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Abstract: One of the hallmarks of cancer is metabolic reprogramming in tumor cells, and aerobic
glycolysis is the primary mechanism by which glucose is quickly transformed into lactate. As one of the
primary rate-limiting enzymes, pyruvate kinase (PK) M is engaged in the last phase of aerobic glycolysis.
Alternative splicing is a crucial mechanism for protein diversity, and it promotes PKM precursor mRNA
splicing to produce PKM2 dominance, resulting in low PKM1 expression. Specific splicing isoforms are
produced in various tissues or illness situations, and the post-translational modifications are linked to
numerous disorders, including cancers. hnRNPs are one of the main components of the splicing factor
families. However, there have been no comprehensive studies on hnRNPs regulating PKM alternative
splicing. Therefore, this review focuses on the regulatory network of hnRNPs on PKM pre-mRNA
alternative splicing in tumors and clinical drug research. We elucidate the role of alternative splicing
in tumor progression, prognosis, and the potential mechanism of abnormal RNA splicing. We also
summarize the drug targets retarding tumorous splicing events, which may be critical to improving the
specificity and effectiveness of current therapeutic interventions.
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1. Introduction

Alternative splicing refers to pre-mRNA exon inclusion or intron exclusion to form
alternative splice variants via splicing at different sites. A total of 90% to 95% of human pre-
mRNA can produce multiple transcripts by alternative splicing to enrich the diverse proteome.
In brief, alternative splicing is the primary way to maintain protein diversity, and preternatural
alternative splicing can cause a variety of diseases, including cystic fibrosis, dysautonomia,
autoimmune disease, type I diabetes, asthma, and especially cancers [1]. Obviously, compared
to normal samples, tumors exhibit up to 30% more alternative splicing events, and thousands
of alternative splicing events have only been detected in tumors [2]. Alternative splicing events
can control a variety of carcinogenesis processes via cancer hallmarks, including apoptosis, cell
cycle, proliferation, metabolism, genomic instability, epithelial–mesenchymal transition (EMT),
motility, invasion, angiogenesis, and so on [3]. Alternative splicing is generally divided into
the following types: constitutive exon splicing, alternative 5’ splice site, alternative 3’ splice
site, cassette exon skipping, retained intron, and mutually exclusive exons, which possess
cell and stage-specific characteristics [4]. The process requires splice regulators including
serine/arginine-rich proteins (SRs), heterogeneous nuclear ribonucleoproteins (hnRNPs), and
RNA binding motif (RBM) families. They belong to RNA binding proteins and recognize
different motifs to efficiently affect the splicing decision. SRs have been reported to bind to
exon enhancer or intron enhancer sequences more likely to activate splicing, while hnRNPs
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prefer to bind to exon silencer or intron silencer sequences to suppress the splice site selection.
In addition, RBM can also perform similar regulations, but their functions are not entirely
clear. Regardless, SRs, hnRNPs, and RBM are essential to tumor oncogenesis and progression.

Oxidative phosphorylation and glycolysis are two main metabolic pathways that provide
energy for cells. Normal cells mainly depend on mitochondrial oxidative phosphorylation to
generate biological energy. In 1921, Otto Warburg found that cancer cells showed aberrantly
active glycolysis even in the presence of sufficient oxygen. Tumor tissues metabolize 10 times
the glucose to meet the energy needed for rapid growth, with lactate as the end product.
Most cancer cells rely on aerobic glycolysis and the mitochondrial oxidative phosphorylation
decreases, which is referred to as the Warburg effect [5,6]. Pyruvate kinase (PK) is involved
in the last step of glycolysis and catalyzes phosphoenolpyruvate to pyruvate. There are three
isoforms of PK including PKL, PKR, and PKM, among which PKM is the most well-studied.
PKM precursor mRNA, pre-mRNA, is alternatively spliced into PKM1 and PKM2 under
multiple splicing factors control. Structurally, PKM1 excludes exon 10, and PKM2 excludes
exon 9 (Figure 1). PKM1 is primarily expressed in the heart, muscle, brain, and mature sperm,
in which cells require a great deal of energy via oxidative phosphorylation. PKM2 is selectively
dispersed across proliferating cells with significant anabolic demands, such as embryonic cells,
stem cells, gut, and thymus, as well as most tumor cells (Figure 1). The inactive dimer of PKM2
is commonly used by tumor cells [7] to facilitate the transition from oxidative phosphorylation
into aerobic glycolysis, which is critical for tumor development [8]. Yet the splicing sites are
relatively conservative in PKM pre-mRNA, and it cannot fully explain the aberrant splicing
events. The upstream regulatory proteins can regulate abnormal expressions of splicing factors
or change the interactions with PKM pre-mRNA, which eventually drives or affects metabolism
programming in cancer cells. Thus, it is crucial to explore the upstream regulatory proteins and
relative targets to clarify the aberrant RNA splicing events, which contributes to improving
the specificity and effectiveness of cancer therapy. Among the splicing factors regulating PKM
pre-mRNA splicing, hnRNPs aroused our interest for their multiple regulating approaches.
Therefore, we review the structure, mechanism of regulating splicing events, epigenetic effects,
and clinical drugs targeting hnRNPA1, hnRNPA2/B1, and hnRNPI/PTBP1.
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Alternative splicing events are identified as a characteristic of almost all tumors. Ab-
normal events can generate cancer-related splicing isoforms including HIF1A, NUMB, 
PKM, HER2, IRF3, FAS, BRCA1, etc. These isoforms are implicated in boosting cancer cell 
proliferation, decreasing cell death, enhancing cell migration and metastasis, and renew-
ing metabolism patterns [9]. Splicing factors (SFs) including SRs, hnRNPs, and RBM are 
able to regulate the splicing events [10,11]. The multiplied mutations and aberrant expres-
sions of SFs are more frequent in cancers. Of note, the SR family mainly contains SRSF1-
12, which is usually overexpressed and identified as oncogenes in lung, colon, gastric, 
ovarian, breast, leukemia, and pancreas tumors [9,12]. SRs are typically bound to exonic 

Figure 1. Schematic representation of different PKM pre-mRNA splicing patterns. (Left): In muscle and
brain, terminally differentiated cells mainly depend on oxidative phosphorylation to generate biological
energy in mitochondria. During this process, splicing factors exclude exon 10 of PKM pre-mRNA to generate
more PKM1. (Right): In rapidly proliferating cells, such as embryonic cells, stem cells, and tumor cells,
splicing factors exclude exon 9 and contain exon 10 to generate more PKM2 for strong anabolic demands.
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2. SRs, hnRNPs, and RBM Contribute to the Oncogenesis and Tumor Progression via
Alternative Splicing

Alternative splicing events are identified as a characteristic of almost all tumors.
Abnormal events can generate cancer-related splicing isoforms including HIF1A, NUMB,
PKM, HER2, IRF3, FAS, BRCA1, etc. These isoforms are implicated in boosting cancer cell
proliferation, decreasing cell death, enhancing cell migration and metastasis, and renewing
metabolism patterns [9]. Splicing factors (SFs) including SRs, hnRNPs, and RBM are able to
regulate the splicing events [10,11]. The multiplied mutations and aberrant expressions of
SFs are more frequent in cancers. Of note, the SR family mainly contains SRSF1-12, which
is usually overexpressed and identified as oncogenes in lung, colon, gastric, ovarian, breast,
leukemia, and pancreas tumors [9,12]. SRs are typically bound to exonic splicing enhancers
(ESEs) of pre-mRNA and facilitate U1 small nuclear ribonucleic particles (snRNP) and
U2 snRNP binding to splicing sites, which contribute to initiating splicing at neighboring
splice sites and then including exons.

The family of heterogeneous ribonucleoproteins (hnRNPs) was first identified in 1965
by Gall et al. [13] and belonged to the most abundant nuclear proteins. hnRNPs are located
in the nucleolus of eukaryotic cells and can act as splicing factors facilitating PKM pre-
mRNAs into PKM2 mRNAs. There are 21 members in the hnRNPs family [14]. hnRNPs can
also promote nucleotide metabolism and serve as oncogenes and suppressors in different
types of cancers. In adrenocortical, liver, and lung cancers, hnRNPs show high expressions.
However, they show low expressions in kidney cancer and thymoma [15].

The RBM family has been identified as a regulator of alternative splicing factors in
the last few decades. The RBM contains 50 members with RNA-recognizing domains in
common. Of note, RBM10 is observed as a classic mutation in lung, colon, pancreas, and
thyroid cancers [16]. RBM5 is another reported family member with low expressions in
lung, breast, and prostate cancers and functions as a tumor suppressor. It has been reported
that RBM5 can induce cancer cell apoptosis and inhibit proliferation [17,18]. To function
as a splicing regulator, RBM could act on different steps of the splicing events and even-
tually contribute to cell apoptosis, cell cycle, and other biological process alterations [19].
Up to now, the concrete regulation mechanism has not been fully clarified, and further
investigation is required [20–23].

3. The Different Functions Depending on hnRNP Intracellular Localization

The hnRNP family has a molecular weight range of 34–120 kDa and is composed
of more than 20 macromolecular proteins as well as a few other small molecule proteins.
hnRNPA1, hnRNPA2/B1, hnRNPB2, hnRNPC1, and hnRNPC2 are considered the core
members. Except for at least one auxiliary domain that controls protein interactions
and subcellular distribution, their protein structures contain one or more RNA binding
motifs, which are crucial for hnRNPs acting as RNA-binding proteins. RNP-CS-RBD motif
(the most prevalent), RGG box, and KH domain are the three main isoforms of RNA
binding motifs. Among these, RNA binding activity in hnRNPA1 is mostly dependent
on RNA binding domain (RBD) elements [24]. What’s more, the glycine-rich domain
observed in hnRNPA/B is the most prevalent auxiliary domain. Since both hnRNPA1
and A2/B1 have a structure with two RBDs at the N-terminus and one glycine at the
C-terminus, they are referred to as 2xRBD-Gly proteins [25]. Due to diverse intracellular
localization patterns, hnRNPs exert a variety of functions. On the one hand, RNA splicing,
3′ terminal processing, transcriptional control, and immunoglobulin gene recombination are
the principal functions of hnRNPs in the nucleus. On the other hand, mRNA nucleoplasm
transport, mRNA localization, metabolism, translation, and protein stability are the main
functions of hnRNPs that shuttle between the nucleus and cytoplasm [26]. hnRNPs can
also influence how proteins interact with one another and their sub-cellular localization.
Apoptosis-related target genes, including Bcl-2, IAP, and p53 tumor suppressor genes, as
well as exogenous (Fas, caspase-8, caspase-2, and c-FLIP) and endogenous (Apaf-1, caspase 9,
and ICAD) regulators are negatively impacted by abnormally expressed hnRNPs [27].
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4. The Regulatory Network of Different hnRNP Family Members
4.1. hnRNPA1

hnRNPs were first identified as splicing factors that regulated exon splicing and intron
removal to produce a range of transcripts. Additionally, hnRNPs bind to exonic or intronic
splicing silencers (ESSs or ISSs) and consequently prevent the binding of splicing factor
elements, which diminishes the selection of splicing sites and competes with SRs to promote
exon jumping [28]. The hnRNPA/B family members include hnRNPA1, A2/B1, A3, and
A0. Among the four members, hnRNPA1 and hnRNPA2/B1 have been studied more
widely and deeply compared with hnRNPA3 and hnRNPA0 [29]. Interestingly, hnRNPA2
is structurally like B1, while hnRNPB1 differs from hnRNPA2 in that B1 inserts 12 amino
acids at the N-terminal. hnRNPB1 consists of two N-terminus RRMs, a C-terminal LC
(containing an RGG cassette), an M9-NLS, and a core PrLD. However, most studies on
hnRNPA2/B1 have either failed to distinguish its subtypes or have focused only on A2 [30].
Hereafter, we mainly discussed the structure, distribution, function, and the regulatory
network of hnRNPA1 and hnRNPA2/B1 in the hnRNPA/B family.

The hnRNPA1 domain consists of two RNA recognition motifs (RRM1 and RRM2),
an RNA binding cassette (RGG), and a nucleus-targeted sequence M9 [31]. The size of
the hnRNPA1 protein is about 34 kDa, and its main functions include mRNA splicing,
transport, and end particle biosynthesis. hnRNPA1 exhibits minimal expression in normal
tissues, but it is highly expressed in various types of malignancies, including breast cancer,
prostate cancer, oral cancer, neuroblastoma, bladder cancer, lung cancer, colon cancer, and
hepatocellular cancer. As an SF, hnRNPA1 can influence apoptotic gene expressions in
cancer cells via regulating alternative splicing, mRNA stability, translation, and protein
degradation. In breast and prostate cancer cells, hnRNPA1 weakens programmed cell death
by promoting the production of the anti-apoptotic splicing isomer Bcl-x and inhibiting the
synthesis of the anti-apoptotic protein cIAP1 [32,33]. Additionally, hnRNPA1 can bind to
the GUAGUAGU motif found in CDK2’s intron 4 region and regulate the inclusion of exon
5 in CDK2. In this circumstance, hnRNPA1 controls the expressions of target genes linked
to the G2/M stage, further promotes the growth of oral cancer cells [34], and activates
telomerase to lengthen telomeres, resulting in the initiation and development of malignant
tumors [35].

In terms of interfering with glycolysis, the arginine residue of the hnRNPA1 RGG
motif binds to the UAGGGC sequence of intron 9 on the side of PKM pre-mRNA. hnRNPA1
can facilitate the switch from PKM1 to PKM2 in cancer cells, which accelerates glycolysis
and cancer initiation [36]. A variety of genes essentially modulate the expression level of
hnRNPA1, affecting PKM2 expression and controlling the proliferation, apoptosis, and
migration of cancer cells (Figure 2). For instance, MYCN is directly bound to the hnRNPA1
and PTBP1 promoter regions and enhances their expressions, respectively. MYCN promotes
neuroblastoma cell proliferation and is related to the poor prognosis of patients [37]. Also,
hnRNPA1 is regulated in part by certain microRNAs. Let-7a is highly associated with cancer
initiation and progression. It has multiple biological functions in cancer cells, including
inhibiting cell proliferation, promoting cell differentiation, and apoptosis. However, breast
cancer tissues exhibit a low expression of let-7a, preventing Stat3 translation due to less
interaction with the Stat3 3′ UTR promoter. Eventually, the low expression of Stat3 reduces
the hnRNPA1 level by binding to the GAS in the hnRNPA1 promoter region. Additionally,
let-7a-5p maturation is inhibited by hnRNPA1, thus forming a let-7a-5p/Stat3/hnRNPA1
negative feedback pathway in breast cancer cells [38]. By inhibiting hnRNPA1-dependent
PKM splicing and consequent PKM2 overexpression, RBMX neutralizes the aggressive
phenotype of metastatic bladder cancer cells. With low expression in metastatic bladder
cancer tissues, RBMX can competitively bind to the RGG motif of hnRNPA1 and block it
from combining with the lateral intron of PKM mRNA exon 9, leading to high expression
of PKM1 and weakening the malignancy and progression of tumors [39]. SAM68, an
SRC-related protein in mitosis ubiquitously expressed in lung adenocarcinoma, has been
linked to high cancer recurrence frequency, increased cancer-related mortality, and low
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overall survival. Also, the 351–443 amino acid region of the SAM68 protein is capable of
binding to the RGG motif of hnRNPA1, driving PKM pre-mRNA alternative splicing onset
and increasing PKM2 expression [40,41]. In addition, other factors also affect hnRNPA1
expression. The HOXB-AS3 peptide can competitively bind to the arginine residue in
the hnRNPA1 RGG motif and inhibit the binding of hnRNPA1 to PKM, which further
down-regulates the level of PKM2 and inhibits the metabolism reprogramming process of
colon cancer cells [42]. A serine protease known as trichosanthes kirilowii protease (TKP) is
derived from plants and prevents colon cancer cells from undergoing EMT and promotes
apoptosis [43]. It has been reported that TKP significantly reduces β-catenin expression in
a dose-dependent manner and inhibits the β-catenin/c-Myc/hnRNPA1 signaling cascade,
thereby inhibiting glycolysis and cell proliferation of hepatocellular carcinoma cells [44].
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4.2. hnRNPA2/B1

hnRNPA2/B1 is mainly expressed in breast cancer, colon cancer, prostate cancer, and
non-small cell lung cancer, etc. hnRNPA2/B1 functions as alternative splicing and can play
a negative role in regulating DNA repair, transcriptional activators, RNA transport, and
miRNA expression. hnRNPA2/B1 inhibits 5′ and 3′ splicing site recognition, promotes
distal 5′ splicing site selection, and inhibits the use of proximal splicing sites [45]. Several
studies have shown that hnRNPA2 binds to the target motif of hnRNPA1 and replaces
its splicing role [46]. Exon exclusion and intron inclusion are part of the hnRNPA2/B1
regulating splicing process. Researchers have discovered motifs including UAG(G/A),
UAGGG, GGUAGUAG, and AGGAUAGA that could be recognized and implicated in the
splicing process [30]. Genes that can be recognized and spliced by hnRNPA2/B1 include
VHLα [47], MST1R [48,49], c-FLIP, BIN1, WWOX [50], PKM2 [51], etc.

Numerous elements influence hnRNPA2/B1 expression or its function to increase
the production of PKM2, improving the glycolytic capacity of cancer cells. Uncoupling
proteins (UCP), which are extensively expressed in a variety of cancer tissues, are anionic
transporters at the inner mitochondrial membrane (IMM). By boosting the anti-apoptotic
characteristics, UCP can inhibit the accumulation of mitochondrial ROS, which leads to
chemotherapy resistance and enhances tumor aggressiveness. However, the specific con-
centration of ROS triggering this tumor-promoting effect is not yet determined. Through its
antioxidant role, UCP2 increases the expression of hnRNPA2/B1 and upregulates GLUT1
and PKM2, increasing glycolytic activity and lactate production in breast cancer cells
(Figure 3) [51]. Several non-coding RNAs can control hnRNPA2/B1 expression. The
hnRNPA2/B1 mRNA 3′UTR region’s translation stability is maintained by miR-369, and
its overexpression shifts from PKM to PKM2 variable to facilitate metabolic reprogram-
ming [52]. In contrast, miR-124 and miR-137 accelerate the conversion of PKM pre-mRNA
to PKM1 in colon cancer cells by inhibiting hnRNPA2. In this scenario, glucose is primarily
metabolized through oxidative phosphorylation to inhibit colon cancer cell growth [53].
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Exosomes carrying lncRNA LNMAT2 are secreted by prostate cancer cells, and these
exosomes interact with hnRNPA2/B1 to facilitate lymph angiogenesis and lymph node
metastases [54]. In non-small cell lung cancer, c-Myc can bind to the LINC01234 promoter
to increase its transcription. LINC01234 then interacts with hnRNPA2/B1 to create a new
carcinogenic loop of c-Myc/LINC01234/hnRNPA2/B1/miR-106b-5p/CRY2/c-Myc [55].
LncRNA H19 is upregulated in colon cancer and associated with a poor prognosis. H19
directly binds to hnRNPA2/B1 and afterward initiates the ERK signaling pathway, which
orchestrates an EMT in colon cancer cells [56]. Also, a variety of lncRNA HOTAIR sequence
segments can bind hnRNPA2/B1, especially the B1 subtype, which has a strong affinity
for HOTAIR. Additionally, hnRNPB1 binds to chromatin and preferentially correlates with
HOTAIR transcripts, promoting the invasion capability of breast cancers [57].

4.3. PTBP1

hnRNPI, also known as polypyrimidine tract-binding protein 1 (PTBP1), interacts
with the polypyrimidine present at the upstream branch point of exons to serve as an SF in
most situations. It consists of 531 amino acids, 4 RNA-binding RRM domains, and nuclear
shuttle domains at the N terminus [58]. PTBP1 has a molecular weight of 59 kDa, which
makes it easy to attach to promoters. It is highly expressed in tumor tissues and linked
to a poor prognosis of colon cancer [59], glioma [60], renal clear cell carcinoma [61], and
anaplastic large cell lymphoma [62]. PTBP1 increases alternative splicing events of CD44
to produce CD44 v8-10, which promotes cancer cell invasion. In addition, PTBP1 can also
boost the expressions of cell-cycle-related proteins such as cyclin A, cyclin B, cyclin D,
cyclin E, and CDC2, to promote tumor cell proliferation [63]. To accelerate tumor growth,
PTBP1 develops radiation and chemotherapy resistance and has a positive correlation with
hypoxic lesions [64].

The main roles of PTBP1 are splicing localization and poly-acylation of mRNA. PTBP1
can serve as an SF for many genes, including MEIS2, PKM [65], Axl [66] and EXOC7,
etc. [67]. The binding of PTBP1 to pre-mRNA inhibits the splicing of exons adjacent to
the binding sites and improves binding to the optimal motif in the polypyrimidine beam
near the 3′-terminal splicing site (e.g., UCUUC). This action prevents the inclusion of
downstream exons as a consequence [68]. PTBP1 preferentially binds to intron 8 when
it comes to PKM pre-mRNA, further excluding exon 9, which leads to exon 10 inclusion
and ultimately promotes PKM2 transcription (Figure 4) [61]. The expression of PTBP1 is
markedly increased by EGF, which also promotes tumorigenesis by increasing transcription
and translation of PKM2 [69]. MTR4 is a nuclear exosome-associated RNA helicase, and
functions as an essential component of RNA processing and surveillance. It is an indepen-
dent diagnostic marker for hepatocellular carcinoma patients with poor prognosis. In the
promoter region of MTR4, c-Myc binds to 2 non-classical E cassettes (CACGCG, CACGAG)
and 695 bp CpG islands around the TSS, recruiting PTBP1 to the target pre-mRNA through
an independent RNA and protein interaction. This guarantees proper alternative splicing
processes and produces the glycolytic gene PKM2 to boost cancer metabolism [70].
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In addition, several tissue-specific non-coding RNAs can act as upstream targets of
PTBP1. miR-124, miR-1, miR-133b, miR-137, miR-206, and miR-340 inhibit PTBP1 expres-
sion and reduce the PKM2/PKM1 ratio, impeding glycolysis [53,71] (Table 1). The brain
contains a high level of miR-124, which has been extensively investigated in neurodevelop-
ment. miR-124 has anti-tumor effects by increasing the oxidative stress products activated
by the tricarboxylic acid cycle (TCA) and causing apoptosis and autophagy [72]. Partic-
ularly in the brain and colorectal cancers, low expression of miR-124 triggers a feedback
cascade on PTBP1/PKM1/PKM2, which promotes cancer cell growth [73]. PKM2 could be
significantly reduced by si-PTBP1 or miR-124 mimics, demonstrating that these molecules
were crucial in controlling the ratio of PKM2/PKM1 [74]. miR-1 and miR-133 also function
as anti-tumor non-coding RNAs expressed in muscle tissues, which mediate cell autophagy
by silencing PTBP1. In addition, miR-133b can directly downregulate the pathogenic
gene PAX3-FOXO1, causing reduced PTBP1 expression. All of this results in a dominant
manner of PKM1-modulated oxidative phosphorylation in cells [75]. Other tissue-specific
microRNAs can also regulate PTBP1 expression and stabilize the downstream target genes,
which may participate in controlling the PKM splicing networks. For instance, PTB-AS
stabilizes the mRNA by binding to the 3′UTR region of PTBP1 and increasing PTBP1
expression [76]. In non-small cell lung cancer, miR-644a functions as a tumor suppressor to
inhibit PTBP1 expression [77], and in colorectal cancer, HuR binds to the 3’UTR region of
PTBP1 to promote PTBP1 stability. However, circRHOBTB3 promotes HuR ubiquitination
degradation caused by β-Trcp1 and reduces the production of downstream PTBP1 [78].

Table 1. Non-coding RNA regulating PTBP1 in PKM alternative splicing events.

Non-Coding
RNA Partner Mechanism Function/Effect Type of Cancer Refs

miR-124 inhibits PTBP1 expression and
reduces PKM2/PKM1 ratio

triggers a feedback cascade about
PTBP1/PKM1/PKM2 and has
anti-tumor effects

brain and colorectal
cancers [72–74]

miR-1
miR-133 silences PTBP1 leads to a high level of PKM1

mRNA rhabdomyosarcoma [75]

miR-133b downregulates the pathogenic gene
PAX3-FOXO1 reduces PTBP1 expression rhabdomyosarcoma [75]

PTB-AS binds to the 3′UTR region of PTBP1 stabilizes and increases PTBP1
expression glioma [76]

circGLIS3
sponge miR-644a and PTBP1 can
bind to the flanking introns of
cirGLIS3

circGLIS3/miR-644a/PTBP1
positive feedback loop and
promotes PTBP1 production

non-small cell lung
cancer [77]

HuR binds to the 3’UTR region of PTBP1 promotes PTBP1 stability colorectal cancer [78]

circRHOBTB3 promotes HuR
ubiquitination degradation

reduces the production of
downstream PTBP1 colorectal cancer [78]



Biomolecules 2024, 14, 566 8 of 15

5. Epigenetic Modifications of hnRNPs Affect Glycolysis of Tumor Cells by
Regulating PKM2

Under certain circumstances, continuous accumulations of genetic changes and epige-
netic modifications in key tumor suppressor genes and oncogenes affect the occurrence
and development of tumors [79]. Epigenetic modification refers to changes in gene ex-
pression rather than altering DNA sequence [80]. Common epigenetic changes in tumors
include abnormal DNA methylation, histone modifications, and altered expression levels
of various non-coding RNAs. PKM2 can be mutually regulated through phosphorylation,
acetylation, and other modifications, which change PKM2 intracellular localization and
specific biological functions, including energy supply for cancer cells, EMT, cell prolifer-
ation, invasion, and metastasis (Table 2) [81]. However, attention must also be paid to
the epigenetic alterations of the upstream SFs causing the shift in PKM2 expression. The
stability or affinity of hnRNPs is affected by modifications like acetylation, phosphoryla-
tion, and ubiquitination. Ultimately, it influences whether cells use PKM1-based oxidative
phosphorylation metabolism or PKM2-based glycolysis.

Table 2. The epigenetic regulation of hnRNPs in PKM alternative splicing events.
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The acetylated and phosphorylated hnRNPA1 increases its affinity with PKM pre-
mRNA promoting PKM2 isoform generation and enhances cancer cell proliferation and
invasion. In lung adenocarcinoma, ESCO2, as an evolutionarily conserved cohesion acetyl-
transferase, can catalyze hnRNPA1 acetylated at K277 and retain hnRNPA1 in the nucleus.
This increases hnRNPA1 binding to PKM EI9 together with more PKM2 isoform mRNA
production [82]. S6K2 catalyzes the phosphorylation of hnRNPA1 in Ser6 and causes
colorectal cancer cells to preferentially express PKM2 instead of PKM1 and enhance the
cell proliferation activity [83]. However, de-acetylation and ubiquitination increase PKM1
isoforms and inhibit aggressive cancer cell isotypes. In hepatocellular carcinoma, SIRT1
and SIRT6 cause de-acetylation at K3, K52, K87, and K350 lysine residues in hnRNPA1,
hindering the splicing transition from PKM to PKM2 mRNA. This weakens PKM metabolic
activity and the non-metabolic PKM2/β-catenin signaling pathway, which in turn inhibits
cancer cells from utilizing glycolysis and proliferating [84]. E3 ubiquitin ligase ZFP91, a
tumor suppressor, is typically less expressed in hepatocellular carcinoma. Overexpression
of ZFP91 can promote K48 polyubiquitination of hnRNPA1 at K8, leading to hnRNPA1
degradation via the proteasome pathway [85]. And for PTBP1, its de-acetylation can de-
crease its affinity for PKM pre-mRNA. SMAR1, PTBP1, and HDAC6 can form a ternary
complex, and in this scenario, SMAR1 can catalyze PTBP1 to maintain the deacetylated
state in an HDAC6-dependent manner. SMAR1 inhibits glucose uptake and lactate pro-
duction by reducing PKM2 expression, therefore inhibiting breast cell metabolism and
malignancy [86].
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In addition to glucose metabolism, the post-translation modifications of hnRNPs exert
other aspects on cellular metabolism. The ubiquitination of PTBP1 and hnRNPA2/B1 affect
lipogenesis in intrahepatic cholangiocarcinoma [87] and hepatocellular carcinoma [88].
Additionally, hnRNPK phosphorylation influences mRNA metabolism [89]. So far, other
types of metabolism are not as extensively investigated as glucose metabolism regulated
by the hnRNPs family. More research on other metabolic effects needs to be explored
in the future.

6. Potential Therapeutic Drugs or Inhibitors

Many effective drugs targeting PKM2 have already been found, such as benserazide
(BEN), benzoxepane derivatives 10i, ML-265, parthenolide, TT-232 (CAP-232), TEPP-46,
combohydroquinone, and histone deacetylase inhibitors (HDACi). These inhibitors can
reduce mitochondrial metabolic reprogramming, weaken cell proliferation, inhibit tumor
cell growth, and mediate apoptosis [74,90–93]. In addition to these existing inhibitors,
exploration of medicine targeting the SFs of PKM to decrease PKM2 production may have
great prospects to impair the glycolysis in cancer cells.

As one of the essential SFs for PKM, PTBP1 is highly expressed in two drug-resistant
colon cancer cell lines (HCT-8/V and HCT116). Knocking down PTBP1 enhances the
chemotherapy sensitivity and leads to inhibition of glycolysis [94]. Several plant-derived
ingredients have been reported to show anti-tumor benefits. Kaempferol is essentially a
flavonoid in fruits and vegetables that induces apoptosis and inhibits colon cancer cell
proliferation in a dose-dependent manner. In addition, kaempferol promotes miR-339-5p
expression, which directly targets hnRNPA1 and PTBP1, reducing PKM2 expression and
inhibiting glycolysis in colon cancer [95]. Moreover, another plant-derived oleanolic acid
induces a transition from PKM2 to PKM1 by inhibiting mTOR signaling and the c-Myc-
dependent expressions of hnRNPA1 and hnRNPA2, thus weakening the glycolytic ability
of cancer cells [96].

hnRNPs are correspondingly downregulated after the application of inhibitors. Quercetin
is a flavonoid abundant in plants that specifically binds to the C-terminal region of hnRNPA1.
Quercetin impairs the ability of hnRNPA1 to shuttle between the nucleus and cytoplasm and
ultimately traps it in the cytoplasm [33]. β-caprylylone is the main component of coriander
volatile oil, a Chinese herbal medicine that has recently been shown to have anti-glioma effects.
Previous studies have shown that β-caprylylone can inhibit the expression of hnRNPA2/B1.
β-caprylylone thereby promotes Bcl-x alternative splicing, increasing the ratio of Bcl-xS/Bc
and mediating apoptosis of glioma cells [97]. In addition, pretreatment with the synthetic drug
cilostazol, which is a novel antiplatelet drug, can reduce the overexpression of hnRNPA2/B1
in human dermal microvascular endothelial cells [98]. Nanoparticle-coupled aptamers bind
specifically to hnRNPA2/B1, identifying and inhibiting the proliferation of a variety of tumor
cells (HepG2, MCF-7, H1299, and HeLa), and they may have a promising application in
cancer diagnosis and treatment [99]. The above findings suggest that hnRNP inhibitors are
expected to become antineoplastic agents, and combining with PKM2 agonists or inhibitors
may achieve better efficacy (Table 3). However, all the drugs or inhibitors mentioned above
are only investigated in in vitro cells or animal models, the clinic trial information is limited
and not reported yet. The effective therapeutic drugs are expected to be studied for clinical
use in the future.

Table 3. Drug or inhibitor agents applied in regulating hnRNP expression.

Drugs or Inhibitors Therapeutic Target Molecular Mechanisms Cancer Characteristics Refs

kaempferol miR-339-5p promotes miR-339-5p expression which
downregulates hnRNPA1 and PTBP1 colon cancer [95]

oleanolic acid mTOR signaling inhibits the c-Myc-dependent
expression of hnRNPA1 and hnRNPA2

prostate carcinoma and breast
cancer [96]
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Table 3. Cont.

Drugs or Inhibitors Therapeutic Target Molecular Mechanisms Cancer Characteristics Refs

quercetin hnRNPA1

impairs the ability of hnRNPA1
shuttling between the nucleus and
cytoplasm and ultimately traps it in
the cytoplasm

prostate cancer [33]

β-caprylylone hnRNPA2/B1 inhibits the expression of hnRNPA2/B1 glioma [97]

cilostazol hnRNPA2/B1 reduces the overexpression of
hnRNPA2/B1 Bechet’s disease [98]

nanoparticle-coupled
aptamer aptamers hnRNPA2/B1 acts as a cancer-specific probe

hepatocellular carcinoma;
breast cancer; non-small cell
lung cancer; cervical cancer

[99]

7. Conclusions and Future Perspectives

It has been decades since PKM alternative splicing first became implicated in tumorige-
nesis and progression. With the development of new methods for analyzing the alternative
splicing events on a big scale, including quantAS [100], isoform long-reads RNA-seq (Iso-
seq), and single-cell RNA-seq [101], our understanding of this event will continue to grow.
Despite the emphasis on the change from PKM1 to PKM2, it does not seem that it can
entirely account for the variety of splicing events. New knowledge may also provide novel
targets for hnRNPs like hnRNPA1, hnRNPA2/B1, PTBP1, etc. We currently provide a
brief review of the most recent research on the upstream regulators of hnRNPs, as well
as the developed target drugs and inhibitors in vitro. In the future, more studies will be
conducted to explore the unknown information on hnRNPs members. Additionally, there is
scope for more investigation into deeper mechanisms of aberrant alternative splicing events
in malignancies, as well as the potential side-effects of the aforementioned medicines and
inhibitors. Small molecules, splice-switching antisense oligonucleotides, CRISPR-based
approaches, or engineered small nuclear RNAs, etc. may be used for modulating the
splicing events.
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