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Abstract: In the current field of regional studies, there is a growing focus on regional spatial relation-
ships from the perspective of functional linkages between cities. Inter-city population movement
serves as an embodiment of the integrated functionality of cities within a region, and this is closely
tied to the socio-economic development of urban areas. This study utilized Location-Based Services
(LBSs) to collect the scale of inter-city population movement across 355 cities in China. Addition-
ally, socio-economic data published by local governments were incorporated. By establishing a
Multiscale Geographically Weighted Regression (MGWR) model, this research explores the spatial
relationships between inter-city population movement and socio-economic influencing factors in
China. This study aims to elucidate the spatial scales of the relationships between various variables.
Our research findings indicate that the relationship between inter-city population movement and
potential socio-economic determinants exhibits spatial non-stationarity. It is better to explore this
spatial relationship through the MGWR model as there are different determinants operating on
inter-city population movement at different spatial scales. The spatial distribution of the coefficient
estimates shows significant regional differences and numerical variations. In China’s economically
developed coastal regions, there is relatively balanced development among cities, with advanced
manufacturing and producer service industries acting as significant drivers of mobility. In inland
regions of China, city size is the most influential variable, directing a substantial flow of human and
economic resources towards regional socio-economic hubs such as provincial capitals. The main
contribution of this study is the re-examination of the relationship between inter-city population
movement and socio-economic factors from the perspective of spatial scales. This approach will help
China to consider the heterogeneity of different regions more extensively when formulating regional
development policies, thereby facilitating the targeted promotion of regional element flow.

Keywords: inter-city population movement; determinants; spatial relationships; MGWR model;
LBS data

1. Introduction

In contemporary regional studies, understanding the functional linkages and spatial
relationships between cities is gaining increased amounts of attention. This perspective
posits that the configuration of regional space is influenced by the closeness of functional
interactions among cities, such as those identified by the POLYNET program in Europe
in terms of business connections between cities [1,2]. The mobility of various functional
elements, including information [3] and economic elements [4], and particularly human
mobility, has become a focal point in this context.

Over the past decade, there has been a notable change in inter-city population move-
ment, with short-term and frequent travel greatly increasing. This change is considered to
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be a manifestation of the integration of regional industries, the job market, and the process
of consumer and public service integration [5]. It has been notably underpinned by the
rapid development of inter-city transportation systems in recent years [6]. Benefiting from
the advancement of Information and Communication Technology (ICT), researchers can
now capture such inter-city population movement using data sources such as Location-
Based Services (LBSs), mobile signaling data, and GPS, among others. This new trend in
inter-city travel and the resulting mobile population within cities have become significant
subjects in urban studies and geographical research [7–9].

China’s rapid economic growth and development of rapid inter-city transportation
networks have led to increased mobility across cities for various purposes [10,11]. However,
this growth has also resulted in widening regional disparities [12,13]. As a medium for the
dissemination of labor, capital, and information, inter-city population movement serves
as a functional linkage between cities [5], highlighting the underlying socio-economic
factors driving these flows. Consequently, the heterogeneity of socio-economic elements
across Chinese cities has resulted in differentiated inter-city population movement, with a
substantial influx of individuals moving towards economically developed coastal areas,
city agglomerations, and provincial capitals located inland [14].

While existing studies acknowledge the impact of socio-economic disparities on popu-
lation movement [15,16], there is a notable lack of research on the spatial relationships and
spatial non-stationarity between these socio-economic factors and inter-city population
movement. This gap underscores the importance of investigating how these factors interact
spatially across different regions in China. Understanding the spatial dimension of these
relationships is crucial to understand regional variations in the underlying drivers and to
develop targeted regional development policies that consider functional linkages. Such ex-
ploration is vital to uncover the nuanced spatial dynamics that shape inter-city population
movement and to inform more effective policy interventions.

1.1. Spatial Characteristics of Inter-City Population Movement

Inter-city population movement research encompasses two primary areas: founda-
tional scientific inquiries and social science perspectives. The former focuses on funda-
mental laws such as scale rules and distance decay laws [17–19], while the latter delves
into movement characteristics and driving mechanisms. The key aspects examined include
the scale of movement between cities, indicative of urban functional linkage [5], and city
agglomeration and centrality dynamics, inspired by Castells’ “Space of Flows” theory [20].

Existing empirical studies in China have revealed distinct spatial heterogeneity in inter-
city population movement networks. Developed urban agglomerations show balanced
network characteristics [21], whereas other regions display inter-city population movement
predominantly towards core cities and their surroundings, with limited interaction among
non-central cities [8]. The scale of inter-city population movement reflects regional or city
developmental levels, with notable spatial variations. Economically developed coastal cities
in eastern China like Beijing, Shanghai, Guangzhou, and Shenzhen attract the majority of
mobile individuals nationwide, while provincial capitals in Central China emerge as focal
points for spatial aggregation on an inter-city population movement scale. The western
region, however, shows lower continuous values [7].

This significant spatial heterogeneity in the network and scale characteristics of inter-
city population movement in China suggests that global models may not accurately capture
local variations and spatial scale impacts. Therefore, investigating the spatial relationship
between inter-city population movement and its determinants is crucial for reliable spatial
planning and economic strategy formulation.

1.2. Variables Affecting Inter-City Population Movement

Although inter-city population movement has emerged as a new trend in recent years,
inter-city migration has long been an important topic for scholars in various fields. Given
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their many similarities, the construction of a theoretical framework for inter-city population
movement can draw insights from and reference the study of migration.

Key theoretical frameworks in this area include the “push and pull theory” initiated by
R. Herberle and E. S. Lee et al. [16], which examines socio-economic factors in both origin
and destination regions. The neoclassical theory, which combines macro labor supply
with micro individual demand, considers labor migration as a form of human capital
investment that maximizes individual benefits, while the macro view analyzes from the
perspective of labor force changes between the agricultural and industrial sectors and the
resulting wage differences [22–24]. The new economic migration theory shifts the focus to
household decisions, aiming to minimize income risks and navigate market constraints [25].
Economic globalization has brought about new changes. The dual-labor market theory [26],
world systems theory [27], and network theory [28] have all attempted to elaborate and
explain population migration from various aspects, including macro-social economic and
cultural structures.

In empirical studies, several key variables have been identified as potential deter-
minants of inter-city population movement. GDP is often considered a general indicator
of a city’s economic strength, attracting population inflow [29]. The industrial structure
also plays a crucial role, with the tertiary sector positively influencing migration, while
the primary and secondary sectors have a contrasting effect [30,31]. Mean wage levels,
indicating job opportunities and economic wellbeing, are also significant factors [32–35].
Public service levels, encompassing education, healthcare, and living facilities, impact mi-
gration decisions and have spatial spillover effects on neighboring cities [36–38]. Housing
prices are another critical factor, with disparities in housing costs significantly influencing
household migration [33].

In addition, geographic proximity, as outlined in Ravenstein’s “The Laws of Migra-
tion” [16], asserts that people tend to move towards neighboring areas with more developed
economies and better opportunities. Many early empirical studies also identified distance
and accessibility as important factors influencing migration [39,40]. However, recent
advancements in China’s high-speed railway (HSR) network have significantly altered
traditional patterns of migration and spatial distance considerations, particularly in the
more developed eastern and central regions of China [6,41]. The increasing homogeniza-
tion of rapid inter-city transport services across China led to a diminishing influence of
transportation variables on population mobility by 2019 [32]. Based on the support from
this literature, we decided not to include transportation as a covariate in our model during
the modeling process.

In summary, related studies have shown that GDP, industrial structure, mean wage,
and public service level are all potential determinants that may affect the scale of inter-city
population movement, which are important references for the construction of this paper’s
model. In addition, related studies have also suggested that spatial non-stationarity is
an important issue in inter-city population movement, but there is still a lack of in-depth
research on the scale of multiple processes.

1.3. Methods Used to Investigate the Determinants of Inter-City Population Movement

Inter-city population movement, characterized by pronounced spatial heterogeneity,
cannot be fully explored through global modeling approaches alone. Local modeling is
crucial in conducting a comprehensive investigation as spatial autocorrelation plays a
significant role in the distribution of inter-city population movements and socio-economic
factors, aligning with the first law of geography [42]. To address spatial autocorrelation in
residuals, spatial lag and spatial error have been incorporated into spatial regression models,
enhancing accuracy by discussing inter-city population movement scales [43,44]. These
models effectively quantify the relationships of socio-economic factors with population
movements, considering spatial heterogeneity.

Nevertheless, traditional global models assume stable variable relationships across
all spatial units, overlooking spatial non-stationarity [45,46]. This limitation has led to
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the adoption of Geographically Weighted Regression (GWR) models in recent studies.
Through the GWR model, it has been discovered that the relationships between various
socio-economic factors and inter-city population movement differ across different regions
in China [47,48]. However, GWR assumes uniform spatial scales for all determinants, a
potentially flawed premise given that different factors may operate at varying scales [49].

Consequently, this study introduces the Multiscale Geographically Weighted Regres-
sion (MGWR) model, an advancement in GWR. MGWR builds upon the GWR model by
obtaining a set of optimal covariate-specific bandwidths, where each bandwidth represents
the spatial scale at which a specific factor influences inter-city population flows. With
this feature, MGWR enables the exploration of relationships between variables at both
the global and local spatial levels simultaneously [50]. MGWR’s efficacy is demonstrated
in diverse fields, including air pollution [51], land surface temperature [52], and housing
prices [53], showing improved results over GWR.

1.4. Contribution

This paper addresses a gap in understanding, namely the mechanism behind inter-city
population movement on normal days in China, a phenomenon distinct from long-term
migration and indicative of urban functional attractiveness. Previous studies, primarily fo-
cused on long-term migration, have not fully explored the spatial relationship and potential
spatial non-stationarity between these movements and socio-economic determinants. Our
research thus poses two questions: (1) What is the spatial relationship between inter-city
population movement on normal days and socio-economic factors? (2) How do these
movements vary across different Chinese regions?

The main contribution of this paper lies in its use of LBS data to measure inter-
city population movement on normal days in China, which is distinct from traditional
population migration and represents the functional attractiveness of a city. Furthermore,
the paper introduces the MGWR model to establish a spatial relationship between inter-city
population movement and socio-economic factors. By analyzing the spatial scales and
parameter estimates of each socio-economic variable, this study provides a more nuanced
analysis of regional development dynamics across different areas in China, thus filling a
research gap in the factors influencing inter-city population movement and their spatial
relationships. Additionally, understanding these spatial relationships can offer valuable
insights for formulating regional development policies in China.

2. Materials and Methods
2.1. Data
2.1.1. The Study Area and Definition of Inter-City Population Movement

The area of this study includes 355 cities in the Chinese mainland, each divided
according to their prefecture-level administrative division, including all urban areas and
rural areas. The data for the Ali Prefecture of the Xizang Autonomous Region, the Taiwan
Region, and the Hong Kong and Macau Special Administrative Regions are not available
for this research; therefore, they are not included in this study.

LBS data are used to identify and estimate inter-city population movement between
all cities in China. Internet LBS data refer to all data generated by the use of Location-
Based Services. LBSs use various types of positioning technologies, such as network-based
positioning and GPS positioning, to allow service providers to obtain the current location of
mobile terminals with the positioning function when the user actively requests or enables
passive location access. One advantage of LBS data is that, compared with traditional
census data and statistics, this type of data has increased timeliness and can measure the
short-term, real-time travel behavior of people between cities. According to statistics, the
number of mobile internet users in China reached 986 million in 2020, of whom more than
99.7% were cell phone internet users [54]. In this context, the trajectory of almost every
smart phone user can be efficiently traced, meaning that an ultra-large number of samples
of trajectories is assembled to reflect inter-city population movement.
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The internet LBS data utilized in this study originate from Baidu Inc.(Beijing, China),
the largest search engine operator in China. The dataset is known as “Baidu Migration”.
The reason for using this data source to measure inter-city population movement is that
Baidu is one of the most widely used LBS providers in China; they receive 130 billion
location service requests daily and provide LBSs for over 600,000 APPs [55]. Indeed, Baidu
can be considered analogous to Google in the Western world. Therefore, the use of Baidu
LBS data essentially meets the requirements of diverse sampling groups, a large sample size,
and wide coverage, making the description of the characteristics of inter-city population
movement in China as realistic as possible. Baidu Migration data define cities where users
stay for more than one day as their origin cities, and they define cities where users arrive
after leaving their origin cities and stay for more than 4 h as their incoming cities. Through
the records of origin and destination cities, inter-city population movement is identified.

The year 2019 was the final year before China implemented movement control policies
because of the COVID-19 pandemic, meaning that the inter-city population movement
data from this year are not affected by external policy factors; they best reflect natural
population movement under the influence of socio-economic factors. Therefore, the data
for this year were used to analyze inter-city population movement and its processes. The
data used in this case cover a total of 14 days from 11 April 2019 to 24 April 2019, which
was a normal working period and included four weekends. The original format of Baidu
Migration LBS data comprises six fields, namely date, departure province, departure city,
destination province, destination city, and the number of users Table 1.

Table 1. Original table of Baidu Migration LBS data.

Date Departure Province Departure City Destination Province Destination City The Number of Users

19 April 2019 Beijing Beijing Hebei Langfang 112,946
12 April 2019 Guangdong Guangzhou Guangdong Foshan 102,709
20 April 2019 Shanghai Shanghai Jiangsu Suzhou 90,500

When processing the Baidu Migration LBS data, our focus is on inter-city population
movement on normal days. Inter-city population movement on normal days refers to travel
behavior between cities, differing significantly from traditional concepts of population
migration. Its essence lies in the sum of various types of passenger traffic between cities.
Due to the different acquisition times of data (weekends, weekdays), it may encompass
various types and purposes of travel, such as inter-city commuting, business trips, visiting
family and friends, vacations, and leisure activities. The scale of inter-city population
movement (ICPM) refers to the total number of people flowing in and out of a city during
the study period. Therefore, based on the original Baidu data, we calculated the total inflow
and outflow of a city over a period of 14 days. The addition of inflow and outflow yields
the inter-city population movement scale of that city. Considering the potential differences
in travel purposes between weekends and weekdays, which may result in variations in
the scale of inter-city population movement, we initially calculated the scales separately
for weekends and weekdays. The results indicate no significant differences in scale or
ranking between the two Table A1, Figure A1. Moreover, as inter-city population movement
during weekdays mostly involves short-term travel, the inflow and outflow of cities are
nearly equal over a certain period. Therefore, the scale of inter-city population movement
can be considered to be representative of the overall mobility of a city’s population. The
spatial distribution of China’s inter-city population movement scale in 2019 is illustrated in
Figure 1. In that year, a total of 209,130,313 people were identified to have moved between
Chinese cities. Among the 355 cities in China, developed cities along the east coast and
provincial capitals had the largest scales of inter-city population movement. The scale of
inter-city population movement exhibits a significant difference among western, central,
and eastern regions Figure 2.
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2.1.2. Independent Variables

The scale of inter-city population movement is considered to be associated with
various factors. In comprehensive reference to prior relevant research and data availability,
we selected 6 variables to represent different aspects of urban characteristics. GDP was
chosen to represent the overall economic scale of the city, while the added value of the
primary sector per capita (PSPC), added value of the secondary sector per capita (SSPC),
and added value of the tertiary sector per capita (TSPC) were selected to represent the city’s
industrial structure. General public budget expenditure per capita (GPBEPC) was chosen
as a proxy for the level of urban public services, and average wage (AW) was used to
represent employment attractiveness. These six variables serve as alternative explanatory
variables Table 2. All alternative explanatory variables were obtained from the official
statistical websites of governments across various regions in China. We visited the official
statistical websites of each city’s respective province and acquired the statistical data from
the provincial statistical yearbooks of 2020, which present data up to the end of 2019. Due
to the unavailability of the required data for the Ali Prefecture in the Tibet Autonomous
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Region, Taiwan, Hong Kong, and Macao Special Administrative Regions, these areas are
not included in this study.

Table 2. Descriptive statistics of independent variables.

Independent Variables Notation Explanation Max Min Mean

Gross region product GDP Annual gross regional product
(CNY 10,000) 381,553,200.00 328,578.89 27,754,368.86

Added value of primary sector
per capita PSPC Added value of primary sector per

capita (CNY per capita) 26,484.58 187.48 6112.94

Added value of secondary
sector per capita SSPC Added value of secondary sector

per capita (CNY per capita) 279,618.33 1304.86 25,089.49

Added value of tertiary sector
per capita TSPC Added value of tertiary sector per

capita (CNY per capita) 142,663.47 4805.37 30,011.69

General public budget
expenditure per capita GPBEPC General public budget expenditure

per capita (CNY per capita) 51,791.43 649.34 13,988.88

Average wage AW Average wage of employed persons
in urban non-private units (CNY) 173,205.00 44,953.00 78,715.10

Due to the different measurement units of the aforementioned variables and their sub-
stantial numerical differences, we employed their logarithmic forms. These log-transformed
records were then standardized to have a mean of 0 and a variance of 1, allowing for unit-
independent parameter estimation and facilitating comparisons. Taking the logarithm of
variables can also mitigate nonlinearity in the original relationships [56].

Further collinearity tests were performed on the log-transformed variables. Calcu-
lating Tolerance and VIF values revealed that the Tolerance values for each independent
variable were significantly greater than 0.1, and the VIF values were all less than 5. Conse-
quently, there is no significant issue of multicollinearity among the independent variables,
ensuring the accuracy of the model estimates.

2.2. Methodologies

In order to comprehensively analyze the spatial relationship between inter-city popu-
lation movement on normal days and socio-economic determinants, and to examine the
underlying processes and mechanisms, three models were introduced in this study: the
classical Ordinary Least Squares (OLS) model, the widely used Geographically Weighted
Regression (GWR) model, and the recently proposed Multiscale Geographically Weighted
Regression (MGWR) model. The performance of these three models in the context of
inter-city population movement was compared in terms of three aspects: goodness-of-fit,
distribution of residuals, and accuracy of coefficient estimates. The optimal model was
selected, and its performance was analyzed in terms of bandwidth and spatial scale, as well
as parameter estimates. This analysis aimed to thoroughly examine the spatial relationships
and mechanisms behind each determinant in the context of inter-city population movement
on normal days and socio-economic factors.

2.2.1. Ordinary Least Squares

The OLS model was used to determine the relationships between independent and
dependent variables to identify globally significant influencing factors for inter-city pop-
ulation movement and to serve as a benchmark for comparison with the next two local
regression models.

The classic OLS model can be written as the following equation according to inter-city
population movement:

yi = β0 + ∑j β jxij + ϵi (1)

where i represents a city, yi represents the scale of inter-city population movement in
city i, xij represents the jth explanatory variable for city i, β0 is a constant term, β j is an
unknown coefficient to be estimated, and ϵi is an error term that obeys a mean of 0 and a
normal distribution.
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After conducting OLS modeling, to ascertain whether the relationships between
variables are influenced by their respective spatial distributions, the next step involved
assessing the spatial autocorrelation of the residuals from the OLS model. It is commonly
believed that if the residuals of a global model exhibit significant spatial autocorrelation,
the spatial distribution of variables within the model significantly impacts the estimation
results. Therefore, this study employed the global Moran’s I to further validate the spatial
distribution characteristics of residuals in the OLS model. This verification process serves
to test the usability of the global model in exploring the relationship between inter-city
population movement and socio-economic determinants. Additionally, it establishes a
basis for demonstrating the spatial relationships between local models. The OLS global
regression model was estimated using SPSS, and the spatial autocorrelation of residuals
was calculated using the spatial analysis toolbox in ArcGIS PRO software (version 3.0).

2.2.2. Geographically Weighted Regression

GWR was also used in this study, a local spatial model, to estimate coefficients based
on spatial location for local variables with distance attenuation weights, and to model
spatial heterogeneity through coefficients that change with space.

The classical GWR model used in the context of inter-city population movement can
be written as the following equation [46]:

yi = β0(ui, vi) + ∑n
j=1 β j(ui, vi)xij + ϵi (2)

where (ui, vi) is the coordinate of the spatial sampling unit (i.e., city centroid) i, yi represents
the scale of inter-city population movement of city i, xij represents the jth explanatory
variable of city i, β0(ui, vi) is the constant term on city i, β j(ui, vi) is the jth unknown
coefficient to be estimated on city i, and ϵi is the random error with a mean of 0 and a
variance of σ2.

Building the GWR model requires selecting a spatial weighting matrix to identify
spatial relationships between neighboring cities. In this study, the commonly applied
adaptive double square space kernel is used, which is a Gaussian-like kernel function [45]:

Wij =


[

1 −
( dij

b

)2
]2

if dij < b

0 otherwise
(3)

where Wij is the weight between city i and city j, dij is the distance between city i and
city j, and b is the critical distance from regression location I to its Mth nearest cell. M is
the optimal number of neighboring cells determined by minimizing the model’s Akaike
information criterion (AICc) [57].

The GWR model undergoes multiple iterations during its establishment. In each
iteration, a bandwidth is chosen, and a GWR model is constructed using that bandwidth.
Fit metrics, typically calculated using the AICc method, are then computed. By comparing
the AICc values from each iteration, the bandwidth with the minimum AICc is selected as
the optimal bandwidth. The calculation method for AICc is as follows:

AICc = 2n ln(σ̂) + n ln(2π) + n
n + tγ(S)

n − 2 − tγ(S)
(4)

where σ̂ is the estimated standard deviation of the error term and tγ(S) is the trace of the
hat matrix S.

2.2.3. Multiscale Geographically Weighted Regression

Although the GWR model adequately addresses the spatial non-stationarity of inter-
city population movement and its processes, it operates under the assumption that all these
relationships change at the same spatial scale among all covariates. MGWR represents a
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significant improvement compared to the GWR model as it can generate different optimal
bandwidths for different variables. This means that the results of the MGWR model allow
for an analysis of how different socio-economic determinants impact inter-city population
movement on normal days in distinct ways and at various spatial scales. Consequently, it
enables a more in-depth analysis of the spatial relationships between these factors and the
underlying mechanisms.

The standard MGWR model can be written as the following equation [49]:

yi = βbw0(ui, vi) + ∑m
j=0 βbwj(ui, vi)xij + ϵi (5)

where (ui, vi) is the coordinate of the spatially sampled cell (i.e., city centroid) i, and bw*
is the specific optimal bandwidth used during the *th inter-city population movement
process. yi represents the size of inter-city population movement in city i, xij represents
the jth explanatory variable in city i, βbw0(ui, vi) is the constant term in sampling cell i,
βbwj(ui, vi) is the jth unknown coefficient to be estimated in sampling cell i, and ϵi is a
random error with a mean of 0 and a variance of σ2.

In the crucial bandwidth calculation process, the MGWR model introduces different
bandwidths for different variables. Consequently, distinct spatial weight matrices are
generated for each variable, rendering the original GWR model’s bandwidth calculation
method inappropriate. Therefore, the MGWR model uses a back-fitting algorithm to
calibrate the model. The basic idea of back-fitting is to calibrate each term in the model with
a smoother one, assuming that all the other terms are known. Thus, in each iteration, the
MGWR model fits a coefficient and an optimal bandwidth for each independent variable
through multiple iterations to obtain a converged model. During this process, two crucial
parameters are manipulated: the initialization state and the termination criterion. In this
study, we opted for the parameter estimates from GWR as the initialization state, which
does not impact the final results but reduces the number of model iterations. We set SOC-f
to 1 × 10−5 as the threshold for the termination criterion [49]. Both the MGWR model
and the GWR model are built using MGWR software (version 2.2. https://sgsup.asu.edu/
sparc/mgwr, accessed on 4 December 2023).

3. Results
3.1. Comparison of Three Models
3.1.1. Goodness-of-Fit

The mean absolute error (MAE), residual sum of squares (RSS), AICc value of the
model, and the adjusted R2 are used to measure the goodness-of-fit of the OLS, GWR, and
MGWR models. For the MAE, RSS, and AICc, smaller values imply better goodness-of-fit,
while for Adj. R2, larger values imply better goodness-of-fit (Table 3). The results show that
all three models obtain good goodness-of-fit, and the relationships between the size of inter-
city population movement and the role of each socio-economic factor are highly significant.
In contrast, the GWR results obtain smaller MAE, RSS, and AICc values and higher Adj.
R2 compared to OLS. The local regression model demonstrated a significant improvement
over the global regression model, confirming the existence of a spatial relationship between
the inter-city population movement of a city and socio-economic determinants. The spatial
distribution of variables significantly influences the interaction processes between them.
Moreover, the MGWR results are better than GWR, as, considering the differences in the
special scales of the roles of different variables, they have a significant improvement in the
goodness-of-fit.

https://sgsup.asu.edu/sparc/mgwr
https://sgsup.asu.edu/sparc/mgwr
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Table 3. Performance of three models.

Model 1_OLS Model 2_GWR Model 3_MGWR

MAE 0.275618 0.177435 0.177418
RSS 35.248 19.138 18.988
AICc 203.911 135.855 93.761

Adj. R2 0.899 0.934 0.947

3.1.2. Residuals

The residuals of the three models reconfirm the conclusions obtained from the goodness-
of-fit above. The OLS model has larger residuals with a more dispersed distribution of
values, while the other two have a smaller value and a more concentrated distribution of
residuals, and the MGWR model has no residuals with absolute values above 1 Figure 3.
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The spatial distribution of the residuals is another issue that deserves attention. The
characteristics of the spatial distribution of the residuals for the three models indicate
that the OLS model can hardly obtain reliable results in large cities in China, as shown
in Figure 2, with relatively high residuals in almost all provincial capitals in the central
and eastern regions, as well as in the three major urban agglomerations along the Chinese
coast. In the OLS model, significant high residuals are observed around Beijing in the
vicinity of Langfang and Baoding, as well as around Guangzhou, one of China’s most
developed cities, including Huizhou and Zhongshan, and around Xi’an, an important
provincial capital in northwest China, including Xianyang. This could be attributed to two
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possible reasons: either there are factors not considered by the model influencing inter-city
population movement, or the spatial heterogeneity of the variables affects the model’s
fitting results. In contrast, both the GWR and MGWR models achieved better fit values in
these areas, and the residuals exhibited a more stable spatial distribution. This suggests
that the instability in the spatial autocorrelation of residuals in the OLS model is due to
the neglect of the spatial heterogeneity of the variables. The relationship between China’s
inter-city population movement and socio-economic influencing factors is significantly
influenced by spatial relationships. In contrast, the GWR and MGWR models generate
better-fitting results in these regions, and the residuals are relatively more stably distributed
in space.

The global Moran’s I is further used to determine the spatial autocorrelation of the
residuals of the three models. The spatial distribution of the residuals of the OLS model
shows a very strong clustered feature, while the GWR model still has a clustered spatial
pattern despite a significantly decreased Z score. Only MGWR has a random pattern
Table 4. Moran’s I indicates that the process of inter-city population movement is spatially
non-stationary. However, the GWR model’s residual distribution still exhibits some spatial
autocorrelation, indicating that there are deeper spatial relationships influencing this
process. After further considering the scale of the relationships between variables, the
residuals of MGWR show a random distribution, and the residual distribution of the
MGWR model in China’s three major urban agglomerations is more stable compared
to that of the GWR model, better fitting the scale of inter-city population movement in
developed regions (Figure 3), which are often areas of focus in urban research. Therefore,
the results of the MGWR model are more meaningful in practice than those of the GWR
model. The spatial heterogeneity of the variables and the spatial relationships between
them vary significantly for different independent variables, influencing the relationship
between inter-city population movement and socio-economic factors.

Table 4. Spatial autocorrelation of residuals.

Model 1_OLS Model 2_GWR Model 3_MGWR

Moran’s I index 0.250443 0.059797 0.012448
Expected index −0.002825 −0.002825 −0.002825

Z score 9.868415 2.445038 0.595742
p Value <0.001 0.014484 0.551348
Pattern Clustered Clustered Random

3.1.3. Local Parameter Estimates Accuracy

As shown in Figure 4, RMSE (root mean squared error) is used to assess the accuracy
of the local parameter estimates. From the results, it can be clearly interpreted that the
MGWR model has much better parameter estimation accuracy than the GWR model.
The GWR model can obtain more accurate parameter estimates for three processes, i.e.,
the intercept, GDP, and SSPC, but has significantly inferior results to MGWR for the
remaining four processes. According to Fotheringham et al. [49], this is because the “mean”
bandwidth of the GWR model is closer to the specific bandwidth of the MGWR model
for the intercept, GDP, and SSPC, while for the remaining four variables, the specific
bandwidth is much larger than the mean bandwidth of the GWR model. For the variables
exhibiting a broad regional trend, the GWR model would have yielded a poor replication
of the parameter surface. For the accuracy of the parameter estimates, the GWR model will
yield better results if all the variables in the model are similarly spatially heterogeneous.
Conversely, if all variables put into the model have very different spatial heterogeneity, then
it is particularly important to calculate individual bandwidths associated with different
covariates, which means that the results of the MGWR model will be more accurate. Clearly,
for inter-city population movement, the spatial heterogeneity of the processes with socio-
economic factors is very different, and therefore, the scale of the different processes can be
varied, which has been neglected in many previous studies.
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In summary, based on the goodness-of-fit of the models, the values and spatial distri-
bution of the residuals, and the accuracy of the local parameter estimates, the performance
of the MGWR model surpasses that of the OLS model, which does not consider spatial
relationships, and the GWR model, which measures spatial relationships at a fixed spatial
scale. Moving forward, we will delve into the results of the MGWR model, incorporating
insights from the GWR model to further analyze the spatial relationships between inter-city
population movement and socio-economic factors.

3.2. Spatial Relationship of Inter-City Population Movement and Socio-Economic Determinants
3.2.1. Optimized Bandwidths and Spatial Scale

The results show that the GWR model generates the same optimal bandwidth, of 90,
for all variables, which is quite different from the specific optimal bandwidth that MGWR
calculates for each variable, suggesting that the relationship between each explanatory
variable and inter-city population movement operates at significantly different spatial
scales. In the MGWR model, GDP has the closest bandwidth to the GWR model, while
the optimal bandwidths for the intercept and TSPC are significantly smaller than those
of the GWR model, and both processes should occur at a more local spatial scale, thus
showing stronger spatial non-stationarity than the GWR model estimates. The specific
bandwidths of the remaining four variables are significantly higher than those of the
GWR model. SSPC and GPBEPC, although not global variables, have bandwidths of 279
and 173, respectively, and these two processes tend to be more spatially stationary than
those estimated by the GWR model. The relationships between PSPC, AW, and inter-city
population movement are entirely on a global scale, but the GWR still models it as a local
process, which obviously leads to inaccurate results (Table 5). This indicates that the MGWR
model not only considers the spatial relationships of certain independent variables in their
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effects but also globally simulates the relationships between other independent variables
and the dependent variable. Different socio-economic factors significantly influence inter-
city population movement at distinct spatial scales. This aids in analyzing how cities
with different economic scales, industrial structures, and levels of social services impact
the dynamics of population mobility in various regions of China. Consequently, it helps
disentangle the differences in developmental disparities and economic vitality among
different regions.

Table 5. Optimal bandwidths generated by MGWR and GWR.

Model 2_GWR Model 3_MGWR

Bandwidth Bandwidth Bandwidth Confidence Intervals (95%)

Intercept 90 45 (44.0, 60.0)
GDP 90 94 (70.0, 116.0)
PSPC 90 354 (281.0, 354.0)
SSPC 90 50 (46.0, 70.0)
TSPC 90 279 (235.0, 309.0)

GPBEPC 90 173 (162.0, 235.0)
AW 90 354 (281.0, 354.0)

3.2.2. Parameter Estimates

Table 6 presents a description of the coefficient estimates of the MGWR model for each
explanatory variable, including the min, max, and mean values of the local coefficients,
as well as the proportion of cities that pass the t-test at the 95% level for all cities, and the
proportions of significant positive correlations and significant negative correlations on this
basis. Overall, the model results show that the effects of the intercept and GPBEPC at the
local level vary significantly with space. In terms of intercept values, 45.92% of the cities
have intercept values significantly different from zero, of which 76.69% are positive values,
implying that a city actually has a larger inter-city mobility despite taking into account all
the explanatory variables in the model, while the remaining 23.31% are negative intercept
values. GPBEPC is a very insignificant factor, having an impact on less than one-tenth of the
cities, and it is negatively correlated to inter-city population movement. In contrast, four
variables, GDP, PSPC, TSPC, and SSPC, are significant influencing factors in basically all
spatial units. Among them, GDP and SSPC are the two most significant influencing factors,
and like the trend shown by the global model, GDP locally exhibits the most significant and
strongest positive correlation with the size of inter-city population movement. SSPC has a
slightly smaller coefficient compared to GDP, but it remains a strong positive influencing
factor. TSPC is a relatively significant influencing factor, producing a negative correlation
with nearly all cities. AW is also consistent with the results of the global model; it is not a
significant influencing factor in all cities.

Table 6. Parameter estimates for the regression of inter-city population movement using MGWR.

MGWR Coefficients

Min Max Mean
Percentage of Cities by Significance (95% Level) of t-Test

p ≤ 0.05 (%) Positive (%) Negative (%)

Intercept −0.235 0.291 0.055 45.92 76.69 23.31
GDP 0.829 1.053 0.933 100.00 100.00 0.00
PSPC −0.088 −0.055 −0.082 100.00 0.00 100.00
SSPC −0.461 −0.001 −0.240 93.24 0.00 100.00
TSPC 0.096 0.192 0.138 100.00 100.00 0.00

GPBEPC −0.121 0.066 −0.011 7.32 0.00 100.00
AW 0.027 0.041 0.033 0.00 0.00 0.00
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There are two values that are usually important for the parameter estimation of a
model, namely the p value and the coefficient value. Both can be used to reflect spatial
non-stationarity, and for the results of the GWR and MGWR models, comparing the spatial
distribution of parameter estimates can further analyze the roles played by the scales
in them.

Figures 5 and 6 show the spatial distributions of all the parameter estimates for the
GWR and MGWR models, which are quite different from each other. In terms of passing
the significance test, the GWR model has more spatial units that fail the t-test, which means
that the model results do not work in a significant amount of space. Moreover, these
spatial units that pass or fail the test are clustered, implying that these processes have a
strong spatial non-stationarity. This situation is particularly significant in the two processes,
PSPC and TSPC, both of which pass the test in all spatial units in the MGWR model, and
the distribution of the p value is spatially stationary. However, only 76.62% and 41.97%
of the spatial units pass the test in the GWR model, respectively (Figures 5c,e and 6c,e).
Similarly, the distributions of the p values of the GPBEPC and AW of the two models have
no similarity, which is related to the fact that the specific bandwidths of these variables are
significantly larger than the mean bandwidths of the GWR model. Conversely, for GDP
and intercept with specific bandwidths close to the mean bandwidth of the GWR model,
the two models not only have the same units which pass the significance test but the spatial
distribution of their coefficients is closer. This trend in the distribution of p values further
validates that without considering the issues of scale and spatial stationarity, it becomes
difficult to effectively explain how inter-city population movement and the interaction
between socio-economic factors operate at the local level in China. Consequently, it becomes
challenging to comprehend how the differential development of various regions in China
influences urban functionality.

This is also the case for the coefficient values. Taking the PSPC and TSPC processes as
two examples, the coefficient distributions of the GWR model show stronger spatial hetero-
geneity, with coefficient values distributed in [−0.31, −0.06] and [0.17, 0.39], respectively,
and clustered in space. In the MGWR model, these two processes are spatially stationary,
their coefficient distributions are spatially stable and asymptotic, and the coefficient values
are only distributed in small intervals of [−0.09, −0.05] and [0.10, 0.19]. The distribution
of GPBEPC and AW coefficients is similar. In the GWR model, the GPBEPC coefficients
that passed the significance test are distributed in the southern and central regions and
some cities in the eastern coastal region of China, while in the MGWR model, this process
is valid only in the northeast region. AW fails the significance test completely and is not a
functional factor in the MGWR model. Thus, the effect of scale on parameter estimates is
reflected not only in the significance tests but also largely in the coefficient values.

Given that the coefficient value is an important parameter for analyzing the extent
to which a given independent variable contributes to the dependent variable, this effect
can significantly change the understanding of the factors behind inter-city population
movement. In the general trend, the spatial distribution of the coefficients of GDP shows a
change from inland areas to coastal regions, which is most conspicuous in eastern coastal
regions (Figure 6). This implies that, in eastern coastal regions, the impact of GDP on inter-
city population movement on normal days is relatively smaller compared to inland regions.
On the other hand, the spatial distribution of the coefficient values for SSPC exhibits a
more concentrated pattern. The high absolute values are concentrated in the northern and
central–western regions of China, such as Hebei, Inner Mongolia, and Chongqing. Another
interesting aspect is the distribution of the SSPC coefficient in the Yangtze River Delta (YRD)
and Pearl River Delta (PRD) regions. It is worth noting that the SSPC coefficient distribution
in the PRD fails to pass the test, suggesting that this negative correlation relationship does
not hold in the PRD.
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Figure 5. (a) Spatial distribution of intercept coefficients of GWR model; (b) spatial distribution of
GDP coefficients of GWR model; (c) spatial distribution of PSPC coefficients of GWR model; (d) spatial
distribution of SSPC coefficients of GWR model; (e) spatial distribution of TSPC coefficients of GWR
model; (f) spatial distribution of GPBEPC coefficients of GWR model; (g) spatial distribution of AW
coefficients of GWR model.
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Figure 6. (a) Spatial distribution of intercept coefficients of MGWR model; (b) spatial distribution
of GDP coefficients of MGWR model; (c) spatial distribution of PSPC coefficients of MGWR model;
(d) spatial distribution of SSPC coefficients of MGWR model; (e) spatial distribution of TSPC coeffi-
cients of MGWR model; (f) spatial distribution of GPBEPC coefficients of MGWR model. (The results
of the AW parameter distribution in all cities are non-significant).

4. Discussion
4.1. Different Regions in China Are Undergoing Completely Distinct Processes of
Economic/Regional Development

Inter-city population movement represents a functional linkage, wherein the mag-
nitude of population flows between cities reflects their functional centrality within the
country. Under the paradigm of “flowing space”, the status and importance of cities are no
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longer solely reflected in their economic size but rather in their ability to serve as critical
nodes within the functional connectivity network [58,59]. Exploring the factors and mecha-
nisms that influence the scale of inter-city population movement is, in essence, an inquiry
into the factors and mechanisms that determine a city’s capacity to function as a node.
Numerous studies have discussed regional disparities in China’s economic development. It
is evident that different regions in China are undergoing distinct processes of urbanization,
globalization, and industrial development, each with their own unique set of underlying
mechanisms [12,60,61]. However, there is a lack of reliable research conclusions regarding
how these disparities in development and their mechanisms can be explained from the
perspective of functional linkage. By employing the MGWR model and considering the
spatial relationship and spatial scale of different processes, this study aims to address and
discuss this issue.

The research results reveal that the inter-city population movement of cities in different
regions of China is evidently influenced by distinct factors. Among all the socio-economic
factors, GDP and SSPC exhibit the strongest spatial non-stationarity. GDP reflects the
comprehensive economic strength of a city. This positive correlation indicates a strong
trend where inter-city population movement is influenced by economic factors. In the
developed eastern coastal regions of China, where the differences in city size and economic
scale are smaller, a functional linkage between cities has developed most rapidly and
early. Inter-city functional linkages tend to exhibit a multicentric, networked character in
this region. The movement of people between cities is often influenced more by specific
differences in industrial structures than by a strong hierarchical structure based on city
size and scale. The PRD and YRD regions serve as representatives of such urban regions
where inter-city population movement has formed a network and established a more
functional polycentric structure compared to other urban regions [62]. We argue that these
functional urban regions no longer focus solely on the economic size and hierarchy of
individual cities but emphasize the role played by specific city functions in shaping inter-
city connections. Taking the YRD region as an example, a large number of people commute
or engage in business travel between Shanghai and its surrounding areas on a daily basis.
The mechanisms driving inter-city population movement in this region can be categorized
into two types: the attraction of advanced producer services in Shanghai’s central urban
area and the attraction of advanced manufacturing in Shanghai’s suburbs [11]. Similar
processes also occur in the PRD, taking Guangzhou and Shenzhen as examples, whose
industrial structures can also support such daily travel [63,64]. In the underdeveloped
regions of western and northeastern China, where there is greater disparity in city size
represented by GDP, the coefficients for GDP in these areas are larger. This suggests that,
for an equivalent economic scale, when located in the western and northeastern regions, a
city tends to exhibit stronger centrality within the region. This results in more inter-city
population movement, with individuals flowing towards these economically significant
cities for various activities.

For SSPC, the primary industrial sector often exhibits agglomeration effects, where
industry chains and related industrial categories tend to cluster in close spatial proximity,
thereby reducing costs related to labor, transportation, and more. Additionally, for many
industries, especially capital-intensive ones like mining and traditional heavy industries,
there is no frequent need for population movement along with its associated informational
and economic effects. Traditional mining and heavy industries in China are concentrated
in the northern and inland regions, such as coal mining in Shanxi and heavy industries in
Wuhan and Chongqing. These areas are currently undergoing industrial transformation,
and their SSPC presents a more profound hindrance to inter-city population movement.
Another perspective to consider in the discussion of industrial functions is industrial ag-
glomeration and division of labor. Cities with similar industrial structures have similar
labor demands [65], and cities with complementary industries are more likely to interact
with each other [66]. Both theories support the findings of this study, as the distribution
of SSPC coefficients in the YRD and PRD regions intuitively reflects this phenomenon.
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Unlike other regions, the PRD, especially cities like Guangzhou and Shenzhen, is the most
developed area in the country for the manufacturing of electronic information, including
computers, electronics, and new energy. As noted in other studies, innovation cities are
becoming hubs for population movement, with emerging industries such as healthcare,
sports, tourism, electronics, and the internet serving as pillars and sources of vitality for
urban innovation [31]. The emerging manufacturing-oriented secondary industry in the
PRD is not only labor-intensive but also technology-intensive. This characteristic leads to a
significant flow of both labor and technical personnel within this region, resulting in an in-
crease in inter-city population movement. The YRD is undergoing a similar process, where
a portion of SSPC with a similar output has a promoting effect on inter-city population
movement rather than an inhibiting one, making its coefficient values closer to 0 compared
to other regions. However, in the case of the Beijing–Tianjin–Hebei region (BTH), which
is also the most developed city agglomeration in China, the underlying processes driving
inter-city population movement differ from the aforementioned regions. On the one hand,
the economic disparities among cities in the BTH are substantial, with Beijing exerting
a pronounced polarizing effect [67]. On the other hand, the industrial structure in the
BTH significantly differs from that in the YRD and the PRD. Beijing, as the political and
economic core, possesses strong centrality due to a large number of central enterprises
and headquarters. This has resulted in high inter-city population movement within the
city. However, for surrounding cities, this centrality does not radiate or contribute to their
development [68]. The industrial structure in these surrounding cities is less advanced,
lacking the formation of an industrial chain, which hinders population mobility [69].

Therefore, this study employed the MGWR model to explore the spatial distribution
of the relationship between socio-economic factors and inter-city population movement
from the perspectives of spatial non-stationarity and scale. The findings of this study,
as indicated by the bandwidth and coefficient distributions of the model, reveal that
various socio-economic factors influence inter-city population movement at different scales.
Moreover, the economic disparities among Chinese cities and regions have led to different
processes shaping the pattern of functional linkages. While the notion of factor mobility
and functional centers is frequently mentioned in the development strategies and planning
of various regions in China, this study provides compelling evidence that even among the
well-known mature urban agglomerations of the BTH, the YRD, and the PRD, the coefficient
distributions of the model parameters exhibit significant variations. This indicates that
the driving mechanisms behind the centrality of urban functions also differ considerably,
so it is problematic to directly use developed urban agglomerations as a reference for
the development of urban regions in eastern and western China. Therefore, it is crucial
to acknowledge the implications of such spatial non-stationarity and formulate regional
development strategies based on the differences observed across regions.

4.2. The Role and Limitations of MGWR Model

This study compared three models and ultimately found that the MGWR model
shows advantages over the other two, both global and local, when discussing the spatial
relationships between inter-city population movement and socio-economic determinants.
This superiority is mainly attributed to the MGWR model breaking the assumption of
discussing relationships at a fixed spatial scale. It facilitates the discussion of the underlying
mechanisms. Through the establishment of the MGWR model, this study discovered
that GDP and SSPC influence inter-city population movement at a smaller spatial scale.
This allows for a more in-depth exploration of the mechanisms behind the economic
development imbalance and the impact of industrial structure on inter-city population
movement in eastern and western Chinese cities. Another crucial finding is that PSPC,
TSPC, and GPBEPC influence the scale of inter-city population movement at an almost
global scale, a result not revealed by the GWR model. The implied mechanisms behind
this result could be that the first sector tends to have a more localized industrial chain,
requiring less frequent population movement and the associated support of information
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and economic flows. In contrast, the third sector relies less on geographical proximity,
leading to population and information flows that are more network-oriented. Numerous
studies on global cities support this explanation, emphasizing that advanced producer
service centers in cities like New York and London primarily serve a global rather than
local function [58,70]. Similarly, China’s advanced producer service centers often function
as national rather than regional hubs [64]. These conclusions owe much to the MGWR
model’s ability to consider variable scales, representing the core findings and results of
this paper.

Expanding from the conclusions of this study, another advantage of MGWR is that
it can be used as a model to explore large-scale and fine-grained spatial processes, pro-
viding the possibility of exploring the influencing factors behind population movement
in smaller spatial units, for example, further discussing inter-city population movement
and the influencing factors behind it in the whole of China (or a similarly large country
or region) with smaller units (e.g., districts and counties). In regions like China, which
faces huge geographical disparities and immensely variable spatial heterogeneity of all
kinds of factors, the results obtained from the general global model should be locally
unreliable, and the single optimal bandwidth of the GWR model will be meaningless. In
this sense, the advantages of MGWR in creating different scales for each process will be
even more pronounced.

Despite its advantages, MGWR, as a multiscale local regression model, also has
limitations. While multiscale regression provides more detailed information for each
process, contributing to a more accurate model fit, increased information would complicate
the interpretation of the model outcomes. As the MGWR model operates with moving
window regression, challenges lie in aligning the spatial scale with fixed real-world policy
boundaries. For instance, the optimal bandwidth for SSPC obtained in this study is 50. This
implies a relatively homogeneous spatial relationship with the surrounding 50 cities for
each city, but this scale may not correspond directly to any specific regional policy in China.
Therefore, variable scaling can offer a more accurate reference for explaining mechanisms,
but it may not be directly applicable to specific regional policies due to the difficulty of
aligning spatial scales with real-world regional planning and management boundaries.

4.3. The Role and Limitations of Big Data

Traditional statistics are inadequate in discussing inter-city population movement
and its associated socio-economic factors. In China, government statistics on population
movement in 5- or 10-year intervals only reflect the results and distribution of long-term
population movement, thus ignoring the real-time dynamics of short-term inter-city popu-
lation movement. However, in the modern regional development trend where people and
factors are increasingly mobile, this short-term inter-city population movement represents a
more important inter-city functional linkage. For example, in the Yangtze River Delta urban
agglomeration, one of the most regionally integrated areas in China, inter-city commuting
has become an important research object, and its underlying socio-economic linkages have
far-reaching implications for formulating regional development policies [11]. Inter-city
business travel, non-commuting travel, and other types of travel also provide important
references for outlining the regional spatial structure [10]. Furthermore, statistics from
traditional transportation modes such as highways, railways, and airlines are limited by
their own characteristics (for example, highways mostly for short-distance travel, while
airlines for long-distance movements). They lack comprehensiveness as they only reveal
the characteristics of real-time population movement between cities from one perspective.
Spatiotemporal big data capturing a large number of population activities provide an
excellent opportunity to explore such short-term, real-time inter-city population movement
linkages because they reveal instantaneous population movement characteristics that en-
compass the full range of means of transport. Thus, the use of big data is the basis for
quantitatively measuring the influences behind inter-city population movement, allowing
the question to expand from traditional population migration to the exploration of the
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relationships between day-to-day inter-city population movement and socio-economic
factors. The findings of this study not only support part of the theory of population
migration, that migration in China is primarily driven by economic disparities between
regions [29,34], but also discover differences in the driving forces behind short-term versus
long-term population migration, in which average wage and public services are not the
strongest drivers.

Yet big data also have their limitations. Due to the need to protect personal privacy,
the LBS data that can be accessed have already been added into a prefecture-level city-wide
unit, with prefecture-level cities as the starting points and arriving points. This makes it
impossible to further subdivide the arriving city spatial unit. If the population movement
could be counted in smaller spatial units (e.g., district and county units, which could
distinguish between urban and rural areas), the model might yield new results that would
better reveal the influencing factors and their spatial non-stationarity and scale variation.
And the current findings are valid only for prefecture-level city spatial units. Therefore, our
further research may be based on obtaining more precise data on population movement in
spatial units to further discuss the influencing factors of inter-city population movement
with the MAPE problem in mind (e.g., the average wage level may become a significant
influencing factor when rural and urban areas are distinguished).

5. Conclusions

Spatial non-stationarity has become an important strand to consider when exploring
spatial issues such as the factors influencing inter-city population movement. However,
the spatial heterogeneity of the individual spatial variables, as a rule, leads to significant
differences in the scales of action of the individual processes. Building global models or
GWR models with a single optimal bandwidth alone can no longer accurately describe spa-
tial processes in this context. We demonstrate the following conclusions by building three
models, namely OLS, GWR, and MGWR, for the scale of inter-city population movement
and socio-economic factors in China.

A spatial relationship exists between inter-city population movement and socio-
economic factors, and the MGWR model proves to be a powerful tool for exploring this
spatial relationship. Local regression models are more reliable than global regression
models for the relationships between inter-city population movement and socio-economic
factors, and considering different scales of the relationships between variables is a very
important factor for exploring spatial non-stationarity. The results of this study show that
the goodness-of-fit and the spatial heterogeneity of the residual distribution of both local
regression models are better than the global regression model. Furthermore, the traditional
GWR model has unrobust results in more spatial units, while the biggest change and
advantage of MGWR is that it can reflect the scale of influence of different independent
variables on the dependent variables, and its regression results are more reliable and pass
the significance test in more spatial units.

Different socio-economic factors exhibit varying impacts on inter-city population
movement at different spatial scales. Another important conclusion of this study is the
identification of the optimal bandwidth for each variable, providing a scale of the rela-
tionships between different socio-economic factors and inter-city population movement,
which change with spatial variation. The results show that each socio-economic factor does
act on inter-city population movement at different scales due to the large differences in
their spatial autocorrelation. For example, PSPC, TSPC, and GPBEPC act at global and
near-global scales, while SSPC affects inter-city population movement at a very local scale.

The MGWR model provides a more precise mechanism for explaining regional de-
velopment disparities in China, highlighting significant differences in the driving forces
of development across various regions. This study further analyzes the spatial distribu-
tion characteristics of the parameter estimates for each independent variable and seeks
to acquire a further understanding of the spatial non-stationarity of each type of these
relationships through parameter estimation and the role played by the spatial scale. The
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research findings indicate that there is relatively balanced development among cities in the
economically developed eastern coastal regions of China. The YRD and PRD, characterized
by the second sector dominated by advanced manufacturing and the third sector repre-
sented by advanced producer service sectors, significantly promote inter-city population
movement. In contrast, the BTH maintains a pronounced polarization effect in terms of
economic scale and industrial structure, following the lead of Beijing. Meanwhile, China’s
inland regions continue to uphold the scale effect, with the economic volume represented
by GDP being the most significant factor driving inter-city population movement.

Through the above conclusions, this paper addresses two research questions, revealing
the spatial relationships between inter-city population movement and socio-economic
determinants in China. Furthermore, it delves into the driving factors and mechanisms
behind the uneven regional development represented by these spatial relationships. The
primary contribution of this paper lies not only in uncovering regional differences in the
driving factors behind inter-city population movement in China but also in emphasizing
that such differences may have a reference value in other regions worldwide. Firstly, for
developing countries and regions, an increase in total economic output is crucial. Through
quantitative research, this paper finds that, in underdeveloped regions similar to China’s
central and western areas, the economic scale represented by GDP is the most important
factor attracting population mobility. This implies that, in developing regions, policymakers
should prioritize increasing the overall scale to stimulate the aggregation of the overall job
market and factor mobility, thereby enhancing overall regional competitiveness. Secondly,
in relatively developed regions where the general economic scale has reached a certain
level, the adjustment of industrial structure becomes more critical. Developed regions
worldwide have generally formed industrial systems based on advanced manufacturing
and advanced producer service industries, such as in New York and London. The findings
of this paper support existing research conclusions about these two types of industries.
The high-tech and innovative attributes of advanced manufacturing stimulate inter-city
population movement within their agglomerated regions, while the globalized nature of
advanced producer services neglects geographical proximity. Therefore, although this
paper is based on empirical research in China, its results have general applicability and
can provide a reference foundation for relevant studies in other countries and regions
worldwide. Therefore, in subsequent research, it is advisable to attempt to extend the
MGWR method to other countries and regions to further explore and demonstrate the
differences and commonalities in the driving mechanisms of inter-city population mobility
across different regions.
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Appendix A

Table A1. Comparison of inter-city population movement scale on weekdays and weekends (top 25).

City Average ICPM
on Weekdays

Average ICPM
on Weekends Average ICPM Rank of ICPM on

Weekdays
Rank of ICPM on

Weekends Rank of ICPM

Beijing 867,605 925,376 884,111 1 1 1
Shanghai 717,205 772,691 733,058 2 2 2

Guangzhou 702,078 767,433 720,751 3 3 3
Shenzhen 577,905 646,263 597,436 4 4 4
Chengdu 534,826 592,531 551,313 5 5 5

Zhengzhou 481,768 538,264 497,910 6 6 6
Hangzhou 476,662 530,953 492,173 7 7 7

Suzhou 466,610 513,835 480,103 8 8 8
Xian 442,618 491,297 456,526 9 9 9

Dongguan 419,376 461,324 431,361 10 10 10
Foshan 395,914 426,039 404,521 11 11 11
Wuhan 366,952 403,589 377,420 12 12 12
Nanjing 356,433 401,243 369,236 13 13 13

Changsha 349,479 387,844 360,440 14 14 14
Tianjin 312,637 341,661 320,929 15 15 15

Chongqing 297,169 314,871 302,226 16 16 16
Jinan 269,413 296,731 301,325 18 17 17
Hefei 264,813 295,163 273,484 19 18 18

Langfang 269,868 279,966 272,754 17 20 19
Wuxi 258,828 289,644 267,632 20 19 20

Kunming 237,331 249,196 240,721 21 21 21
Shenyang 236,646 245,556 239,192 22 22 22

Shijiazhuang 224,252 236,818 227,842 23 25 23
Guiyang 215,103 235,793 221,014 24 26 24
Baoding 212,001 241,722 220,493 25 23 25ISPRS Int. J. Geo‐Inf. 2024, 13, x FOR PEER REVIEW  23  of  26 
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