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Abstract: Research on the identification of urban functional regions is of great significance for the
understanding of urban structure, spatial planning, resource allocation, and promoting sustainable
urban development. However, achieving high-precision urban functional region recognition has al-
ways been a research challenge in this field. For this purpose, this paper proposes an urban functional
region identification method called ASOE (activity–scene–object–economy), which integrates the
features from multi-source data to perceive the spatial differentiation of urban human and geographic
elements. First, we utilize VGG16 (Visual Geometry Group 16) to extract high-level semantic features
from the remote sensing images with 1.2 m spatial resolution. Then, using scraped building footprints,
we extract building object features such as area, perimeter, and structural ratios. Socioeconomic
features and population activity features are extracted from Point of Interest (POI) and Weibo data,
respectively. Finally, integrating the aforementioned features and using the Random Forest method
for classification, the identification results of urban functional regions in the main urban area of Xi’an
are obtained. After comparing with the actual land use map, our method achieves an identification
accuracy of 91.74%, which is higher than other comparative methods, making it effectively identify
four typical urban functional regions in the main urban area of Xi’an (e.g., residential regions, in-
dustrial regions, commercial regions, and public regions). The research indicates that the method
of fusing multi-source data can fully leverage the advantages of big data, achieving high-precision
identification of urban functional regions.

Keywords: urban functional regions; multi-source big data; social sensing; feature integration; ASOE
(activity–scene–object–economy)

1. Introduction

The accelerated advancement of urbanization has brought new challenges to the
planning and layout of urban spatial structures, highlighting the supportive value of
research on the identification of urban functional regions. Urban functional regions refer to
the spatial distribution of various functional activities within a city and the corresponding
differentiation of neighborhoods generated by them. Specifically, they represent the areas
within a city that are designated for economic or social activities such as commerce, public,
industry, and residence [1]. A rational urban spatial structure is a necessary condition
for achieving high-quality urban development. Accurately identifying urban functional
regions and having a clear urban spatial structure are of significant importance for proper
urban spatial planning and sustainable urban development [2–4].

The traditional identification of urban functional regions relies on land use planning
maps and questionnaire surveys. This method requires significant human and material
resources. Analyzing functional regions using images or text not only requires a large
amount of data from various sources but also the information obtained from these single
data sources is limited. Apart from traditional methods, early research on functional region
identification often emphasizes the utilization of static spatial location data, such as Point
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of Interest (POI) [5,6], location-based positioning data [7], and remote sensing imagery [8,9].
Relying solely on basic geographic information such as the classification categories of
points of interest (POI) and the spatial distribution of positioning points has limitations in
terms of extracting data features, and it is also susceptible to interference from surrounding
noise. Leveraging remote sensing technology, traditional pixel-based and object-based
classifications can capture relevant features representing the physical characteristics of
urban surfaces. However, these techniques primarily focus on perceiving the natural
attributes of cities, such as buildings, grasslands, lakes, and wastelands, and are unable
to effectively detect urban functional regions characterized by various socio-economic
attributes. Consequently, they still fall short of achieving high-precision identification of
functional regions. With the development of remote sensing technology and the improved
accessibility of multi-source data in the era of big data, traditional methods for identi-
fying functional regions have been greatly supplemented to address limitations such as
single data features and high data acquisition costs, thus opening up new avenues for
the automatic identification of urban functional regions [10]. Among them, the fusion of
social sensing data and remote sensing imagery for scene classification has become a major
research focus.

Social sensing refers to individual-level geospatial big data and the associated analyt-
ical methods. This concept was first introduced in the literature [11], where the authors
established a research framework based on big data to extract human spatial behavioral
patterns and characterize spatial variations. According to this research framework, al-
though individual behaviors may appear random, the massive collective behavior reflected
in big data often exhibits regular patterns, which are closely associated with geographi-
cal environmental characteristics, especially socioeconomic factors. Therefore, leveraging
geospatial big data enables the process of inferring information about the land “from people
to the land”, which partially compensates for the limitations of traditional remote sensing
techniques that primarily focus on perceiving natural geographical features. Based on this,
researchers have utilized social sensing data, including social media such as Weibo [12–14],
travel trajectories [15–19], mobile phone signals [20–22], call detail records [23], social
statistics, and on-site survey data [24], in combination with static POI data or urban land-
scape data [25]. This integration has led to improvements in classification accuracy in
relevant studies, thereby validating the effectiveness of incorporating social sensing data.
On the other hand, the purpose of scene-level classification of remote sensing images is to
semantically classify each image based on its content, thereby gaining a comprehensive un-
derstanding of the overall content and underlying meanings of the imagery. This approach
can make a significant contribution towards achieving better classification results [26].
With the improvement of spatial resolution and availability of remote sensing imagery, as
well as the maturity of deep learning algorithms, scholars have proposed methods that
integrate high-resolution remote sensing imagery to extract its advanced semantic features
for functional region recognition [27–30]. These methods have achieved good recognition
results. The related studies also employ classification algorithms such as XGBoost [31] and
random forest [32] as classifiers and obtain ground truth data for validation purposes. This
allows for supervised verification of the overall accuracy of the classification results.

In fact, integrating social perception data and high-resolution remote sensing images
to identify functional regions has become quite common. Current research focuses on
two main aspects: firstly, improving data feature extraction and fusion methods. To this
end, scholars have proposed methods such as multimodal deep learning approaches with
attention mechanisms [33], self-organizing map (SOM) neural network models based on
improved dynamic time warping (Ndim-DTW) distances [34], context-coupled matrix fac-
torization (CCMF) considering contextual relationships [35], and the adoption of Synthetic
Minority Over-sampling Technique (SMOTE) to mitigate the impact of data imbalance [36].
Secondly, addressing the spatial heterogeneity of functional region units, also known as the
scale effect problem. Some scholars have constructed multi-scale quantitative interpretation
frameworks for functional regions based on mobile phone data, taxi trajectories, and road



ISPRS Int. J. Geo-Inf. 2024, 13, 156 3 of 23

network data from the perspective of human-land interaction [37]. Others have developed
recursive models for different levels of urban road networks to classify multi-scale func-
tional regions [38]. Some have proposed a hierarchical spatial unit partitioning method,
dividing the research area into many hierarchical units while considering the degree of
mixture in each unit. At a finer scale, these research methods and improvements mentioned
above further enhance the efficiency of identifying urban functional regions [39].

From the research outlined above, the identification of urban functional regions has
evolved from simple single data analysis to the integration of multiple data sources, and
further to the refinement of data mining methods and the study of identifying multi-scale
functional regions. However, the main challenge in urban functional region identification
research lies in the lack of integrated frameworks that can deeply explore and effectively
integrate multiple sources of data reflecting urban characteristics [1,24,31].

Towards this end, this paper proposes a method for integrating and processing multi-
modal data. It utilizes remote sensing images, building footprints, points of interest (POI),
and Weibo data, which exhibit functional region differences. The method aims to fully
explore the underlying semantic features contained within the multiple data sources,
enabling high-precision identification of four typical functional regions in the main urban
area of Xi’an. Our main contributions can be summarized as follows: Firstly, the proposed
method extensively explores the scene features of remote sensing images, the object features
of buildings, the socioeconomic features of POIs, and the human activity features of Weibo
texts. The research perspective transitions from static to dynamic, and from human to
land, thereby extracting important semantic information closely related to urban functional
regions. This ultimately enables high-precision classification and identification of functional
regions in the study area. Secondly, this paper quantitatively compares the weights of
different data features when using single data sources versus multiple data sources, thus
providing profound insights into the importance of each factor in the classification task.
Lastly, compared to the SOE (scene–object–economy) method, our approach incorporates
Weibo data that represents human activity features and utilizes BERT (Bidirectional Encoder
Representations from Transformers) to extract its semantic features. By integrating the
perception of “from humans to the environment”, we capture the dynamic characteristics
of the city and achieve superior classification results.

2. Study Area and Datasets

Our research area is Xi’an, the capital of Shaanxi Province, China. As of 2021, Xi’an
covers a total area of 10,096.89 square kilometers, of which the urban area is 5145.70 square
kilometers. It currently governs 11 districts and 2 counties including Xincheng District,
Beilin District, Lianhu District, Weiyang District, Yanta District, Baqiao District, Yanliang
District, Lintong District, Chang’an District, Gaoling District, Huyi District, Lantian County,
and Zhouzhi County. The permanent population is 12.873 million, of which the urban
population is 10.7813 million [40]. As the ancient capital of thirteen dynasties, Xi’an has a
long history and profound cultural heritage, which is an international metropolis and a
national central city explicitly built by the country. In recent years, Xi’an’s urban expansion
has accelerated significantly. How to rationally develop new land and plan urban layout
has become an important issue that urban builders urgently need to solve. This article
selects the main urban area of Xi’an as the research area, including five central districts:
Xincheng, Beilin, Lianhu, Weiyang, and Yanta. The spatial location and main road network
in the main urban area of Xi’an are shown in Figure 1.
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Our research data mainly contains four parts: 1.2 m resolution remote sensing images,
Points of Interest (POI), building footprints, and Weibo. Parcels in the EULUC-China [41]
map are segmented using the OSM road network, and we use them as basic units to identify
functional regions. We employ a supervised approach, relying on annotated maps from
Amap and visual interpretation of images, to select parcels with a purity greater than
0.6. Here, purity refers to the proportion of the area of a specific land use. It aims to
exclude samples from mixed-use regions, ensuring a more representative set of land types.
Ultimately, we obtain the land use map of Xi’an, using it as the sample set and labeling
values. In the end, a total of 2197 parcels are sampled: 314 for commerce, 295 for the
industry, 751 for the public, and 837 for the residence. We obtained remote sensing images
of Xi’an in 2020 with three spectral bands from Google Earth. The spatial resolution is 1.2 m,
and the imagery covers the entire main urban area of Xi’an. The geographic coordinates
range from approximately 34◦6′18′′ to 34◦27′3′′ N latitude and 108◦46′34′′ to 109◦7′56′′ E
longitude. Baidu Map API is the main source of POI data for this study. We collected a total
of 344,990 POI data points within the main urban area of Xi’an in November 2020, as shown
in Figure 2. The kernel density map here is to better display the density distribution of POI
in the main urban area, and directly displaying the original POI map is not very intuitive.
The categories [42] and quantities of POI data are shown in Table 1. The POI attribute list
mainly includes ID, category, GCJ02, BD09, and WGS84 latitude and longitude coordinates
of the POI, administrative district, name, and street location. We utilize Python to scrape
the number of floors, area, and perimeter of buildings from the AMap Open Platform
(https://lbs.amap.com/, accessed on 10 August 2022), obtaining a total of 95,037 buildings
in Xi’an in 2020. Weibo data are collected from the Sina Weibo Data Open Platform. We
obtained a total of 20,000 Weibo data in Xi’an in August 2020. The data content includes ID,
user nickname, article, sign-in point, GCJ02 and WGS84 latitude and longitude coordinates
of the sign-in location, etc.

https://lbs.amap.com/
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Table 1. The categories and quantities of POI data.

Top-Level Category Sub-Category Number

Food
Chinese restaurant 17,169
Foreign restaurant 1877

Others 11,049

Education and training
Schools 8613

Training institutions 4286
Others 4799

Shopping

Shopping mall 1124
Convenience store 4466

Supermarket 3060
Integrated markets 10,030

Others 51,192

Companies and enterprises Companies 12,708
Others 685

Healthcare

Healthcare 10,739
General hospitals 2281

Specialized hospitals 3034
Others 2759

Hotel
Hotels 7008
Hostels 2256
Others 1980
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Table 1. Cont.

Top-Level Category Sub-Category Number

Real estate

Residential areas 12,631
Office buildings 5167

Commercial residences 888
Others 575

Life services
Logistics company 3707
Real estate agency 2880

Others 23,361

Tourist attractions
Scenic spots 2354

Park and square 745

Transportation facilities and
services

Parking lots 21,151
Bus stations 3559

Others 17,364

Financial
Bank 4015
ATM 4343

Others 1498

Sports and entertainment
Leisure venues 6211

Sports halls 4555
Others 2853

Government institutions
Government agencies 8912
Social organizations 2831

Others 4672

Road ancillary facilities Warning information 807
Others 83

Entrance addresses
Place name 15,514

House number 9228

Public facilities
Public restroom and phone 6278

Emergency refuge 196
Others 181

Motorcycle services
Motorcycle services 153

Motorcycle maintenance 240
Motorcycle sales 329

Car services
Car services 12,466

Car maintenance 2677
Car sales 1451

In view of urbanization process and characteristics of Xi’an, we classify the func-
tional regions of Xi’an into four typical categories: residential regions, commercial regions,
industrial regions, and public regions in this study. Their definitions are detailed in Table 2.

Table 2. Definition of the four types of functional regions in this study.

Types Definitions

Residential regions
Living spaces for urban residents, typically comprising large-scale,
densely populated residential communities that provide residential
services to citizens.

Commercial regions The commercial hub of the city, encompassing shopping malls, retail
centers, restaurants, entertainment venues, etc.

Industrial regions The center for industrial production activities in the city, typically
hosting a large number of industrial enterprises or industrial parks.

Public regions Public space within the city, generally including schools, hospitals,
squares, scenic areas, parks, etc.
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3. Methodology
3.1. Functional Area Recognition Method Based on ASOE Features

This article contains three types of data sources: image data (remote sensing images),
vector data (POI, building footprints), and text data (Weibo data). The methods for process-
ing these modal data are different. For image data, we use the CNN network, which has
increasingly matured in the field of deep learning in recent years to extract the high-level
features implicit in remote sensing images. Secondly, for text data, we apply a typical text
mining model to extract semantic features of Weibo text. Then, statistical methods are used
to extract social–economic features related to POI and building object features related to
building footprints from vector data. Finally, the previously obtained features are fused
based on the parcels and input into the classifier to achieve the final classification task. The
methodology flowchart is illustrated in Figure 3.
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3.2. Extracting Image Features Based on CNN

Convolutional neural networks (CNNs) are a class of feedforward neural networks
that incorporate convolutional computations and possess a deep structure. Around 2015, as
CNNs were successfully applied to large-scale visual classification tasks, their applications
began to emerge in the field of remote sensing image analysis [43,44]. Compared to
traditional methods such as SIFT [45], HOG [46], and BoVW [47], CNNs offer the advantage
of end-to-end feature learning. Additionally, they can extract advanced visual features that
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handcrafted feature-based methods cannot learn. Various CNN-based scene classification
methods have emerged through the utilization of different strategies with CNNs [48–50].

VGG16, as a classic CNN network, uses 3 × 3 convolutional kernels, which simplifies
the original neural network structure [51]. This model employs a deeper network archi-
tecture, smaller convolutional kernels, and pooling sampling domains, which allows it to
obtain more image features while controlling the number of parameters. This helps avoid
excessive computational load and overly complex structures. The advantage of this model
lies in its ability to achieve deeper layers and extract higher-level features. It consists of
16 weighted parameter layers, and its network structure is illustrated in Figure 4 [52].
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Generally, CNN-based methods for remote sensing image scene classification can be
divided into three categories: using pre-trained CNN as a feature extractor [53], fine-tuning
pre-trained CNN on the target dataset, and training CNN from scratch. In this paper,
considering the limited sample size, we adapt the first strategy, which is to use the VGG
model pre-trained on ImageNet as a feature extractor.

During the experiment, we randomly divide the remote sensing image data set at
the study area scale into a training set and a validation set, with a ratio of 4:1. In the data
preprocessing stage, to prevent overfitting in the training of models, we apply various forms
of data augmentation methods, such as stretching, rotation, mirroring, center cropping,
adjusting image opacity, hue, saturation, etc. During the network training process, in order
to adapt to the classification task, we first change the penultimate fully connected layer
parameters to 4. Secondly, Vgg16 pre-trained weights pre-trained on ImageNet are used
to freeze all convolutional layer parameters for feature extraction, which means that the
model only trains the fully connected layer, that is, only the final classifier parameters
are fine-tuned. Then, we input the training data into the model and update the model
hyperparameters based on the loss values of the training and verification results. The
hyperparameters here include batch size, learning rate, number of iterations, etc. After
that, we cross-validated the eight trained models on the validation set to obtain the optimal
model with a significant classification effect. The validation performance of the optimal
model is shown in Figure 5. Outside the brackets represent the labels predicted by the
model, and inside the brackets are the ground truth values. The model achieves an accuracy
of 88.89%. As shown in Figure 4, VGG16 has three fully connected layers. The first layer
involves a nonlinear combination of locally extracted features from convolutional layers,
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with a default parameter of 4096. The second layer activates the representative features
from the results of the first layer using activation functions, which can express overall
image characteristics. This layer has a default parameter of 1000 but is adjusted to 128 in
our experiment to accommodate our dataset. The final layer uses softmax to directly output
class probabilities, with a parameter set to 4. Therefore, ultimately, after cross-validation,
we invoke the optimal model for training and output the feature vector of the second fully
connected layer.
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3.3. Abstracting Activity Features Based on Weibo Data

BERT, which stands for Bidirectional Encoder Representations from Transformers, is
an overall self-encoding language model. Its objective is to utilize large-scale unlabeled
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corpora for training and obtain rich semantic representations of texts, referred to as text
embeddings or text representations. These representations capture the semantic information
of the text. Later, these representations can be fine-tuned for specific natural language
processing (NLP) tasks and applied to those tasks. The main structure of the BERT model
is the transformer, as shown in Figure 6. The basic structure of a BERT pretrained model
consists of the encoder part of the standard transformer, denoted as “Trm” in the figure.
These encoder layers are stacked one by one to form the main body of the model [54]. The
main input of the BERT model is the raw word vectors for each character/word in the text.
These vectors can be randomly initialized or pre-trained using algorithms like Word2Vec to
serve as initial values. The output is the vector representation of each word/phrase in the
text after integrating the full-text semantic information.
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Weibo data can reflect the daily activities of residents, such as shopping, travel, work,
entertainment, etc. Interestingly, these activities can significantly help us distinguish
the typical urban functional regions to which Weibo check-in points belong. Therefore,
we utilize the BERT model to extract hidden semantic features from Weibo text data.
Considering the limited amount of sample data, this paper intends to utilize the pre-trained
model. This process involves vectorizing the text within each research unit, resulting in
multidimensional sentence vectors that represent human activity features.

During the specific experimental process, for the 20,000 Weibo data we obtain, we first
conduct data filtering and cleansing, removing Weibo data that is not within the research
area or has no content. Next, we connect the land parcels with their corresponding Weibo
data. Due to the sparsity of the Weibo data itself, some land parcels only contained a
small amount of Weibo data. Afterward, we use the BERT model to process the Weibo
text content within each land parcel. In the data preprocessing stage, it is necessary to add
[CLS] and [SEP] tokens before and after each Weibo text that represents the semantics of
each land parcel (e.g., [CLS] August has arrived . . . [SEP]). This is a standardization applied
to the input text for the BERT model, with the purpose of treating all the text within a land
parcel as a single sentence, regardless of the number of sentences within the text. During
the model running phase, since the BERT model requires a threshold of 500 for the amount
of text input at one time, and the number of Weibo posts in some land parcels exceeds this
threshold, we conduct a second data cleaning for this part of the data. After successfully
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running the model, we output and save a 50-dimensional feature vector containing the
full-text semantic information of each parcel.

3.4. Extraction of Socioeconomic Features

Given the original POIs’ diverse and overlapping categories, along with some cat-
egories having limited relevance to identifying functional regions, we conduct a reclas-
sification, reclassifying the original 18 categories to 14. These categories include public
facilities, dining services, science and education, shopping services, companies and enter-
prises, healthcare services, accommodation services, commercial residences, life services,
scenic spots, transportation services, financial and insurance services, sports and leisure
services, government agencies and social organizations. Then, using the ArcGIS10.2 spatial
join method, we match these POIs with intersecting land parcels to calculate the quantity
and proportion of each category, which serves as the socioeconomic characteristics of the
study area.

3.5. Extraction of Building Features

The original building footprint data only contains information about the number
of floors, building area, and perimeter. We aim to derive building metrics reflecting the
differences in functional regions from these attributes in the source data. These metrics
primarily include building area at an individual scale, building perimeter, building structure
ratio, number of floors, and the quantity and density of buildings at a regional scale.

Area reflects the actual footprint of a building, and generally, many residential and
commercial sites have larger building areas, while those on public land are relatively
smaller. We calculate the total building area, average building area, and standard deviation
for each region within the land parcel. Considering the standard deviation is important
because in residential regions, building area differences are typically small, whereas in
commercial regions, office buildings and shopping centers can vary significantly in building
area. Therefore, the standard deviation faithfully captures these differences.

Building perimeter can describe the length of a building’s outline and can reflect the
complexity of the building’s shape. Generally, residential regions have simple and relatively
uniform building shapes, while commercial or public regions exhibit more complex and
varied shapes with less apparent regularity. This set of metrics includes total building
perimeter, average building perimeter, and standard deviation for each region.

Building structure ratio refers to the ratio of perimeter to building area. Buildings
within the same region that have larger perimeters usually exhibit more complex shapes.
The complexity of the shape helps distinguish between regular rectangular buildings and
irregularly shaped ones. For instance, commercial and public buildings often have circular
or irregular polygonal appearances, such as stadiums or shopping centers. This aids in
distinguishing them from residential buildings. We measure the structural ratio for each
building and calculate its sum, average, and standard deviation.

Floor is an important indicator reflecting differences in building height, which can
vary significantly in different functional regions. For example, buildings intended for
residential purposes in the city center typically have more floors and are consequently
much taller, while industrial buildings are designed to be lower. We compile the number of
floors for each building and calculate its sum, average, and standard deviation.

The above statistics are derived from an individual building perspective; however, we
also recognize that at the regional scale, the number and density of buildings can reflect
differences in various functional regions. For example, residential regions, being places
where people live, tend to have high building densities, whereas public regions, comprising
spaces like squares and parks, have much lower building densities in comparison.

As shown in Figure 7, we collect statistical data on building area, perimeter, number
of floors, and structure ratio, and discuss their characteristics and patterns. Additionally,
considering the building density and quantity within the parcel, we obtain a total of
14 building indicators. In the specific experimental procedure, we initially conduct a spatial
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intersection between intersecting building outlines and parcels, then compute various
metric values within the parcel units, and finally generate feature vectors that encapsulate
building information.
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3.6. Fusion of Multi-Source Features

At this stage, our primary task is to integrate the four types of features extracted in the
previous steps to provide input for the classifier. The overall framework of this research
method is illustrated in Figure 8. In the preceding feature extraction stage, we initially
establish connections between land parcels and corresponding geolocated Weibo data.
Subsequently, we process the Weibo text content on individual parcels using the BERT
model, ultimately obtaining 50-dimensional sentence vectors that represent human activity
features. By using CNN for scene detection in remote sensing images, hidden spatial
information present in the images is extracted to derive scene features. The parameter
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of the penultimate fully connected layer is adjusted to 128 to achieve a balance between
the feature quantities in the other three data sources. For socioeconomic features, we
calculate the proportions of different categories of POIs within each research unit, resulting
in 14-dimensional feature vectors. By compiling data on 14 building indicators within
each land parcel, we obtain the corresponding vector representing the characteristics of
objects in the study area. After fusion, we obtain feature vectors with a length of 206.
Finally, these feature vectors are input into a Random Forest classifier. We set the number of
decision trees to 50, and the training-to-testing set ratio is set at 7:3. After the decision trees’
voting process, we ultimately obtain classification results from the integration of multiple
data sources.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 13 of 23 
 

 

3.6. Fusion of Multi-Source Features 
At this stage, our primary task is to integrate the four types of features extracted in 

the previous steps to provide input for the classifier. The overall framework of this re-
search method is illustrated in Figure 8. In the preceding feature extraction stage, we ini-
tially establish connections between land parcels and corresponding geolocated Weibo 
data. Subsequently, we process the Weibo text content on individual parcels using the 
BERT model, ultimately obtaining 50-dimensional sentence vectors that represent human 
activity features. By using CNN for scene detection in remote sensing images, hidden spa-
tial information present in the images is extracted to derive scene features. The parameter 
of the penultimate fully connected layer is adjusted to 128 to achieve a balance between 
the feature quantities in the other three data sources. For socioeconomic features, we cal-
culate the proportions of different categories of POIs within each research unit, resulting 
in 14-dimensional feature vectors. By compiling data on 14 building indicators within each 
land parcel, we obtain the corresponding vector representing the characteristics of objects 
in the study area. After fusion, we obtain feature vectors with a length of 206. Finally, these 
feature vectors are input into a Random Forest classifier. We set the number of decision 
trees to 50, and the training-to-testing set ratio is set at 7:3. After the decision trees’ voting 
process, we ultimately obtain classification results from the integration of multiple data 
sources. 

 

Figure 8. The logical structure of the ASOE method. 

4. Results and Discussion 
4.1. Recognition Results of Different ASOE Features 

To address the issue of insufficient data feature mining in traditional functional re-
gion recognition methods, this paper comprehensively utilizes high-resolution remote 
sensing imagery data, POI, building footprints, and Weibo data, and employs deep learn-
ing, text mining, and statistical methods to extract features corresponding to research 
units and then integrates them for the final classification. Firstly, remote sensing imagery 
can extract advanced semantic features of regional spatial distribution based on the scene. 
Building footprints can provide a series of physical properties of buildings from the per-
spective of landscape objects. Meanwhile, open-source social remote sensing data such as 
POI and Weibo data can extract features related to social-economic and human activities. 
The identification result of urban functional regions is shown in Figure 9. 

Figure 8. The logical structure of the ASOE method.

4. Results and Discussion
4.1. Recognition Results of Different ASOE Features

To address the issue of insufficient data feature mining in traditional functional region
recognition methods, this paper comprehensively utilizes high-resolution remote sensing
imagery data, POI, building footprints, and Weibo data, and employs deep learning, text
mining, and statistical methods to extract features corresponding to research units and
then integrates them for the final classification. Firstly, remote sensing imagery can extract
advanced semantic features of regional spatial distribution based on the scene. Building
footprints can provide a series of physical properties of buildings from the perspective
of landscape objects. Meanwhile, open-source social remote sensing data such as POI
and Weibo data can extract features related to social-economic and human activities. The
identification result of urban functional regions is shown in Figure 9.

To highlight the advantages of extracting features from multiple data sources, we
conduct a statistical analysis of the classification results for the functional regions obtained
after merging inputs from different data sources. The comparative chart obtained is shown
in Figure 10.

As can be seen from Figure 10, in single-source data classification, the best performance
is the image features extracted by Vgg16, with an accuracy of 87%. Following this, POI data
performs the next best, while the classification performance of buildings and Weibo data
are relatively poor. In the experiments involving the fusion of multiple data sources, we
observe that combining POI or building data increases the accuracy by 2.45% and 1.73%,
respectively, compared to using only images as single-source input. Combining all three
sources resulted in a 2.64% improvement. Furthermore, Weibo data are found to further
enhance the accuracy by an additional 1.38% on top of the fusion of the first three sources.
In the end, the classification accuracy achieved by fusing the four data sources reaches
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91.74%, which represents a total improvement of 4.02% compared to using only images as
a single-source input. From the analysis of experimental results, the disparities in accuracy
among single-source data are closely linked to the quantity and effectiveness of their
inherent features. For example, image features, which exhibit the best performance, have
the highest quantity among the four datasets, and their expression of scene characteristics is
the most effective in classification tasks. Conversely, building footprints and Weibo features
have fewer quantities, and neither can effectively reflect the differences in functional
areas. However, the geographic information inherent in POI data enables it to perform
moderately well in reflecting functional area attributes. In multi-source data experiments,
the differences in accuracy are not only associated with the quantity and effectiveness
of the data’s own features but also with the interaction between different data features.
For instance, incorporating POI features slightly improves accuracy compared to using
building footprints alone, indicating that POI data can synergize with images to produce
more precise results.
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Furthermore, the classification accuracy of various functional region categories corre-
sponding to different data inputs is shown in Table 3, and the corresponding comparative
graphs are presented in Figure 11, revealing the differences in the recognition of various
functional regions based on different data source features.
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Table 3. Classification accuracy of each category from different data sources.

Input Data Commerce Industry Public Residence Accuracy F1 Score

POI 67% 52% 65% 70% 66.73% 0.61
Building 43% 43% 52% 65% 57.58% 0.49

Weibo 39% 38% 42% 57% 52.29% 0.48
Image 80% 64% 95% 92% 87.72% 0.83

POI + Image 82% 87% 92% 94% 90.17% 0.88
Building + Image 78% 83% 99% 92% 89.45% 0.86

POI + Building + Weibo 75% 54% 73% 68% 71.56% 0.68
POI + Building + Image 87% 71% 89% 94% 90.36% 0.90

POI + Building + Image + Weibo 90% 86% 89% 94% 91.74% 0.92

From Table 3 and Figure 11, in single-source data experiments, the recognition accuracy
of image data is high for all regions except industrial regions, while Weibo and building
footprints achieve a relatively high accuracy of 60% only in identifying residential regions.
POI data performs moderately with the least difference between categories. The primary
difference in multi-source data experiments lies in the identification of industrial regions.
Among these, the combination of POI, building footprints, and Weibo yields the lowest
accuracy at only 54%. However, combinations involving POI and image, building and im-
age, and POI, image, building, and Weibo all perform well, with accuracies exceeding 80%.
POI, image, and building achieve moderate performance with an accuracy of 71%. These
phenomena may be closely related to the varying abilities of the data features to explain
differences in industrial zones. Single-source data features, apart from image features, are
generally weaker, but after fusion with multi-source features, they are enhanced to different
extents, resulting in better performance. In particular, when compared to the classification
results using only images, the ASOE method, which utilizes multi-source feature fusion,
achieves an improvement of even over 10% in accuracy for identifying commercial and
industrial regions, while maintaining recognition rates of around 90% in the other two
functional region categories.

4.2. Evaluate the Contribution of Each Factor in Multi-Source Data

Random Forest is a supervised classification method that not only serves as a classifier
to produce classification results but also provides the contribution of each factor within the
utilized data to the classification task. When identifying using only POI, the weights for
various types of points of interest are shown in Table 4.

Table 4. Contribution of each feature when only using POI.

The Features of POI Weights

(1) Accommodation 0.122697
(2) Shopping 0.108659

(3) Living 0.103366
(4) Transportation 0.097480

(5) Company 0.086141
(6) Catering 0.078285

(7) Science and Education 0.064490
(8) Medical 0.063619

(9) Government 0.053805
(10) Business 0.053715
(11) Finance 0.053673

(12) Landscape 0.039180
(13) Public 0.038975
(14) Sports 0.035915

Among them, the top three features include accommodation services, shopping ser-
vices, and life services. Accommodation services include hotels, motels, hostels, etc. These
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points of interest are typically located near bustling commercial districts, office areas, or
famous landmarks, primarily providing accommodation services to out-of-town tourists.
Therefore, they contribute to identifying commercial regions and public regions related to
tourist attractions. Shopping services include large supermarkets, shopping malls, specialty
commercial streets, etc., which can infer that the region is likely a commercial district.
However, there are also convenience stores, personal care shops, cosmetics stores, etc.,
open near residential regions. Life services encompass telecommunications service centers,
beauty salons, job markets, logistics and delivery services, laundry facilities, etc. They are
typically located within residential regions, providing services related to people’s daily
lives, thus making it possible to effectively identify residential regions in the city.

Only using building footprints, the weights of 14 building indicators are as shown in
Table 5. The role of the standard deviation of area is the most significant, with a weight
of 0.1097. Next are density and the average number of floors, with weights of 0.0942 and
0.0902, respectively. Additionally, the mean area and the standard deviation of floors
also make significant contributions, with weights of 0.0862 and 0.0738, respectively. This
indicates that building area and floor height contribute more information to the task of
identifying and delineating functional areas. Their differences can be effectively used to
distinguish the functional attributes of different regions.

Table 5. Contribution of each feature when only using building footprints.

The Features of Building Weights

(1) Std_Area 0.109729
(2) Density 0.094252

(3) Mean_Floor 0.090231
(4) Mean_Area 0.086247
(5) Std_Floor 0.073887

(6) Sum_Floor 0.072016
(7) Mean_Length 0.071452

(8) Sum_Area 0.065986
(9) Std_Length 0.065733

(10) Sum_Length 0.064708
(11) Mean_Ratio 0.056086
(12) Sum_Ratio 0.053636
(13) Std_Ratio 0.048454

(14) Count 0.047583

Combining the two aforementioned data sources and incorporating Weibo data for
classification results in an accuracy rate of 71.56%. Among these, the top ten weighted
factors are shown in Table 6, consisting of six points of interest features and four building
features. Transportation facilities and corporate enterprises have the highest weights in
the classification task, reaching 0.045597 and 0.043930, respectively. Regarding building
features, the sum of floors and perimeter contribute the most to the classification task,
which shows a slight difference compared to the weight results obtained during single-
source data classification. This suggests that during the process of merging multiple data
sources, certain data features may interact or influence each other.

Furthermore, when incorporating remote sensing image features, there are significant
changes in factor weights (due to the large dimensionality of the image features, which is
128 dimensions, it is not convenient to display directly. Therefore, here, only the summa-
rized results are presented.). The results indicate that image features play a decisive role in
classification, with a total weight of about 0.91 for image features. This suggests that image
features based on DCNN provide rich and diverse urban area scene information, aligning
with our expectations. When using only remote sensing images, the accuracy reaches
87.72%. However, undoubtedly, POI, building footprints, and Weibo also play a more sig-
nificant auxiliary role. Using a single data source, even remote sensing images alone cannot
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address the issue of uneven accuracy between categories. The addition of POI, buildings,
and Weibo not only improves accuracy but also reduces the gap between categories.

Table 6. Top ten feature weights when merging three data sources.

Features Weights

(1) Transportation 0.045597
(2) Company 0.043930
(3) Shopping 0.042038

(4) Accommodation 0.034938
(5) Living 0.034696

(6) Sum_Floor 0.034240
(7) Sum_Length 0.029728
(8) Mean_Area 0.029229

(9) Std_Area 0.027634
(10) Catering 0.024588

4.3. Comparison of Different CNN Methods

In order to demonstrate the superiority of our VGG16 network in image feature
extraction and further emphasize the necessity of incorporating socio-economic data into
the research, we conduct comparative experiments between VGG16 + BERT + RF (Random
Forest) and other classical convolutional neural networks (CNNs). In the experiments, we
directly train and test existing high-resolution remote sensing image scene classification
methods, including AlexNet, ResNet, and DenseNet. The training and testing results
obtained are shown in Figure 12.
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According to the results in Figure 12, the best training accuracy of VGG16 + BERT + RF
is 76.64%, which is 5.64%, 2.22%, and 6.55% higher than AlexNet, ResNet, and DenseNet,
respectively. The testing accuracy of VGG16 + BERT + RF is 91.74%, surpassing the other
three networks. Among the testing results of the other three networks, ResNet performs
the best with a classification accuracy of 75%, followed by AlexNet with a testing accuracy
of 72.22%, and DenseNet exhibits the lowest performance with a testing accuracy of 69.44%.
Generally, the testing accuracy after training is expected to be higher than the accuracy
during the training process, but DenseNet is an exception to this norm, likely due to the
influence of the network’s structural characteristics.
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In summary, the above results clearly indicate that VGG16 + BERT + RF excels in
performance on the research area’s image dataset. Additionally, the results of these three
networks also demonstrate that relying solely on image features cannot fully achieve highly
accurate recognition of urban functional regions.

4.4. Comparative Experiment with Traditional Recognition Methods

To emphasize the advantages of the novel urban functional region recognition method
proposed in this paper, we conduct comparative experiments with traditional recognition
methods and similar methods mentioned in reference [1]. Widely used traditional techniques
such as K-Means clustering and semantic models based on LDA belong to unsupervised
classification methods, while the latter falls under supervised classification. The five sets
of comparative experiments include (1) single POI, (2) single building footprints, (3) com-
bining POIs and building footprints, (4) combining POIs, building footprints, and remote
sensing images, (5) combining POIs, building footprints, Weibo, and remote sensing images.

The results, as shown in Figure 13, show that (1) when using a single POI, K-means
achieves an accuracy of 60.86%, LDA achieves 60.68%, and SOE achieves 66.73%; (2) when
using only building footprints, K-means obtains 65.44%, LDA obtains 58.68%, and SOE
obtains 57.58% accuracy; (3) combining features of POIs and building footprints, K-means
achieves an accuracy of 69.92%, LDA achieves 66.37%, while SOE and ASOE achieve 69.67%;
(4) combining POIs, building footprints, and imagery, K-means and LDA obtain 74.41%
and 87.47%, while SOE obtains 90.36%; and (5) the accuracy rates of LDA, K-means and
SOE methods based on ASOE features are 80.14%, 81.65%, and 90.36%, respectively, which
are all lower than our method, with an accuracy rate of 91.74%. Traditional methods like
LDA and K-means are not highly efficient at feature extraction for multi-source data fusion
in classification tasks, and they struggle to effectively integrate different types of data,
such as POIs, Weibo, and buildings. Meanwhile, SOE, due to its lack of consideration for
incorporating Weibo semantic features, also yields lower classification accuracy compared
to our approach. Therefore, through this comparison, we believe that our ASOE-based
method is superior and achieves excellent classification results.
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In the experiments, the Xi’an area within the EULUC-China map is selected as the
research unit. In the first-level classification (residential, entertainment, transportation (not
involved in validation), industrial, and high-rise), Gong Peng used samples representing
over 70% of the dominant land use for training and validation [41], achieving an accuracy
of 58.9%. In the research by Feng Ying [1] on identifying functional regions in Shenzhen,
training and validation were conducted with over 60% of the samples, resulting in an accu-
racy of 90.94%. In our study, the accuracy reaches 91.74%. This indicates that our proposed
integrated approach effectively extracts features of functional regions for classification.

5. Conclusions

Addressing the issues of insufficient data feature mining and the complexity of clas-
sification methods in traditional urban functional region identification, this paper first
integrates the four types of big data mentioned above and proposes an ASOE learning
framework. This method is applied to the main urban area of Xi’an, achieving an accu-
racy of 91.74% in identifying four typical functional regions. Furthermore, we employ a
method from the Random Forest classifier to quantitatively calculate the weights of each
factor in both single-data-source and multi-data-source fusion classification tasks, thereby
highlighting the importance of each data feature. Additionally, we conduct comparative ex-
periments between our method and traditional functional region identification approaches.
The following conclusions can be drawn:

(1) The fusion method of multiple geospatial data sources leverages the advantages of
big data, thoroughly extracting multidimensional data features that reflect functional
region differences, thereby achieving higher accuracy in urban functional region
classification and identification. What is more important, our approach can capture
dynamic human activity characteristics and achieve a “from people to land” inver-
sion process when compared to the SOE method that does not utilize social remote
sensing data.

(2) In the final classification task, remote sensing images contribute the main spatial
information. This is because the VGG16 network is capable of fully extracting hidden
high-level semantic features, which play a decisive role in efficiently identifying
functional regions.

Certainly, although this framework has achieved good results, there are still two
aspects that require further in-depth research. Firstly, the framework is limited by the
coverage range of Weibo data, which results in the inability to extract corresponding
resident activity features for some land parcels. Similarly, mobile signaling data and
taxi trajectory data, due to privacy concerns and other issues, are either inaccessible or
incomplete. Secondly, this paper focuses on identifying typical individual functional
regions and overlooks mixed-use regions. These mixed regions can be further subdivided,
with samples extracted and input into the network for more detailed functional region
delineation. Subsequent research can involve incorporating mobile signaling or trajectory
data with wider coverage to identify urban functional regions on a larger scale and with
greater precision.
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