. Theoretical Approach

In this section, we describe the basics of the QCT. The QCT method treats scattering
processes semi-classically. The trajectories are calculated by solving Newton’s equations
of motion of the colliding nuclei. In the case of atom–molecule scattering, at the start
of each trajectory, the rovibrational spectrum is calculated following a discrete variable
representation (DVR) method using particle-in-a-box eigenfunctions [23]. The internal
degrees of freedom of the final molecule are treated within the Wentzel–Kramers–Brillouin
(WKB) approximation, such that the final rovibrational state (v′, j′) satisfies a quantum
mechanically viable state. The classical Hamiltonian for a 3-particle atom–molecule system
with masses mi, i = 1, 2, 3 takes the following form:

H =
3

∑
i=1

p⃗2
i

2mi
+ V (⃗r1, r⃗2, r⃗3), (1)

where p⃗i and r⃗i represent the momentum and position vectors of each atom with respect to
the origin. This Hamiltonian is expressed in Jacobi coordinates as

H =
P⃗2

1
2µ12

+
P⃗2

2
2µ3,12

+ V (⃗ρ1, ρ⃗2), (2)

where ρ⃗1 is the Jacobi vector associated with the molecule, and P⃗1 is its conjugate momen-
tum. ρ⃗2 is the Jacobi vector connecting the atom with the center of mass of the molecule, and
P⃗2 is its conjugate momentum, as shown in Figure 1. Note that this Hamiltonian uses the re-
duced masses of the corresponding atoms: µ12 = (1

m1
+ 1

m2
)−1 and µ3,12 = (1

m3
+ 1

m1+m2
)−1.

Defining the coordinates in this way separates the center-of-mass degree of freedom from
the relative one. The momentum associated with the center-of-mass degrees of freedom is
a constant of motion, since the interaction potentials do not depend on the center-of-mass
position, and is neglected in the analysis of the dynamics.

x

y

z

κ̂

Ĵ
1

2

3
b

r13

r23

ρ⃗1

ρ⃗2

d

ϕ

θη

Figure 1. Jacobi coordinates of an atom–molecule system. The Jacobi vectors ρ⃗1 and ρ⃗2 are in blue.
Here, the molecule is rotating in the x-y plane, with the angular momentum J⃗ along the z-axis,
κ⃗ = ρ⃗1 × ẑ. η is the angle between κ⃗ and J⃗, and ϕ and θ are defined as usual in spherical coordinates.

We trace the atoms’ subsequent motion by solving Hamilton’s equations of motion:

dρi,α

dt
=

∂H
∂Pi,α

(3)

Atoms 2024, 12, 29 3 of 15

dPi,α

dt
= − ∂H

∂ρi,α
(4)

for i = 1, 2 for each associated vector, and α = 1, 2, 3 for each Cartesian component.

2.1.1. Initial Conditions

The initial orientation angles are randomly generated to initialize each trajectory. The
momentum of the molecule, P⃗1, is subsequently defined by the orientation angles. If we
initialize the molecule at its classical outer turning point |⃗ρ1| = r+, the momentum has
no radial component. Since the angular momentum J⃗ = r⃗ × p⃗, and ρ⃗1 ⊥ P⃗1, we find the
magnitude of P1 = h̄

√
j(j + 1)/r+, with the following components [3]:

P⃗1 = P1

 sin ϕ cos η − cos θ cos ϕ sin η
− cos ϕ cos η − cos θ sin ϕ sin η

sin θ sin η

. (5)

The angles ϕ, θ, η are defined in Figure 1. The relative momentum between the collid-
ing atom and the molecule center for a given collision energy, Ec, is P⃗2 =

√
2µ3,12Ec. The

initial vibrational phase is randomly sampled by choosing the initial distance between the
atom and molecule as

R = R0 +
ζP2τv,j

µ3,12
, (6)

where R0 is a fixed far-away distance, where the interaction potential strength is negligible.
The second term probes the molecule’s vibrational phase since ζ ∈ [0, 1] is randomly
generated following a uniform distribution, and τv,j is the vibrational period of the molecule
corresponding to the quantum mechanical state (v, j). This is calculated as

τv,j =
√

2µ12

∫ r+

r−

[
Eint − V(r12)−

h̄2 j(j + 1)
2µ12r2

12

]− 1
2

dr12, (7)

where V(r12) is the molecular potential energy, and r12 is the molecular separation. Eint is the
internal energy of the molecule, which is calculated via a DVR method. The bounds of the integral
are given by the classical inner and outer turning points of the bound state, r− and r+, respectively.

2.1.2. Final Products

For the atom–molecule reaction AB + C, we expect three possible final products (see Figure 2):

1. Inelastic collision (quenching): AB(v, j) + C → AB(v′, j′) + C;
2. Molecular formation (reaction): AB + C → AC + B or BC + A;
3. Dissociation: AB + C → A + B + C.

The final product is determined by the relative energy between each atom. The
condition for whether two atoms are bound is determined by the effective potential:

Eij <

Vij(r0) +
j′(j′+1)
2µijr2

0
j′ ̸= 0

0 j′ = 0
, (8)

where r0 is the local maximum of the effective potential. Here, i, j ∈ [1, 3], i ̸= j represent
each of the atoms. Two atoms are considered bound only if this condition is satisfied for
just one pair of atoms, so that the other two pairs can be deemed unbound.

Atoms 2024, 12, 29 4 of 15

Figure 2. Different product outcomes for a given QCT calculation for H2 + Ca at Ec = 50,000 K,
b = 0 a0. r12 represents the internuclear distance between each H, whereas r32 and r31 represent the
internuclear distance between the colliding atom Ca (3) and each molecular atom (H(1) and H(2)).
These trajectories show dissociation (a), reaction (b), and quenching (c). In panel (b), r31 oscillates
around a fixed distance, an indicator that a new molecule is formed.

The final states (v′, j′) are calculated within the WKB approximation. The rotational
quantum number is given by

j′ = −1
2
+

1
2

√
1 + 4

J⃗′ · J⃗′

h̄2 , (9)

where J⃗ = ρ⃗i × P⃗i is the effective conjugate angular momentum of the Jacobi vector ρ⃗i.
This expression is equivalent to J⃗ · J⃗ = j(j + 1)h̄2. After rounding j′ to the nearest integer
number, the vibrational quantum number is given by [2]

v′ = −1
2
+

√
2µab

πh̄

∫ r+

r−

[
E′

int − V(rab)−
h̄2 j′(j′ + 1)

2µabr2
ab

] 1
2

dr. (10)

Although these equations lead to continuous numbers, they need to be interpreted
as integers before assigning them as quantum numbers. One may choose to round to the
nearest number via histogram binning (HB) or through the Gaussian binning (GB) process,
where each rovibrational action (x = v′, j′) is weighted against its nearest integer xt with a
Gaussian [24,25]:

W(x′, xt) =
1

σ
√

π
e
−|x′−xt |2

σ2 (11)

with σ = 0.05. The Gaussian weight of a trajectory ending in (v′, j′) is

W(v′, j′) = W(v′, vt)W(j′, jt). (12)

2.1.3. Analysis

The cross-section and reaction rate coefficients for an atom–molecule collision are
calculated from the QCT simulations. The first step is to calculate the opacity function,
which is formally defined as

Pq,r,d(Ec, b) =
∫

Pq,r,d(Ec, b, θ, ϕ, η, χ)dΩ, (13)

where dΩ = sin θdθdϕdηdχ, and Pq,r,d represent the opacity function of a quenching, reac-
tion, and dissociation product, respectively. This integral is evaluated via the Monte Carlo

Atoms 2024, 12, 29 5 of 15

technique over the randomly generated variables θ, ϕ, η, and χ, with an error associated
with one standard deviation:

Pq,r,d(Ec, b) =
Nq,r,d(Ec, b)

N
±

√
Nq,r,d(Ec, b)

N

√
N − Nq,r,d(Ec, b)

N
. (14)

The final state-specific opacity of a reaction initialized in state (vi, ji) with collision energy
Ec and impact parameter b, and ending in state (v′, j′) is calculated via the GB method [26]:

Pr(Ec, b; v′, j′) =
∑Nr

i=1 Wi
r(v′, j′)

W
±

√
∑Nr

i=1 Wi
r(v′, j′)

W

√
W − ∑Nr

i=1 Wi
r(v′, j′)

W
, (15)

where Nr is the number of reactive trajectories, and the total weight W is evaluated as

W =
N

∑ W(v′, j′) + Nd, (16)

where N is the total number of trajectories, and Nd is the number of dissociation trajecto-
ries. Each dissociation reaction has a weight Wd = 1 since there is no rovibrational state
associated with this product.

The opacity function yields the state-specific scattering cross section at different colli-
sion energies Ec:

σq,r,d(Ec; v′, j′) = 2π
∫ bq,r,d

max

0
Pq,r,d(Ec, b; v′, j′)bdb, (17)

where bmax is defined such that P(Ec, bmax) = 0 for a given reaction channel. The rate
coefficient is given by

kq,r,d(Ec) = σq,r,d(Ec)

√
2Ec

µ
. (18)

2.2. The Program

PyQCAMS is written in an object-oriented manner, containing two main classes:
Molecule and Trajectory. This treats molecules and trajectories as objects, tracing relevant
attributes for each calculation, as outlined in Figure 3. The program takes an input, where the
user specifies the details of the reaction of interest. The variables are passed into their respective
classes, where the trajectory calculations are performed. The results of each trajectory are then
output into a user specified file. The details of each step are outlined in this section.

Molecule
DVR energy

spectrum, classical
turning points,
rovibrational

number and period

Interaction
potentials

Atomic masses

Inputs

Collision &
integration
parameters

Trajectory
Randomize

initial conditions,
solve Hamil-

ton’s equations,
analyze products

Reaction products

Final coordinates

Outputs

Final states

PyQCAMS

Figure 3. The general structure of the PyQCAMS program.

2.2.1. Input

For a given system, a new Python script should be created with a dictionary containing
the calculation input, as shown in Listing 1. The script contains the masses of all three
atoms, where atoms 1 and 2 form the initial molecule, and atom 3 is the colliding atom.
Each trajectory is defined by the collision energy (E0) in Kelvin, the impact parameter (b0)
in Bohr, and the initial distance between the atom and molecule (R0) in Bohr.

Atoms 2024, 12, 29 6 of 15

Listing 1. Python script for a full QCT calculation of the reaction H2 + Ca. This example uses the
Morse function from the potentials module, with appropriate parameters set. v12 always refers to
the initial bound molecule. v123 is the three-body potential function, with associated derivatives.
This example uses the Axilrod–Teller model potential but with a coefficient of 0; so, it includes no
three-body effects.

import numpy as np
from pyqcams import qct , constants , potentials

Atomic masses (amu converted to atomic units)
m1 = 1.008* constants.u2me # H
m2 = 1.008* constants.u2me # H
m3 = 40.078* constants.u2me # Ca

Collision parameters
E0 = 40000 # collision energy (K)
b0 = 0 # Impact parameter (Bohr)
R0 = 50 # Initial distance (Bohr)

Potential parameters in atomic units
v12 , dv12 = potentials.morse(de = 0.16456603489 , re = 1.40104284795 , alpha =

1.059493476908482)
v23 , dv23 = potentials.morse(de = 0.06529228457 , re = 3.79079033313 , alpha =

0.6906412379896358)
v31 , dv31 = potentials.morse(de = 0.06529228457 , re = 3.79079033313 , alpha =

0.6906412379896358)

Three -body interaction
v123 , dv123dr12 , dv123dr23 , dv123dr31 = potentials.axilrod(C=0)

Initiate molecules
mol12 = qct.Molecule(mi = m1, mj = m2 , Vij = v12 , dVij = dv12 ,

xmin = .5, xmax = 30, vi = 1, ji = 0, npts =1000)
mol23 = qct.Molecule(mi = m2, mj = m3 , Vij = v23 , dVij = dv23 ,

xmin = 1, xmax = 40)
mol31 = qct.Molecule(mi = m3, mj = m1 , Vij = v31 , dVij = dv31 ,

xmin = 1, xmax = 40)

input_dict = {’m1’:m1, ’m2’:m2, ’m3’:m3 ,
’E0’: E0, ’b0’: b0, ’R0’: R0 , ’seed’: None ,
’mol_12 ’: mol12 ,’mol_23 ’: mol23 ,’mol_31 ’: mol31 ,
’vt’: v123 , ’dvtdr12 ’: dv123dr12 ,
’dvtdr23 ’: dv123dr23 , ’dvtdr31 ’: dv123dr31 ,
’integ’:{’t_stop ’: 2, ’r_stop ’: 2, ’r_tol ’: 1e-10,

’a_tol’:1e-8,’econs ’:1e-5,’lcons’:1e-5}}

if __name__ == ’__main__ ’:
bs = np.arange (0 ,5 ,0.25) # Range of impact parameters (Bohr)
nTraj = 10000 # Number of trajectories
short_out = ’short.txt’ # Short output
long_output = ’long.txt’ # Long output

Run over a range of impact parameters
for b in bs:

input_dict[’b0’] = b
qct.runN(nTraj , input_dict , short_out = ’short.txt’,

long_out = ’long.txt’)

Analysis

Atoms 2024, 12, 29 7 of 15

mu = m3*m1*m2/(m1+m2+m3)
analysis.opacity(’samplelong.txt’,GB=True ,vib=True ,rot=False ,output=’

opacity.txt’)
analysis.crossSection(’samplelong.txt’,GB=True ,vib=True ,rot=False ,output=

’sigma.txt’)
analysis.rate(’samplelong.txt’,mu=mu ,GB=True ,vib=True ,rot=False ,output=’

rate.txt’)

Next, the interaction potential between each atom and their derivatives is defined in
atomic units. The user should define all two-body and three-body interactions (and their
derivatives). These can be user-defined functions or chosen from the potentials module,
which has a selection of analytical potentials and their derivatives for two-body and three-
body interactions. One may fit ab initio potential curves and surfaces to a functional form
for the trajectory calculation [27], which includes both two and three-body interactions.
This functional form is provided in potentials as poly2 and poly3, inspired by [28]. The
potentials offered in potentials are

1. Two-Body Terms

(a) Morse: V(r) = De

(
1 − exp(−α(r−re))

)2
− De

User defines: De, α, re;

(b) Generalized Lennard–Jones: V(r) = Cm/rm − Cn/rn

User defines: m, n, Cm, Cn;

(c) Buckingham: V(r) = ae−br − C6/r6

User defines: a, b, C6;

(d) poly2: V(r) = C0e−αr

r +
N
∑

i=1
ciρ

i, ρ = re−βr

User defines: C0, α, β, ci.

2. Three-Body Terms

(a) Axilrod–Teller [29]: V(r12, r23, r31) = C 3 cos γ1 cos γ2 cos γ3+1
r3

12r3
23r3

31
User defines: C;

(b) poly3: V(r12, r23, r31) =
M
∑

i,j,k
dijkρi

12ρ
j
23ρk

31, ρµν = rµνe−βµνrµν

User defines: dijk, βµν.

Three molecules representing the three possible reaction products should be initiated via
the molecule class, with the following keyword arguments (‘mi’, ‘mj’, ‘Vij’, ‘dVij’, ‘xmin’, ‘xmax’).
Here, ‘mi,mj’ are the masses of atoms ‘i’ and ‘j’, ‘Vij,dVij’ are the interaction potential and its
derivative between those atoms, and ‘xmin,xmax’ represent the range of the interaction potential.
Note that since molecule ‘12’ is initially bound, one should also define their initial vibrational and
rotational quantum numbers, ‘vi,ji’. A DVR method is used to calculate the energy corresponding
to this rovibrational state, so the user can control the number of DVR points with the keyword
‘npts’, which is set to 1000 by default. If the rovibrational spectrum is known, the DVR method
can be skipped by setting the binding energy of the molecule using the keyword argument ’Ei’.

The main input requirement of PyQCAMS is a dictionary containing all of the previously
defined parameters necessary for a QCT calculation. In addition, the dictionary should contain
the three-body interaction term ‘Vt’ and its partial derivatives ‘dVtdr12, dVtdr23, dVtdr31’.
To neglect the three-body interaction, just set these functions to 0. Finally, the parameters for
integration should be entered in the nested dictionary ‘integ’. The user can choose when to
stop a trajectory using ‘t_stop’, which is a multiplicative factor of the trajectory’s time scale.
Another stopping condition is the maximum distance between any two atoms, ‘r_stop’, which

Atoms 2024, 12, 29 8 of 15

is a multiplicative factor of the initial distance ‘R0’. Finally, the absolute and relative tolerances
of the integrator can be controlled with ‘a_tol’ and ‘r_tol’, respectively. For reproducibility, the
user can input a ‘seed’ for the random number generator or leave it as null to generate a new
trajectory. The keywords for this dictionary are described in Table 1.

Table 1. Keywords for the input dictionary required in the input file of PyQCAMS.

Keyword Description (Unit)

m1, m2, m3 Atomic masses (a.u.)
E0 Collision energy (Kelvin)
b0 Impact parameter (Bohr)
R0 Initial distance (Bohr)

seed Random number generator seed
mol_12 Molecule class object: of atoms one and two (initially bound)
mol_23 Molecule class object: of atoms two and three
mol_31 Molecule class object: of atoms three and one

Vt Three-body interaction term Vt (Hartree)
dVtdr12 Partial derivative ∂Vt/∂r12 (Hartree)
dVtdr23 Partial derivative ∂Vt/∂r23 (Hartree)
dVtdr31 Partial derivative ∂Vt/∂r31 (Hartree)

integ[t_stop] Stopping condition: multiple of collision timescale
integ[r_stop] Stopping condition: multiple of R0
integ[r_tol] Relative error tolerance for equation of motion
integ[a_tol] Absolute error tolerance for equation of motion
integ[econs] Conserved energy requirement (Hartree)
integ[lcons] Conserved momentum requirement (a.u.)

Note that atoms “1" and “2" should always represent those of the initial molecule, so
that atom “3" represents the colliding atom. This convention should also be followed when
specifying the masses. Additionally, all values entered in the input file should be in atomic
units except for the collision energy.

2.2.2. Main Code

The main code consists of two classes, Molecule and Trajectory. After defining the
input dictionary using Molecule objects and other keywords, it can be passed into the
Trajectory class, which computes a quasi-classical trajectory.

The Molecule class contains methods relevant to molecules, such as the DVR method
for finding the energy spectrum of a bound molecule and a method for calculating the
classical turning points of a bound molecule. The spectrum and turning points for different
E(v,j) in different potentials can be stored separately for future use. The attributes of
Molecule objects can be found in Table 2.

Table 2. Attributes of a PyQCAMS Molecule object other than those provided in their input. All
values are in atomic units.

Keyword Description

Ei Initial binding energy (for molecule 12)
E Final relative energy

Veff Effective potential
re Equilibrium distance
rp Classical outer turning point
rm Classical inner turning point
tau Vibrational period

bdry Local maximum of effective potential
bdx Interparticle distance of effective potential local maximum

vPrime Final vibrational number (not binned)
vt Final vibrational number (rounded)

vw Gaussian weight associated with vPrime
jPrime Final rotational number (rounded)

jw Gaussian weight associated with jPrime

Atoms 2024, 12, 29 9 of 15

The Trajectory class performs the main QCT calculation and is outlined in Figure 4. First,
a random set of initial conditions is generated by the method iCond, following Section 2.1.1,
yielding (ρ⃗1, ρ⃗2, P⃗1, P⃗2). Next, the Hamilton’s equations of motion are solved using a SciPy [18]
integrator utilizing the adaptive Runge–Kutta 5(4) integration method [30]. After one of the stop
conditions is met, the energy and momentum are checked for conservation. Finally, the product
count n⃗ f is created following Section 2.1.2. We first check each effective potential as to whether it
can support bound states, then we check the final relative energies based on Equation (8). If more
than one bound molecule is found, we denote it as an intermediate complex in the final output. If
the trajectory results in a bound molecule, the final state s⃗ f is calculated using the Molecule class
method turningPts.

Input

iCond

solve ivphamEq ρ⃗f , P⃗f

Molecule.checkBound n⃗f

Molecule.turningPts

Molecule.gaussBin
s⃗f

runT()

Figure 4. Outline of the Trajectory class. The components within the dashed line are contained in
the run_T method of the Trajectory class. The outputs are the final position, momentum, product
count, and state vectors. The product count vector is defined by which, if any, molecule is bound
at the end of the trajectory. For a bound molecule, its final state and associated Gaussian weights
produce the state vector.

2.2.3. Output

The Trajectory object has attributes (see Table 3) relevant to a trajectory that can be
tracked to an output file.

Table 3. Useful attributes of the Trajectory class other than those provided in the input dictionary.
While only some of these are obtained by the program by default, the user can choose to save any of
these attributes when using qct.runN. All position, energy, momentum, and time attributes are in
atomic units.

Attribute Description

count count vector of reaction products
fstate state vector of reaction products

R initial atom–diatom distance
ang initial configuration of angles
w0 initial Jacobi vectors
wn set of Jacobi vectors ρ⃗1, ρ⃗2, P⃗1, P⃗2 throughout the trajectory

t trajectory time steps
delta_e energy conservation
delta_l momentum conservation

For a single trajectory, the default outputs are

Atoms 2024, 12, 29 10 of 15

1. Initial state (vi, ji, Ec, b).
2. Product count n⃗ f = (n12, n23, n31, nd, nc), where n is either 0 or 1. nij represents a

bound molecule between atoms i and j, nd represents dissociation, and nc represents a
three-atom intermediate complex at the end of the calculation.

3. Final state s⃗ f = (v, vw(v′, v), j, jw(j′, j)), where xw(x′, x) is the Gaussian weight given
in Equation (11). For trajectories yielding nd = 1 or nc = 1, the final state outputs
s⃗ f = (0, 0, 0, 0).

A full QCT study requires many trajectories run over a range of impact parameters.
The qct.runN method provides a way to run N trajectories for a given input, from which
there are two modes of output:

1. Long output: Prints a single line per trajectory containing the default outputs. If any
of the attributes provided in Table 3 are desired, place them as a list of strings in the
‘attrs’ argument of qct.runN method. This file is required as an input to the analysis
functions provided by PyQCAMS.

2. Short output: Sums over the product count ni of all trajectories for a given initial state
(vi, ji, Ec, b). This can be useful for studies that do not involve state-specific results or GB.

A sample of the output files is shown in Figure 5.

vi ji e b n12 n23 n31 nd nc v vw j jw
1 0 4× 103 0.0 0 1 0 0 0 2.0 1.06× 10−3 14.0 1.35× 10−14

1 0 4× 103 0.0 0 1 0 0 0 5.0 7.88× 10−5 42.0 1.95
1 0 4× 103 0.0 1 0 0 0 0 10.0 1.63× 10−8 5.0 0.0224
1 0 4× 103 0.0 1 0 0 0 0 5.0 3.03× 10−3 3.0 0.0126
1 0 4× 103 0.0 1 0 0 0 0 6.0 1.73× 10−6 11.0 4.70
1 0 4× 103 0.0 1 0 0 0 0 3.0 5.51 15.0 2.82× 10−2

1 0 4× 103 0.0 1 0 0 0 0 3.0 1.98× 10−4 12.0 1.01× 10−4

1 0 4× 103 0.0 0 0 0 0 0 0 0 0 0
1 0 4× 103 0.0 1 0 0 0 0 10.0 3.47× 10−2 4.0 6.47× 10−2

1 0 4× 103 0.0 1 0 0 0 0 6.0 3.12× 10−2 7.0 4.95× 10−3

vi ji e b n12 n23 n31 nd nc time
1 0 4× 103 0.0 7 2 0 0 0 10.96
1 0 4× 103 0.25 7 1 2 0 0 10.89
1 0 4× 103 0.5 8 0 2 0 0 12.15
1 0 4× 103 0.75 8 0 1 0 1 11.75
1 0 4× 103 1.0 10 0 0 0 0 12.56
1 0 4× 103 1.25 6 1 0 0 3 12.08
1 0 4× 103 1.5 9 0 1 0 0 13.07
1 0 4× 103 1.75 7 2 1 0 0 11.91
1 0 4× 103 2.0 9 1 0 0 0 12.16
1 0 4× 103 2.25 10 0 0 0 0 12.56

Figure 5. Sample of the long output (top) and short output (bottom) of the PyQCAMS program.
Both outputs contain initial vibrational number “vi”, initial rotational number “ji”, collision energy
“e” in Kelvin, impact parameter “b” in Bohr, and product count. ‘n12’ is the number of trajectories
that ended with a molecule formed by atoms 1 and 2 and similarly for “n23” and “n31”. ‘’nd” is the
number of dissociation collisions, and ’nc’ is the number of trajectories ending in an intermediate
complex. The long output prints a new line for each trajectory, containing the final vibrational state
“v”, its associated Gaussian weight “vw”, the final rotational state “j”, and its associated Gaussian
weight “jw”. The short output sums over all trajectories for a given (vi, ji, Ec, b), and reports the total
calculation time in seconds.

2.2.4. Analysis Functions

PyQCAMS is equipped with an analysis module that contains functions to analyze
the output file. These functions are opacity to compute the opacity function, crossSection
to compute the cross section in units of cm2, and rate to compute the reaction rate in units
of cm3/s. These functions take the output of PyQCAMS as an input. The user has a choice
of using HB or GB and can also choose to calculate state-specific results or neglect them.

2.2.5. Parallel Implementation and Performance

The code is best used in a parallel implementation, which dramatically speeds up the
time per trajectory as the number of CPUs is increased (Figure 6). The qct.runN method
automatically runs the trajectory in parallel using multiprocessing with all CPUS. The

Atoms 2024, 12, 29 11 of 15

number of CPUs is controllable and reverts to serial computation when the number of
CPUs is set to 1.

Figure 6. Calculation speedup as a function of the number of CPUs used in the parallel calculation,
where the dashed line represents perfect linear speedup. These trajectories were run at a collision
energy of 40,000 K for H2 + Ca reactions, with a relative tolerance of 10−12 and absolute tolerance of
10−11. These calculations were performed on a 28-core node on the SeaWulf cluster located at the
Institute for Advanced Computational Science (IACS) at Stony Brook University.

Figure 6 shows the speedup of the program as the number of CPUs varies, averaged
over 1000 trajectories, calculated as S(N) = t(1)/t(N) for N CPUs. It is clear that parallel
processing yields a speedup of up to 20 times, thus a significant decrease in the total
calculation time.

The majority of the calculation time is spent during the solution of the Hamilton’s equa-
tions of motion. Scipy’s solve_ivp API allows the user to control the absolute and relative
tolerances to control local error estimates. These can be controlled in the input dictionary
and will have a large influence on the energy and momentum conservation and the time per
trajectory. It is highly recommended to study the effect that these tolerances have on a system
before running large calculations by tracking those attributes of the Trajectory object.

2.2.6. Visualization

The file plotters.py contains several methods for visualizing the results of a trajectory.
Figure 2 was obtained using the traj_plt function, which requires a trajectory object as
input. There is also a 3D plot generator traj_3d, which provides a trace of the event. The
usage of these plotters is shown in the example Jupyter notebook.

3. Results
3.1. RbBa+ + Rb

As a benchmark, we study a system of cold molecular ions embedded in an ultracold
gas, namely the reaction RbBa+ + Ba as studied in [12]. We use the same pairwise interaction
potential between Rb and Ba+, where it is assumed that the charge is localized in the Ba
atom, with the Lennard–Jones potential: V(r) = C8/r8 − C4/r4. For Rb-Rb, we use the
triplet ground state potential parameters obtained from [31] in the Lennard–Jones potential:
V(r) = C12/r12 − C6/r6, whereas [12] uses the full potential provided in [31]. We calculate
the quenching cross section (RbBa+(vi) + Rb → RbBa+(v ̸= vi) + Rb) for states initialized at
various high-lying vibrational states (with j = 0) near the dissociation of RbBa+. In Figure 7,
we compare the quenching cross sections calculated by PyQCAMS to those presented
in [12], where the cross sections were also found through the QCT method.

Atoms 2024, 12, 29 12 of 15

Figure 7. Quenching cross sections for various initial vibrational states, vi, at collision energies
Ec = 20 mK (blue) and 100 mK (red). The dashed lines represent the classical Langevin cross section
for the collision energy. The hollow dotted points represent results from PyQCAMS, while the triangle
points are the previously reported results [12].

The calculated quenching cross sections are plotted alongside the Langevin cross
section σL = π(4C4)

1/2E−1/2
c . We see good agreement with both the Langevin prediction

and the previous results at the lower vibrational states. For the higher vibrational states,
we notice that, at Ec = 100 mK, the PyQCAMS results lie closer to the Langevin prediction
than previously reported. These elongated states seem to pose a challenge for convergence,
as shown in the 20 mK data for both sets of results. However, PyQCAMS seems to have
performed better at 100 mK than previous calculations regarding the Langevin prediction,
demonstrating the strength of the program.

3.2. H2 + Ca

As an example, we demonstrate the calculation of the CaH formation rate as a result of
the reaction H2 + Ca → CaH + H. The first part of the code contains the inputs as described
in Section 2.2.1. The potential ranges and parameters for H2 and CaH were obtained
from [32,33] and [34,35], respectively. Here, we chose the Morse potential to describe the
interaction of both H2 and CaH. We ran 104 trajectories in parallel, looped over 20 impact
parameters. The script for this calculation is shown in Listing 1.

We repeated the code in Listing 1 over a range of collision energies Ec and three
different initial vibrational levels of H2. The rates for CaH formation are shown in Figure 8,
where it is noticed that higher collision energies give rise to larger reaction rates, as expected
in endothermic reactions. Additionally, as the initial vibrational level of H2 is increased,
the rates of reaction increase for a given collision energy. However, at very high collision
energies such a trend changes due to the dominance of molecular dissociation processes. A
more detailed study of this reaction will be published elsewhere.

We can also calculate the distribution of states of CaH and H2, using the final state
vector s⃗. Figure 9 shows these distributions at four different collision energies. We can
see that the higher vibrational states fill up for both CaH and H2 as the collision energy is
increased, as is typical in endothermic reactions. All details of these calculations can be
found in a Jupyter notebook example file.

Atoms 2024, 12, 29 13 of 15

Figure 8. Rate of reaction of H2 + Ca → CaH + H. Different collision energies were considered, and
104 trajectories were run at each energy. We used 20 evenly spaced impact parameters between 0
and 5 a0 for each collision energy. Here, the H2 molecule was initiated at v = 0, 1, 2, j = 0, and each
pairwise interaction was defined by a Morse potential. From here, we see that CaH was most likely
formed at a collision energy Ec = 40,000 K for v = 0, Ec = 30,000 K for v = 1, and Ec = 25,000 K for
v = 2.

Figure 9. Probability distribution of the final vibrational states of CaH (a) and H2 (b) as a result of
the reaction H2 + Ca, calculated by PyQCAMS. H2 was initiated at v = 0, j = 0, with each pairwise
interaction defined by a Morse potential. Each color represents a different collision energy Ec.

4. Discussion

We have presented a Python quasi-classical atom–molecule scattering program, PyQCAMS.
The PyQCAMS program aims to provide an easy-to-use platform for calculating quasi-classical
trajectories for atom–diatomic molecule systems, including the three most relevant potentials
for diatomic molecules: Morse, Buckingham, and the generalized Lennard–Jones, as well as
any user-defined analytic potentials supplied by the user. We discussed the underlying theory
behind the program and the methods of the program as they pertain to the theory. As output,
the user obtains the reaction probability per energy and impact parameter. Then, with this
information, it is possible to calculate the cross section and energy-dependent rate constant
using the provided analysis functions. Its object-oriented approach allows the user to study
different properties of a given trajectory. The plotter tools make it easy to visualize the results
of a trajectory, making it ideal for a new researcher studying trajectories or for presenting the
topic in a classroom setting. Finally, we would like to emphasize that there are already codes

Atoms 2024, 12, 29 14 of 15

available for the calculation of reaction dynamics based in QCT methods, e.g., VENUS [36],
Newton-X [37], or SHARC [38]. However, these programs are dedicated to more complex
scenarios and are less versatile than the present code for atom–diatom collisions. Our code
is fully written in Python, making it fully transparent and user-friendly. Furthermore, we
offer direct plotting tools to rapidly diagnose any complication during the computation of a
new system.

Author Contributions: Conceptualization, J.P.-R.; methodology, J.P.-R.; software, R.K. and J.P.-R.;
formal analysis, R.K. and J.P.-R.; investigation, R.K. and J.P.-R.; data curation, R.K.; writing—original
draft preparation, R.K. and J.P.-R.; writing—review and editing, R.K. and J.P.-R.; visualization, R.K.;
supervision, J.P.-R.; project administration, J.P.-R.; funding acquisition, J.P.-R. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the United States Air Force Office of Scientific Research
(grant number FA9550-23-1-0202).

Data Availability Statement: The source code and example Jupyter notebook can be found at
https://github.com/Rkoost/PyQCAMS, accessed on 8 May 2024. A sample dataset to reproduce
the figures in the example notebook can be found at https://figshare.com/s/8b923dab304005ae7a5c,
accessed on 8 May 2024.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

PyQCAMS Python Quasi-Classical Atom–Molecule Scattering
QCT Quasi-classical trajectory
DVR Discrete variable representation
HB Histogram binning
GB Gaussian binning
API Application programming interface

References
1. Karplus, M.; Porter, R.N.; Sharma, R.D. Exchange Reactions with Activation Energy. I. Simple Barrier Potential for (H, H2). J.

Chem. Phys. 1965, 43, 3259–3287. [CrossRef]
2. Truhlar, D.G.; Muckerman, J.T. Reactive scattering Cross sections III: Quasiclassical and semiclassical methods . In Atom-Molecule

Collision Theory: A Guide for the Experimentalist; Plenum Press: New York, NY, USA, 1979; pp. 505–561.
3. Ríos, J. Cold Chemical Reactions Between Molecular Ions and Neutral Atoms. In An Introduction to Cold and Ultracold Chemistry:

Atoms, Molecules, Ions and Rydbergs; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 215–234.
4. Aoiz, F.J.; Herrero, V.J.; Sáez Rábanos, V. Quasiclassical state to state reaction cross sections for D+H2(v = 0, j = 0)→HD(v′,j′) + H.

Formation and characteristics of short-lived collision complexes. J. Chem. Phys. 1992, 97, 7423–7436. [CrossRef]
5. Aoiz, F.J.; Bañares, L.; Herrero, V.J. Recent results from quasiclassical trajectory computations of elementary chemical reactions.

J. Chem. Soc. Faraday Trans. 1998, 94, 2483–2500. [CrossRef]
6. De Oliveira-Filho, A.G.S.; Ornellas, F.R.; Bowman, J.M. Quasiclassical Trajectory Calculations of the Rate Constant of the OH +

HBr →Br + H2O Reaction Using a Full-Dimensional Ab Initio Potential Energy Surface Over the Temperature Range 5 to 500 K. J.
Phys. Chem. Lett. 2014, 5, 706–712. [CrossRef] [PubMed]

7. Nagy, T.; Vikár, A.; Lendvay, G. A general formulation of the quasiclassical trajectory method for reduced-dimensionality reaction
dynamics calculations. Phys. Chem. Chem. Phys. 2018, 20, 13224–13240. [CrossRef]

8. Patra, S.; San Vicente Veliz, J.C.; Koner, D.; Bieske, E.J.; Meuwly, M. Photodissociation dynamics of N3+. J. Chem. Phys. 2022,
156, 124307. [CrossRef]

9. Töpfer, K.; Upadhyay, M.; Meuwly, M. Quantitative molecular simulations. Phys. Chem. Chem. Phys. 2022, 24, 12767–12786.
[CrossRef] [PubMed]

10. Goswami, S.; San Vicente Veliz, J.C.; Upadhyay, M.; Bemish, R.J.; Meuwly, M. Quantum and quasi-classical dynamics of the C(3P)
+ O2(3σ-g) → CO(1σ+) + O(1D) reaction on its electronic ground state. Phys. Chem. Chem. Phys. 2022, 24, 23309–23322. [CrossRef]

11. Hirzler, H.; Pérez-Ríos, J. Rydberg atom-ion collisions in cold environments. Phys. Rev. A 2021, 103, 043323. [CrossRef]

https://github.com/Rkoost/PyQCAMS
https://figshare.com/s/8b923dab304005ae7a5c
http://doi.org/10.1063/1.1697301
http://dx.doi.org/10.1063/1.463514
http://dx.doi.org/10.1039/A803469I
http://dx.doi.org/10.1021/jz5000325
http://www.ncbi.nlm.nih.gov/pubmed/26270841
http://dx.doi.org/10.1039/C8CP01600C
http://dx.doi.org/10.1063/5.0085081
http://dx.doi.org/10.1039/D2CP01211A
http://www.ncbi.nlm.nih.gov/pubmed/35593769
http://dx.doi.org/10.1039/D2CP02840A
http://dx.doi.org/10.1103/PhysRevA.103.043323

Atoms 2024, 12, 29 15 of 15

12. Pérez-Ríos, J. Vibrational quenching and reactive processes of weakly bound molecular ions colliding with atoms at cold
temperatures. Phys. Rev. A 2019, 99, 022707. [CrossRef]

13. Hirzler, H.; Trimby, E.; Lous, R.S.; Groenenboom, G.C.; Gerritsma, R.; Pérez-Ríos, J. Controlling the nature of a charged impurity
in a bath of Feshbach dimers. Phys. Rev. Res. 2020, 2, 033232. [CrossRef]

14. Mota, V.C.; Caridade, P.J.S.B.; Varandas, A.J.C.; Galvão, B.R.L. Quasiclassical Trajectory Study of the Si + SH Reaction on an
Accurate Double Many-Body Expansion Potential Energy Surface. J. Phys. Chem. A 2022, 126, 3555–3568. [CrossRef] [PubMed]

15. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.;
Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016.

16. Hase, W.L.; Duchovic, R.J.; Hu, X.; Komornicki, A.; Lim, K.F.; Lu, D.h.; Peslherbe, G.H.; Swamy, K.N.; Linde, S.; Varandas, A.;
et al. A general chemical dynamics computer program. Quantum Chem. Program Exch. Bull. 1996, 16, 671.

17. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]

18. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright,
J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

19. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
20. The Pandas Development Team. pandas-dev/pandas: Pandas, 2020. Available online: https://doi.org/10.5281/zenodo.3509134

(accessed on 21 January 2024).
21. McKerns, M.M.; Strand, L.; Sullivan, T.; Fang, A.; Aivazis, M.A.G. Building a Framework for Predictive Science. arXiv 2012,

arXiv:1202.1056.
22. McKerns, M.; Aivazis, M. Pathos: A Framework for Heterogeneous Computing, 2010. Available online: http://trac.mystic.cacr.

caltech.edu/project/pathos (accessed on 21 January 2024).
23. Colbert, D.T.; Miller, W.H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix

Kohn method. J. Chem. Phys. 1992, 96, 1982–1991. [CrossRef]
24. Bonnet, L.; Rayez, J. Quasiclassical trajectory method for molecular scattering processes: Necessity of a weighted binning

approach. Chem. Phys. Lett. 1997, 277, 183–190. [CrossRef]
25. Bonnet, L.; Espinosa-García, J. The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes.

J. Chem. Phys. 2010, 133, 164108. [CrossRef]
26. Bonnet, L. The method of Gaussian weighted trajectories. III. An adiabaticity correction proposal. J. Chem. Phys. 2008, 128, 044109.

[CrossRef] [PubMed]
27. Aguado, A.; Paniagua, M. A new functional form to obtain analytical potentials of triatomic molecules. J. Chem. Phys. 1992,

96, 1265–1275. [CrossRef]
28. Aguado, A.; Tablero, C.; Paniagua, M. Global fit of ab initio potential energy surfaces I. Triatomic systems. Comput. Phys.

Commun. 1998, 108, 259–266. [CrossRef]
29. Axilrod, B.M.; Teller, E. Interaction of the van der Waals Type Between Three Atoms. J. Chem. Phys. 2004, 11, 299–300. [CrossRef]
30. Dormand, J.; Prince, P. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [CrossRef]
31. Strauss, C.; Takekoshi, T.; Lang, F.; Winkler, K.; Grimm, R.; Hecker Denschlag, J.; Tiemann, E. Hyperfine, rotational, and

vibrational structure of the a3Σ+
u state of 87Rb2. Phys. Rev. A 2010, 82, 052514. [CrossRef]

32. Yan, Z.C.; Babb, J.F.; Dalgarno, A.; Drake, G.W.F. Variational calculations of dispersion coefficients for interactions among H, He,
and Li atoms. Phys. Rev. A 1996, 54, 2824–2833. [CrossRef] [PubMed]

33. Liu, J.; Salumbides, E.J.; Hollenstein, U.; Koelemeij, J.C.J.; Eikema, K.S.E.; Ubachs, W.; Merkt, F. Determination of the ionization
and dissociation energies of the hydrogen molecule. J. Chem. Phys. 2009, 130, 174306. [CrossRef]

34. Shayesteh, A.; Alavi, S.F.; Rahman, M.; Gharib-Nezhad, E. Ab initio transition dipole moments and potential energy curves for
the low-lying electronic states of CaH. Chem. Phys. Lett. 2017, 667, 345–350. [CrossRef]

35. Mitroy, J.; Zhang, J.Y. Properties and long range interactions of the calcium atom. J. Chem. Phys. 2008, 128, 134305. [CrossRef]
36. Hase, W.L.; Duchovic, R.J.; Hu, X.Y.; Komornicki, A.; Lim, K.F.; Lu, D.H.; Peslherbe, G.H.; Swamy, K.N.; Linde, S.R.V.; Varandas, A.J.C.;

et al. VENUS96: A General Chemical Dynamics Computer Program; Wayne State University: Detroit, MI, USA, 1996.
37. Barbatti, M.; Ruckenbauer, M.; Plasser, F.; Pittner, J.; Granucci, G.; Persico, M.; Lischka, H. Newton-X: A surface-hopping program

for nonadiabatic molecular dynamics. WIREs Comput. Mol. Sci. 2014, 4, 26–33. [CrossRef]
38. Mai, S.; Avagliano, D.; Heindl, M.; Marquetand, P.; Menger, M.F.S.J.; Oppel, M.; Plasser, F.; Polonius, S.; Ruckenbauer, M.; Shu, Y.; et al.

SHARC3.0: Surface Hopping Including Arbitrary Couplings—Program Package for Non-Adiabatic Dynamics. 2023. Available
online: https://sharc-md.org/ (accessed on 9 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevA.99.022707
http://dx.doi.org/10.1103/PhysRevResearch.2.033232
http://dx.doi.org/10.1021/acs.jpca.2c01633
http://www.ncbi.nlm.nih.gov/pubmed/35612827
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
http://dx.doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.3509134
http://trac. mystic. cacr. caltech. edu/project/pathos
http://trac. mystic. cacr. caltech. edu/project/pathos
http://dx.doi.org/10.1063/1.462100
http://dx.doi.org/10.1016/S0009-2614(97)00881-6
http://dx.doi.org/10.1063/1.3481781
http://dx.doi.org/10.1063/1.2827134
http://www.ncbi.nlm.nih.gov/pubmed/18247932
http://dx.doi.org/10.1063/1.462163
http://dx.doi.org/10.1016/S0010-4655(97)00135-5
http://dx.doi.org/10.1063/1.1723844
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1103/PhysRevA.82.052514
http://dx.doi.org/10.1103/PhysRevA.54.2824
http://www.ncbi.nlm.nih.gov/pubmed/9913796
http://dx.doi.org/10.1063/1.3120443
http://dx.doi.org/10.1016/j.cplett.2016.11.020
http://dx.doi.org/10.1063/1.2841470
http://dx.doi.org/10.1002/wcms.1158
https://sharc-md.org/

	Introduction
	Materials and Methods
	Theoretical Approach
	Initial Conditions
	Final Products
	Analysis

	The Program
	Input
	Main Code
	Output
	Analysis Functions
	Parallel Implementation and Performance
	Visualization

	Results
	RbBa+ + Rb
	H2 + Ca

	Discussion
	References

