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Abstract: The improvement of search engines for geospatial data on the World Wide Web has been
a subject of research, particularly concerning the challenges in discovering and utilizing geospatial
web services. Despite the establishment of standards by the Open Geospatial Consortium (OGC), the
implementation of these services varies significantly among providers, leading to issues in dataset
discoverability and usability. This paper presents a proof of concept for a search engine tailored
to geospatial services in Switzerland. It addresses challenges such as scraping data from various
OGC web service providers, enhancing metadata quality through Natural Language Processing,
and optimizing search functionality and ranking methods. Semantic augmentation techniques are
applied to enhance metadata completeness and quality, which are stored in a high-performance
NoSQL database for efficient data retrieval. The results show improvements in dataset discover-
ability and search relevance, with NLP-extracted information contributing significantly to ranking
accuracy. Overall, the GeoHarvester proof of concept demonstrates the feasibility of improving the
discoverability and usability of geospatial web services through advanced search engine techniques.

Keywords: Natural Language Processing; result ranking; data discovery; geospatial search engine;
web services; Open Geospatial Consortium; language model

1. Introduction

The improvement of search engines on the World Wide Web has been researched in
recent decades, starting from the introduction of the Semantic Web, which enriches the
data with further descriptors of the content, leading to better search results for the users.
A domain that has proven particularly challenging is the one involving geospatial data,
specifically, in the case of geospatial web services. Despite the clear XML structure, they
lack a centralized index, which thus makes it difficult for search engines to crawl and index
them comprehensively [1].

Despite the introduction of standards by the Open Geospatial Consortium (OGC)
for the definition of Web Map Services (WMSs), Web Map Tile Services (WMTSs), and
Web Feature Services (WFSs) [2–4], as well as the widespread adoption of them, their
implementation can vary significantly among different providers and, unlike other types
of web services, there is no centralized or unified platform with all WMS/WMTS or WFS
services listed, even within the same country. In addition, depending on the provider, some
services may not have comprehensive metadata and indexes, which drastically worsens
the dataset discoverability and usability [5].

All mentioned OGC web services (OWSs) are implemented to include a self-describing
Service Endpoint, known as GetCapabilities. This operation facilitates the retrieval of an
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XML document detailing the relevant information of the service. This core function can
be leveraged to automatically discover and collect information about the services and
elaborate the listed metadata to gain additional insight. Existing works [1,5] integrate
a crawler module to collect OWSs published on the internet and validate the retrieved
information and services with the GetCapabilities operation. As a result, further operations
can be applied to the data, aiming to check the metadata quality, implement ad hoc ontology,
and geocode the data [1,5].

This study focuses on the development of a proof of concept (PoC) of a search engine
tailored to OGC geospatial services in Switzerland. Within the range of OWSs provided
by the federal government, cantons, and municipalities, finding geospatial web services is
not as efficient as an online web search. It requires expert knowledge to search for datasets
within an OWS, understanding the organization of the National Geodata Infrastructure, or
manually comparing data from different providers. Therefore, at the national GeoUncon-
ference [6] workshop series in Switzerland, it was established that, today, there is a lack
of a service that combines the public geodata services into a catalogue as a single point of
entry and presents the Swiss geodata lake of OWSs to the users. In addition, the analysis of
the web services offered by various providers in Switzerland in Section 3 reveals strong
variations in metadata quality. As defined by OGC standards, some essential fields for
indexing, such as keywords, are optional. As a result, such fields are frequently missing,
while unstructured data, such as the description or the title, contains relevant information
for the dataset discoverability but cannot be used directly for indexing.

The retrieval of information from the web has already been thoroughly explored.
Dissimilar to other works [7,8] that focus on the development of a web crawler to discover
data on the web, our paper focuses mainly on the semantic augmentation through Natural
Language Processing and ranking methods to improve the search results presented to
the user. This thematic has been marginally explored in other works, which focus on the
generation of web ontologies [9–11] or the exploitation of such ontologies to describe and
categorize web services [12]. However, all of these approaches rely on models to parse
information from well-structured fields retrieved with GetCapabilites. In Section 3.3, we
present that OWSs do not always contain such data and, therefore, unstructured data must
be used.

The implemented PoC addresses the challenges of searching these types of web
services as part of GeoHarvester, a research project in collaboration with the Swiss Federal
Office of Topography (Swisstopo). The project’s aim is to develop a centralized and easy-to-
use search engine with an open Application Programming Interface (API) for searching
OWSs in Switzerland. For the implementation of such a PoC, different aspects must be
considered. First, the raw data must be scraped from the servers of different providers.
Then, the collected data need to be processed, enhanced, and stored in a capable and
responsive database and, finally, a proper architecture and infrastructure are needed to
host the system and to enable its frictionless functioning.

With this paper, we show that the extraction of additional information from unstruc-
tured data using Natural Language Processing (NLP) and language models can contribute
to improving the discoverability of the scraped OWS datasets. In 30% of the cases, the dis-
coverability of search results is enhanced, leading to an increased presence of relevant OWS
datasets in the search results. Furthermore, with our approach, the NLP-extracted infor-
mation contributes to enhancing the relevance ranking of the search results, delivering, in
almost all the cases, a better ranking than standard methods without extracted information.

The remainder of this paper is organized as follows. Section 2 discusses existing
approaches for dataset discovery, augmentation, and visualization. In Section 3, we present
our implementation of the GeoHarvester PoC. Section 4 covers the obtained results with
the implemented solution. Finally, the results discussion, further works and conclusions
are presented in Section 5.
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2. Background
2.1. OGC Web Services

The Open Geospatial Consortium (OGC) has been at the forefront of developing
standards that facilitate the exchange, integration, and utilization of geospatial data across
diverse systems. Among its pivotal standards are the Web Feature Service (WFS), the Web
Map Service (WMS), and the Web Map Tile Service (WMTS), all three integral components
of the geospatial web service landscape. While the WFS plays a key role as a protocol
for sharing geospatial feature data, the WMS and WMTS offer the ability to provide
dynamically generated map images over the internet, with or without pre-defined map
tiles. All three services share the GetCapabilities core functionality, which serves as a crucial
operation to retrieve comprehensive metadata detailing the capabilities, configurations,
and available functionalities of these services. By issuing a GetCapabilities request to a
server, users can access essential information in XML format, such as supported operations,
available layers, available data formats, coordinate reference systems, and service-specific
metadata [2–4]. Understanding the structure of GetCapabilities within WFS, WMS, and
WMTS services is therefore crucial to leverage these standards effectively as well as integrate
the services. Even though the OGC has developed these standards to provide a uniform
way of implementing web services, service providers structure them heterogeneously in
terms of provided layers, metadata, and operations. This variation can pose challenges for
users and search engines [13].

2.2. Geospatial Search Engine

A search engine for geodata is designed for the efficient discovery and retrieval of
spatially referenced information. An integral part of more complex Geographic Information
Retrieval (GIR) systems involves identifying and indexing geographic references in un-
structured text, along with associated thematic information, allowing for targeted searches
and explorations of content based on location and theme. The implementation of GIR
systems differs, providing unique features, although they all aim to identify and index
geographic references in unstructured text, primarily using web documents as their data
source and providing the users with spatially and thematically ranked search results. The
biggest challenges for such systems include the ambiguity in geographic references, the
multilingual variability, the evaluation metrics and benchmarking, and the completeness of
the metadata [14–16].

The information interpreted by a GIR system are then submitted in the form of a query
to the geospatial search engine, which ranks the results according to relevance and prepares
them for a visual representation, usually combined with a map. An index structure is
required to resolve search queries efficiently. The purpose of the index is to provide efficient
access to all the relevant items and, consequently, considerably reduce the amount of data
that need to be processed by the ranking functions [1]. With a vast amount of data, an index
can be divided into parts to allow for distributed processing, thus improving response
times. In this context, the type of database and query language significantly impact the
response times of search queries [17].

2.3. Ranking Methods

An essential component of each search engine is the ranking function. Ranking opti-
mizes the user experience and handles the search ambiguity, prioritizing the most relevant
parts of the query. In a spatial search engine, it is essential to handle both thematic and
spatial relevance during the ranking. The spatial relationship can be calculated using a
measure of spatial similarity between the document and the query, for example, by compar-
ing the footprints of documents and queries [18] or using distances based on information
about ontological relations [19]. To rank data based on their thematic correlation methods,
consider occurrence and frequency. For instance, the combination between term frequency
in a document and the inverse document frequency (TF-IDF) developed in [20] can be used
to calculate weights for every term in each document, generating a scoring vector for each
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document, which can be efficiently used to place the document in the ranking list [17].
Term-frequency-based methods can suffer from term frequency saturation. In this case,
the inverse document frequency comes into play, reducing the impact of words that are
common across many documents. The weighting for the ranking can be managed with
the BM25 (Best Match) function, which builds upon TF-IDF and introduces the document
length as an additional source of weighting [21].

In order to provide a unified ranking score, many approaches combine textual and
spatial similarity using a linear combination or an additional vector space model with BM25
term weighting [14,15,17]. Once each document is represented by a vector that combines
spatial and thematic components, advanced machine learning methods can be applied to
rank and classify the data. Various implementations of machine learning algorithms have
exploited benchmarks for the training, as well as users’ preferences and behavior data, to
obtain a more intelligent ranking method or to categorize the data according to specific
themes [18,19].

The evaluation metrics for information retrieval can be subdivided into unranked
and ranked methods. Unranked metrics focus solely on the relevance of the results, not
considering the results’ order, making regression metrics such as Mean Absolute Error
(MAE) and Mean Squared Error (MSE) ideal. On the other hand, ranked evaluation metrics
consider the results’ order, introducing an additional term to only evaluate the relevant
results using metrics such as precision and recall [17]. A specific metric tailored for this
task is the Kendal tau distance (KTD), which is based on the number of rank inversions for
each pair of documents needed to have the same order of results as the ground truth [22].

2.4. Semantic Augmentation

Document metadata are fundamental for result ranking as they include relevant infor-
mation that cannot be deduced from the data. By leveraging metadata, search engines can
employ ranking algorithms that consider crucial attributes, which optimize the relevance,
context awareness, and efficiency of the search. Thus, the completeness and quality of the
metadata are fundamental for this purpose. Unfortunately, OGC web service providers
often neglect the importance of this aspect and, as introduced in Section 1, the metadata
show incompleteness, low quality, or missing optional fields. In those cases, the search is
limited to a few fields containing partial and structured information about the data, and
other fields with unstructured information as plain text are omitted [5]. Some approaches
address the issue by integrating a semantic search capability in the OGC Catalogue Service
for Web (CSW) or extracting and validating new dependencies, and, in this way, allowing
for a more semantically enriched geospatial data discovery through Web ontology Lan-
guage (OWL) [5,23,24]. With the introduction of deep learning and language models, some
works have applied these in Natural Language Processing to extract valuable insight from
unstructured text [25,26]. By leveraging NLP, keywords, textual annotations, and geospa-
tial information within the text can be identified and semantically enriched. This process
includes Named Entity Recognition (NER) to identify place names and entity linking to
connect textual references to geospatial ontologies. This type of semantic augmentation
enhances the capabilities of geospatial search engines by making the information more
accessible, discoverable, and understandable to both machines and users [27].

Another simple form of semantic augmentation that uses NLP is the translation of text
or keywords, enhancing the semantic understanding of contents in different languages and
enabling a better user experience.

If the search results can be improved by applying NLP to the data on the internet or in
a database, the text of the query can be improved through these methods as well. The goal
of query expansion is to improve the relevance of the search by considering a broader set
of geospatial concepts, synonyms, or related terms. This method is particularly effective
for geographical query expansion, including subsystems in the search, and extending the
spatial relevance of the query [17].
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2.5. Data Visualization

The user interface (UI) serves as the crucial intermediary between the user and the
system, facilitating the transfer of information. Users engage with the interface to define
queries, review query results, and modify their queries or filter the results as needed.
Reference [28] identified the four phases where the users’ key activities in information
searching can be summarized: (i) In query formulation, users must be supported by
the interface in formulating a query based on the information need. Once the query is
established, the (ii) action phase commences, easily initiating the search through the UI.
Subsequently, in the (iii) review of results, the search results must be presented in a clear
way and order, facilitating users to determine their relevance. Finally, the (iv) refinement
phase allows users to adjust and improve their queries based on insights gained from
previous results. Based on these four core components, the UI can be extended with
various elements that facilitate user interaction and query formulation [29]. Modern search
interfaces offer components such as pagination controls, auto-complete functions, dynamic
term suggestions, and related searches. With the onset of mobile devices, voice-driven
interfaces have gained popularity, allowing users to directly voice their queries [30]. The
presentation of search results can vary with different layouts depending on the content.
For instance, grid-based layouts are well suited for images and graphic content, providing
a more comprehensive overview. In contrast, for list results, an additional dropdown
window can be employed to showcase additional entry details, ensuring a balance between
an overview and the completeness of information [31].

3. Methods

In this section, we present the implemented proof of concept, explaining in detail all
of its components and functionalities. For the implementation, we consider three main
challenges. Firstly, by scraping OWSs, different metadata qualities and completeness of
fields can be found. This can lead to bad discoverability of the data and, therefore, a
preprocessing step is necessary to augment the metadata and improve the search results’
quality and relevance by exploiting NLP (Section 3.3). Secondly, looking at the system
scalability for the prototype phase, an extensive number of service providers leads to
large databases, which can severely increase the response times to the user interface.
Consequently, a performant database in combination with custom search functions is
required (Section 3.4 and Section 3.5). Thirdly, users expect that a search engine delivers all
the relevant search results on the first page; thus, the implementation requires a custom
ranking function and fuzzy matching methods that assure that the most relevant results
are presented first (Section 3.6).

3.1. Architecture

The user-facing frontend is implemented in TypeScript and React.js, facilitating user
interaction, query formulation, and the presentation of search results. The frontend interacts
with the backend through a REST API implemented in Python using FastAPI. It enables the
functionalities shown on the user interface and interacts with the database, searching and
ranking the affected data. The scraper, a backend process that automatically collects the
OWS, is triggered daily. It also checks the validity of the services and stores the new and
updated data entries in a temporary CSV file within the GitHub repository. Subsequently,
the temporary data are ingested and preprocessed, enhancing the metadata through NLP
methods, calculating the metadata quality, and storing all the information in an in-memory
NoSQL database ready to be queried.

The whole system architecture and software stack are summarized in Figure 1.
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Figure 1. Frontend and backend conceptualization of the architecture used for the GeoHarvester
PoC, including Scraper for OWS retrieval, NLP preprocessing, search engine logic in a first Docker
container, and the Redis database in a second Docker container.

3.2. Scraper

The scraper is based on a first version developed in [32] and works as separate tier
of the system, updating the index of the metadata daily by checking for modifications or
newly published data layers. The automation of the process is implemented through the
GitHub Action workflow, allowing the scraper to automatically update the metadata index
overnight. In a first step, it searches for OWSs, drawing from a curated list of more than
1400 Swiss servers hosting Geoportals, and compares the services with the existing ones to
discover changes in the metadata or add new entries. Among the fields retrieved (Table 1),
only a few that can be used for a semantic search are mandatory for OWSs. Therefore, only
the Title, Name, and Provider fields are compared to merge possible identical layers and
perform post-processing to remove duplicates in the keywords. In addition, it validates the
GetCapabilities service links, checking if the XML file with all information can be retrieved.
Finally, the scraper stores the metadata in a temporary CSV file, structured as shown in
Table 1.

Table 1. Fields extracted from OWSs (WMS/WMTS/WFS), with distinctions between OGC manda-
tory fields and optional fields. Fields that can be used for semantic searches are in bold.

Field Name Description Format Mandatory

Provider Manger of the data Text ✔

Title Short title Text ✔

Name Name or identifier of the layer Text ✔

Tree Layer tree Tree structure ✔

Group Category of the data Text
Abstract A brief summary Text
Keywords Relevant keywords List of string
Legend Link to legend URL
Contact Contact information Text
Service Link GetCapabilities link URL ✔

Publication date Publication Date Date
Service type OGC Service type WMS/WMTS/WFS ✔

Zoom level Max zoom level Int ✔

Center Lat/Lon in WGS84 Tuple of float ✔

Bounding box Extent of data layer WSEN List of float ✔

3.3. Semantic Augmentation and Preprocessing

As shown in Figure 2, the analysis of the collected metadata shows that among
42,000 OWS datasets (WFS, WFS, or WMTS layers) in four different languages (German,
French, Italian, and English), keywords are often missing or limited to just one, while
unstructured data like descriptions (abstract) or titles hold valuable information that needs
to be extracted. Consequently, the metadata are augmented and integrated with additional
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information coming from other fields prior to storage in the database. In a first step, the
abstract is analyzed with Rapid Automatic Keyword Extraction (RAKE), a simple NLP
graph-based method that does not depend on deep learning techniques, but nevertheless
outperforms common term frequency (TF) methods. Its simplicity and efficiency favors its
integration in applications that need to process large datasets [20].
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Despite its processing speed and domain independence, when compared to more
sophisticated language models, RAKE has certain limitations. Its primary disadvantage
lies in its reliance on statistical measures, without considering semantic relationships or
contextual understanding [25]. Consequently, the method has been reinforced by applying
additional keyword refinement through pretrained neural-network-based language models
based on Sentence-BERT (SBERT) [33,34]. This not only allows for a deeper understanding
of language semantics and syntax, but also offers numerous models for different languages.
This last feature is beneficial, since the data collected span four distinct languages, allowing us
to employ a dedicated model trained and optimized for each language individually [35–38].
To face the challenge of selecting the right language model for each dataset, a language
detection tool has been integrated, which is based on [39] and allows us to include the
detected language in the metadata as additional information. Another aspect of NLP
preprocessing concerns summarization. Approximately 15% of the data have a description
(abstract) longer than 20 words, with a maximum of 294 words, making the integration of
the field in the search index computationally expensive. Thus, the key information of longer
descriptions (abstract fields) are extracted and the text is summarized in about 20 words, keeping
the key information in a couple of sentences. To this end, the SBERT [34] the NER methods
are applied, exploiting their capability of capturing the semantic meaning and interconnection
among sentences. Their state-of-the-art Siamese network architecture stands out among other
sentence-embedding methods, showing better results and computation efficiency [34].

The last preprocessing step covers the quality of the metadata. Aiming to present
transparent results to the user, a quality score is calculated on the OWS original fields,
which is then also considered for the ranking, showing in which portion the ranking and
relevance stem from the original data fields. All NLP-generated fields described above are
summarized in Table 2.

Table 2. Fields extracted from the fields in Table 1 with the semantic augmentation and preprocessing,
including the calculated field describing the metadata quality.

Field Name Derived from Original Columns Format

NLP keywords Abstract List of string
NLP summary Abstract Text
Metadata quality Abstract, Keywords Integer
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3.4. High-Performance Database

Once the data are preprocessed, they need to be stored in a database. Due to the
nature of the search engine type, which requires a low storage capacity but rapid and
frequent access to the data, for the solution, an NoSQL database is adopted. Redis is an
open-source in-memory key-value storage system that has been improved in scalability and
data safety [40]. As Redis offers limited options for query functions, the latter have been
divided into two phases in order to guarantee both rapid response time and optimal sorting
of the search results. Firstly, as many matches as possible for each word in the query string
are retrieved. These include exact matches and similar words across all relevant fields
within the database. Secondly, the results of the former are ranked, scoring the matches
with a custom function, described in Section 3.6, which weights the different columns and
match types. In addition, pagination is applied to the search results, improving the server
response times.

The response times should be as fast as possible, but some comparative measures
for such a system are described in [41]. In order to keep the user’s flow of thought
uninterrupted, the system response times should be less than a second, while a delay longer
than ten seconds is the limit to maintain the user’s attention [41].

3.5. Query Expansion

To facilitate the search in the database, some core NLP functions are applied to the
query string. This involves expanding the query and optimizing matches. After word
tokenization and stop word removal, the resulting search tokens are stemmed using a
stemming algorithm that supports various European languages, namely the Snowball
Stemmer algorithm [42].

Then, both stemmed and non-stemmed tokens are used to execute the query in the
database, resulting in exact matches and matches from the stemmed query, as shown in the
workflow in Figure 3.
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3.6. Results Ranking

The relevance of the search results is evaluated in the second phase of the search
function, aiming to rank them according to the user expectation. In this stage, the search
results from the initial phase (Section 3.2) are assigned weights based on two criteria: the
match type, such as whether it is an exact word match or if the query word is merely
contained, and the match column, assuming that the information contained in manually
entered fields, like the Title and Keywords, are more relevant than the others. Additionally,
the scores are been weighted, considering the length of the text, assuming that an exact
match in a short text has more relevance than one in a longer text, as an extensive text could
contain additional side information, which may not be the focus of the OWS dataset. These
weights are then utilized to compute the ranking score, which in turn allows the search
results to be sorted.

As it is important for the user to have more relevant results first, instead of using
unranked metrics as in other works [9,43], we adopted a ranked metric. For each query, a
ground truth order of the results is manually established; then, for the evaluation of the
ranking method, the Kendal tau distance [22] is applied (Equations (1)–(3)).

Kn = 1 − 2K(τ1, τ2)

n − (n − 1)
(1)

where
K(τ1, τ2) = ∑

(j,i)
Kji(τ1, τ2) (2)

where

Kji(τ1, τ2) =

{
0 i f xj, xi are in the same order in τ1 and τ2
1 i f xj, xi are in the inverse order in τ1 and τ2

(3)

The Kendall tau distance counts the pairwise disagreements between items from two
rankings: τ1 (ground truth ranking) and τ2 (resulting ranking). A penalty point is added
for each necessary pairwise swap to bring the elements xj and xi in the same order as in τ1.
Finally, the resulting sum is normalized by the number of elements in the ranking list, n.

4. Results

In this section, we present the results of the implemented PoC, analyzing the imple-
mented system in Section 4.1, the OWS discoverability in Section 4.2, and the search results’
ranking in Section 4.3. Finally, the user interface is briefly presented in Section 4.4.

4.1. System Response Times

As the ranking method strongly influences the response times, the search function is
divided into two phases (Section 3.4). This approach improved the response time to return
the search results in less than a second to the front end. As shown in Figure 4, the ranking
function processing time in the second phase increases exponentially with the number
of words contained in the query. Thus, the ranking function can process a maximum of
three words in order to meet an acceptable response time and keep the users’ flow of
thought uninterrupted.
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4.2. OWS Dataset Discoverability

The evaluation of dataset discoverability compared search results with and without
NLP-extracted information to evaluate the improvement of the search result with the
enrichment of the metadata with NLP. The datasets of the service provider cover their
administrative area, and the metadata of these datasets refer to the extent and set theme. A
search for a particular municipality would only return a result if its name was mentioned
in the metadata of a dataset. Table 3 shows the evaluation of the number of search results of
a search for Swiss municipalities in the generated database, with the objective of retrieving
OWS datasets that contain information about that municipality. The selected municipalities
are towns with more than 15,000 inhabitants [44], and municipalities that are contained in
the name of the canton are excluded to avoid ambiguity in the results.

Table 3. Additional OWS datasets (WMS/WFS/WMTS) discovered with NLP-extracted information
in comparison to title and keyword search. The municipalities are ordered by number of inhabitants,
excluding Zurich, Geneve, Basel, Bern, Sankt Gallen, Lucerne, Fribourg, Schaffhausen, Zug, Aarau,
and Schwyz. Highlighted in grey are the municipalities that do not match any dataset in the database
independent of the search method.

Municipality

OWS Datasets Discovered

Municipality

OWS Datasets Discovered

Municipality

OWS Datasets Discovered

Without
Extracted

Information

With
Extracted

Information

Without
Extracted

Information

With
Extracted

Information

Without
Extracted

Information

With
Extracted

Information
Lausanne 0 116 Meyrin 0 0 Schlieren 0 0

Winterthur 10 11 Carouge 0 0 Adliswil 0 0
Biel 34 52 Kreuzlingen 0 0 Volketswil 0 0

Thun 12 16 Wädenswil 0 0 Thalwil 0 0
Bellinzona 162 162 Riehen 158 158 Olten 0 3

Uster 4 8 Allschwil 0 0 Pully 0 0
Vernier 0 0 Renens 6 6 Regensdorf 0 0
Chur 0 1 Wettingen 0 3 Ostermundigen 0 0
Sion 0 0 Nyon 0 2 Littau 0 0

Yverdon 0 0 Bülach 0 0 Pratteln 0 0
Emmen 6 10 Vevey 0 0 Freienbach 84 84

Dübendorf 0 0 Opfikon 0 0 Wallisellen 0 0
Rapperswil 0 0 Reinach 0 1 Wohlen 0 1

Dietikon 0 2 Baden 4 7 Morges 0 0
Wetzikon 0 0 Onex 0 0 Steffisburg 0 0

The results in Table 3 show how many additional relevant OWS datasets could be
discovered for each municipality by exploiting NLP-extracted information.

4.3. Search Results’ Ranking

The second evaluation focuses on assessing the quality of the ranking. Several user
queries were analyzed, aiming to compare the quality of the GeoHarvester ranking function,
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which incorporates NLP-extracted information, against conventional ranking methods
based on similarity matching and applied to different fields of the database. Initially,
the GeoHarvester system refines the user-typed queries, aiming to minimize the number
of words searched in the database while retaining all relevant information. Before the
comparison, the first 15 searched OWS datasets were selected and sorted manually by
relevance as ground truth. Subsequently, the ranking quality scores were calculated using
the Kendall tau distance [22] and comparing the first 15 search results with the ground
truth. Given that the ground truth queries may not consistently contain the same number
of OWS datasets, the Kendal tau distance was normalized with the number of entries in the
ground truth and inverted to yield an ascending KTD score, as explained in Section 3.6.

The sorting methods involved various column combinations, utilizing the title column,
the keywords column, and the NLP-extracted information. As shown in Table 4, in almost
all cases, the use of NLP-extracted information delivered better ranking results (the higher
the better). In addition, the document store related to each query was analyzed, comparing
the potential exact OWS dataset matches in the store and the number of potential thematic
similar OWS dataset matches contained in the database. As the database has limited entries
in comparison to a web search, these values explain how successfully the desired datasets
could be found among other thematically similar datasets within the database.

Table 4. Ranking results of the test queries executed with different column combinations as well as
the document store with potential exact matches and potential thematic matches. The KTD column
denotes the score calculated using the column title, using the column keywords, using a combination
of title and keywords columns, and using a combination of all three columns (title, keywords, and
NLP-extracted information). * Field used to find thematic similar matches in the database (in bold).

User Query NLP-Refined Query
* Search Topic Term in Bold

KTD Score
Columns Used for Ranking Document Store

Title Keywords Title +
Keywords

Title +
Keywords +

NLP
Extraction

Potential
Exact

Matches

Potential
Thematic
Matches *

Eignung der Solarenergie in
der Schweiz

<eignung><solarenergie>
<schweiz> 0.89 0 0.92 1 4 21

Eignung der Solarenergie in
Kanton Aargau

<eignung><solarenergie>
<kanton aargau> 0.82 0 0.8 0.88 2 21

Rohstoffe in der Schweiz <rohstoff><schweiz> 0.1 0 0.27 0.84 8 20
Rohstoffe in Kanton
Schaffhausen

<rohstoff><kanton
schaffhausen> 0 0 0 0.87 1 20

Wildtierkorridore in der
Schweiz

<wildtierkorridor>
<schweiz> 0.2 0 0.08 0.68 4 43

Wildtierkorridore in
Kanton Solothurn

<wildtierkorridor>
<kanton solothurn> 0.18 0 0.18 0.84 1 43

Radwege in der Schweiz <radweg><schweiz> 0.74 0 0.1 0.6 4 74
Velowege in der Schweiz <veloweg><schweiz> 0.66 0 0.14 0.98 4 74
Radwege in Zürich <radweg><zürich> 0.8 0.11 0.8 1 1 74
Radwege in Kanton
Schwyz <radweg><kanton schwyz> 0.53 0 0.53 1 2 74

Bewilligungen von der
Wasserbauabteilung in
Zürich

<bewilligung>
<wasserbauabteilung>

<zürich>
0.93 0.71 0.93 0.96 1 10

Bezirke der Kanton Zürich <bezirk><kanton zürich> 0.76 0.16 0.75 0.96 3 19
Römische Pfosten Augusta
Rauirica

<römisch><pfosten>
<augusta raurica> 1 0.89 1 1 1 37

Berufsinformationszentren
in Kanton Bern

<berufsinformationszentre>
<kanton bern> 0.87 0 0.87 1 4 10

Fotopunkte der
Amphibienzugstelle

<fotopunkt>
<amphibienzugstelle> 0.72 0.66 0.72 0.88 11 21

Einschränkungen für
Drohne in der Schweiz

<einschränkung>
<drohne><schweiz> 0.91 0.44 0.93 0.94 3 10
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4.4. GeoHarvester PoC Prototype

To enable users to interact with all the functionalities but at the same time not be
overwhelmed, the user interface adopts a minimalist design, focusing solely on core
features. Illustrated in Figure 5, it provides a concise overview of the search results while
also allowing users to access additional information about the services. Users can sort
and filter search results by provider, service type, and metadata quality. Furthermore,
to facilitate integration in GIS Software, the corresponding layer definition file can be
downloaded or directly visualized on the Swisstopo geoportal.
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5. Conclusions and Future Work

The implemented proof of concept demonstrates the feasibility of collecting OGC web
services from different providers, unifying them in a single portal. The proposed solution is
performant and improves OWS dataset discovery by leveraging unstructured data through
NLP extraction methods. Nevertheless, the complexity of the ranking function resulted in
significantly slower response times for queries longer than three words, thereby impacting
overall performance. This issue could be addressed by preprocessing queries and extracting
the most pertinent information restraining the search tokens.

The adopted system’s architecture, with a separate tier for the scraper, facilitates the
exploitation of NLP techniques on the collected data before the presentation to the user.
In addition, the combination of a simple NLP graph-based method and language models
delivered the best refined results, which could be used to improve the OWS datasets’
discoverability and the search results’ ranking.

Findings emerging from the analysis of the OWS datasets’ discoverability concerning
the spatial relevance indicated that in just 30% of cases, additional relevant OWS datasets
could be discovered with NLP-extracted information, while in 9% of the cases (Bellinzona,
Riehen, Renens, Freienbach), the same number of OWS datasets could be found without
extracted information. Conversely, in the remaining cases, no OWS datasets could be
found with both methods. This can be attributed to providers potentially not offering
OWSs related to those specific municipalities or the absence of evidence within the OWSs,
indicating their affiliation with said municipalities.

Moreover, enhancing OWS datasets’ discoverability could be achieved by leveraging
the NLP-extracted information to rank search results and implementing a customized
ranking function, which outperformed similarity methods adopted in other works [7,8]
based on the Kendal tau distance as an evaluation metric.

These findings also suggest that optional fields, such as keywords, are often missing,
and therefore significantly diminish ranking performance when solely relied upon. It can
be supposed that in cases where all optional fields are missing and insufficient information
is present in the title, even with existing methods, discovering such OWS datasets would
prove challenging. An alternative solution could involve additional enhancement of the
information starting from other mandatory fields, such as Title and Name, and using a
combination of ontologies and language models to extract implicit information contained.

Future studies should investigate the spatial relevance of the results in more depth,
exploiting the related bounding box extensions of the data entries and providing additional
qualitative results, as demonstrated in prior studies [14,16]. Moreover, the NLP-based
extraction methods can be improved, including the generation of an ontology for the data
domain with the assistance of language models, with the aim of searching for related words
as illustrated in previous works [43,45].

Although queries are currently presented in German due to the concentration of
data and users in the German-speaking part of Switzerland, future work will focus on
implementing multi-language support for the frontend and backend, thus enabling a
language-independent search returning search results from additional languages.

To improve the user experience, a language model can be trained for topic modelling
and applied to the data to classify them into related categories, such as INSPIRE categories,
enabling users to further filter the search results.

Finally, the PoC was implemented using Swiss servers and Swiss national languages;
however, the system can be easily adapted to scrape other servers outside Switzerland by
extending the server list. In addition, SBERT-based models for NLP information extraction
can be trained on publicly available datasets (Section 3.1) to support further languages and
augment the corresponding metadata.
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