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Abstract: The introduction of quinoa into new growing regions and environments is of interest
to farmers, consumers, and stakeholders around the world. Many plant breeding programs have
already started to adapt quinoa to the environmental and agronomic conditions of their local fields.
Formal quinoa breeding efforts in Washington State started in 2010, led by Professor Kevin Murphy
out of Washington State University. Preharvest sprouting appeared as the primary obstacle to
increased production in the coastal regions of the Pacific Northwest. Preharvest sprouting (PHS) is
the undesirable sprouting of seeds that occurs before harvest, is triggered by rain or humid conditions,
and is responsible for yield losses and lower nutrition in cereal grains. PHS has been extensively
studied in wheat, barley, and rice, but there are limited reports for quinoa, partly because it has only
recently emerged as a problem. This study aimed to better understand PHS in quinoa by adapting a
PHS screening method commonly used in cereals. This involved carrying out panicle-wetting tests
and developing a scoring scale specific for panicles to quantify sprouting. Assessment of the trait
was performed in a diversity panel (N = 336), and the resulting phenotypes were used to create
PHS tolerance rankings and undertake a GWAS analysis (n = 279). Our findings indicate that PHS
occurred at varying degrees across a subset of the quinoa germplasm tested and that it is possible to
access PHS tolerance from natural sources. Ultimately, these genotypes can be used as parental lines
in future breeding programs aiming to incorporate tolerance to PHS.

Keywords: PHS screening; panicle-wetting test; seed dormancy; genome-wide association study
(GWAS)

1. Introduction

Preharvest sprouting (PHS) occurs in seeds with little or no dormancy and results in
seeds sprouting on the spike after a rain event and prior to harvest [1–3]. PHS causes losses
in yield and seed viability and negatively impacts end-use quality [4]. It also limits the
expansion of quinoa (Chenopodium quinoa) to humid regions and might become increasingly
prevalent under climate change conditions affecting weather patterns in fields around the
world [5–7]. PHS has been extensively studied in major cereal crops, such as wheat and
barley [2,8–12], but not in underutilized crops like quinoa. There is little information and
research about PHS in quinoa because it has only recently emerged as an agronomically
important crop worldwide, and differences in its plant architecture compared to that of
cereals make the use of conventional PHS screening methods more challenging.

Literature on quinoa PHS is limited and fails to report quantitative data on yield loss
or decreased seed quality. The first report of this trait in quinoa came from Ceccato et al. [4],
who found two genotypes, Chadmo and 2-want, exhibiting dormancy at harvest under
field conditions. Additional dormancy testing using plating assays helped to confirm the
presence of seed dormancy in both genotypes and indicated they were potential sources of
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PHS tolerance. Ceccato et al. [12] shed light on the factors affecting seed dormancy and
germination, which included temperature, water stress, salinity, hormonal control, aging,
and storage. Bertero and Benech-Arnold [13], as cited in Ceccato et al. [12], focused on a
small panel of quinoa genotypes (15 to 20) and noted that most of those quinoa cultivars
lacked dormancy and hence were highly susceptible to PHS in field conditions.

To date, McGinty et al. [7,14] have provided the most complete theoretical framework
for quinoa seed dormancy. Seed dormancy is an evolutionary adaptation that prevents
seeds from germinating to survive natural catastrophes and ensures species survival [15]
Primary dormancy includes physiological, morphological, and physical dormancy and is
established during development, whereas secondary dormancy is established by environ-
mental factors after primary dormancy is lost [16,17]. In terms of hormone signaling, if
quinoa behaves like cereal behaves, like other cereal seeds, then dormancy is also regulated
by ABA and GA [14,18–21]. Studies in quinoa, and relatives of quinoa, such as C. album
and C. berlandieri, indicate the presence of primary dormancy in some genotypes. In oth-
ers, there appears to be an absence of dormancy. Collectively, this suggests that different
quinoa genotypes have mixed dormancy types, i.e., primary dormancy is present in some
genotypes and absent in others [7,14]. Quinoa dormancy studies provide evidence of a
wide range of seed dormancy strength across the diverse germplasm, which may have
implications for PHS tolerance or susceptibility [14].

Assessment of PHS in cereals is routine, employing three methods: visual observa-
tion, Hagberg–Perten falling numbers (FNs), and alpha-amylase enzyme assays. Visual
evaluation of sprouted shoots and roots is based on scales specific to inflorescence types,
such as spikes, or based on increases in the inflorescence area [3,22]. The spike-wetting
test is inexpensive to perform and easy to use on breeding populations. FN assessment
consists of mixing wholemeal flour with water, heating it up, and letting a stirring paddle
fall through the solution; flours from PHS grains are less viscous and allow the paddle
to fall faster, producing undesirable low FN numbers ([23], FGIS Directive 9180.3, 2019).
Lastly, elevated activity of alpha-amylase, an enzyme that catalyzes the hydrolysis of starch
and negatively affects the end-use quality of cereal products, can be indicative of PHS.
Measurement of alpha-amylase activity can occur indirectly using FNs or using highly
specific assays [24,25]. Unlike the routinely used methodology for PHS testing in cereals,
only the use of alpha-amylase enzyme assays has been previously reported in quinoa,
though in the context of end-use quality for baking or nutrition, not in the context of
PHS [26–28]. Moreover, the FN method and alpha-amylase enzyme assays are costly to
perform compared with a spike-wetting test [25]. Overall, these methods have not been
validated in quinoa but could be adapted to the crop for PHS assessment. In fact, this
study aims to translate the visual evaluation performed on wheat spikes to the panicles of
quinoa, given that the FN method and alpha-amylase enzyme assays are costly to perform
compared to wetting tests [25].

It is also common to use germination tests at physiological maturity as a proxy for
PHS tolerance or susceptibility given the association between a lack of seed dormancy
and PHS prevalence in cereals [3,16]. Germination tests using threshed seeds at physio-
logical maturity provide an overview of seed dormancy status but do not consider the
morphological components of the inflorescence that may increase or decrease PHS sus-
ceptibility. For example, in wheat, Paterson et al. [8] described the erectness of spikes, the
openness of florets, and the level of germination-inhibiting compounds in the bracts as
important traits that influence seed sprouting in wetted spikes. Also, wider awn angles and
longer awns maximize water exposure in the ear and are associated with a larger incidence
of PHS [29,30]. In quinoa, the panicle shape, density, leafiness, and other features may
impact PHS. However, there is no report of a PHS panicle-wetting screen for quinoa in
the literature.

To test the hypothesis that some quinoa genotypes have a certain degree of PHS
tolerance, panicle-wetting tests were developed. Wetting tests considering the plant’s
morphological features were carried out on a diverse panel of quinoa (N = 336), representing
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a subset of the World Core Collection (WCC). The screening methods used here constitute
a modified version of the conventional PHS screening methods used in wheat [8]. A
novel PHS scoring system for quinoa based on the relative percentage of sprouted seeds
per panicle was developed with the objective of quantifying the trait in wetted panicles.
Genotype rankings were created based on two metrics: the sprouting index (SI) and rate
of sprouting (slope values). The SI is a weighted index that gives higher scores to early
sprouting plants and progressively less weight to those sprouting later [31,32]. The current
study aimed to identify natural sources of PHS tolerance in the quinoa genetic pool that
could serve as parental lines in future quinoa breeding programs.

The collected phenotypes were used with genotypic data from a subset of genotypes
to carry out a genome-wide association study (GWAS). GWAS research on PHS is vast
in cereals like wheat and barley but very limited in underutilized crops like quinoa. The
current literature on PHS in quinoa is limited to one study by Lopez-Marques et al. [33],
who, based on a phylogenetic analysis, determined MFT (Mother of Flowering Time and
TFL1) and MKK3 (mitogen-activated protein kinase 3) to be homologous genes involved in
PHS regulation. If the nature of PHS in quinoa similar to that of cereals, the GWAS in this
study would be expected to identify similar genes, or chromosomal regions, underpinning
the trait. In wheat alone, a total of 110 quantitative trait loci (QTLs) linked to PHS resistance
have been reported, and these are often related to the molecular signaling processes of
the phytohormones abscisic acid (ABA) and gibberellin (GA) [21,34]. The current study
used the Genome Association and Prediction Integrated Tool (GAPIT v3) R package [35],
incorporating the BLINK (Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway) method [36], to identify single-nucleotide polymorphisms (SNPs) asso-
ciated with PHS in quinoa. GAPIT v3 is a robust tool for genomic association analysis.
Compared to previous versions, it incorporates multi-locus test methods such as BLINK,
which significantly enhance its statistical power for GWAS and reduce the computing time
for analyzing large genomic datasets.

2. Results

The PHS phenotype followed a geometrical distribution, meaning that the score values
started low and only increased over time until a maximum value was reached. This was
evidenced as a proportion of higher scores increasing over time (Figure 1).
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Figure 1. Proportion of observations by day for each PHS score level. PHS scores on the x-axis
represent range of percent germination (levels 0 to 9), and the y-axis is the proportion of a level
observed on a given day.
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However, the spread of scores on planting date 2 (PD2) was larger than on planting
date 1 (PD1), likely due to delays in harvesting on PD2 attributable to the synchronous
maturity of all the genotypes (Figure 2).
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Figure 2. Distribution of PHS score averages by day and planting date (PD). PHS scores were
multiplied by 10 to reflect sprouting category medians and are referred to as “weighted”. Outliers are
indicated with black dots.

Given the substantial number of accessions in this study, significant differences were
only demonstrated for five of the top and bottom genotypes from the PHS tolerance
rankings. SI plotting of these 10 genotypes against the two controls showed significant
differences, as shown by the standard error bars (Figure 3).
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Figure 3. Sprouting index of 10 contrasting quinoa genotypes (blue), plus 2 controls. Shown in orange
is the PHS-tolerant genotype Redhead (ID 300) and shown in yellow is the PHS-susceptible control,
QQ74 (ID 9). Bars shown are standard error bars.

In the panicle-wetting tests (duration = 7 days), most of the genotypes had average
scores ranging between 0 and 1 on day 1. The overall mean sprouting score was 0.58 on day
1 and 1.76 on day 2, whereas by day 3, this score almost doubled to 3.31. Halfway through
the panicle-wetting tests, at day 3, both extremes of the sprouting spectrum were observed,
with some genotypes showing average sprouting scores lower than 1 (genotypes 37, 221,
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164, 287, 148, 181, 179, 140, 169, 162, 144, 50, and 300) and others showing average sprouting
scores equal or greater than 7 (genotypes 316, 315, 312, 304, 281, and 108; Table S1). By day
5, 70% of the panel had scores equal or greater than 5, which translates to having relative
sprouting of 40% or more after 5 days of misting.

2.1. Genotype Rankings for PHS Tolerance

A simple linear regression model was fitted, and XY plots were used to reflect the
increase in the sprouting scores over seven days. The genotypes with the most PHS
tolerance displayed slower increases in slope, and the genotypes with the greatest PHS
sensitivity showed the steepest slopes (Figure S1). A ranking based on ascending slope
values for the panel is proposed in Supplementary Table S2. Here, 16 genotypes showed
lower scores than the PHS-tolerant control “Redhead”(ID #300). These 16 included 46,
221, 181, 164, 142, 344, 224, 179, 287, 267, 192, 37, 169, 290, 144, and 162. The genotypes
displaying the most sprouting had PHS scores between 1 and 3 or 5 in more extreme cases
on day 1 and reached the maximum value of 9 before day 7. The genotypes falling into
this group included 31, 108, 134, 208, 281, 292, 295, 320, 327, and 357. The PHS-susceptible
control “QQ74” (ID #9) ranked 309 out of 334.

The daily PHS averages per genotype were also used to calculate the individual SIs,
which ranged from 0.190 to 2.530, where low values are reflective of more PHS tolerance
and large values reflective of PHS susceptibility (Table S1). The top 12 genotypes with the
lowest SIs were 221, 37, 181, 164, 287, 142, 179, 46, 163, 144, 190, and 169, all lower than the
PHS-tolerant control “Redhead” (ID #300). The genotypes with the highest SIs included
315, 312, 70, 281, 316, 320, 330, 304, 108, and 227 and were all below the PHS-susceptible
control “QQ74” (ID #9), which ranked 262 out of 334. The Pearson’s correlation value
between slope and SI is 0.782.

2.2. Addressing Population Stratification through PCA and an Indicator

The first three principal components (PCs) collectively accounted for more than 50% of
the observed phenotype variance. The first PC elucidated 36.7% of the variance within the
phenotype, indicating its substantial contribution to the overall variance. Following PC1,
the second PC explained 10.71% of the variation, while PC3 contributed 2.9% to the overall
variance. Analysis of these PCs allowed us to identify a distinct population structure. The
PC plots (Figure 4) illustrate the separation of the quinoa population into two clusters: one
characterized by positive PC1 values and the other by negative PC1 values.
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Figure 4. Principal Component Analysis for quinoa accession population with Explained Vari-
ance Percentage (EVP). Principal components were derived from 246 quinoa accessions based on
48,025 markers. Each dot represents an accession, with colors indicating their PC1 values. PC1
explained 36.7% of the phenotype variance, followed by PC2, which explains 10.71% of the variation.
PC3 contributes 2.9% to the overall variance explanation. The population exhibits a division into
two clusters based on positive or negative PC1 values.
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To further mitigate potential confounding effects, we constructed a Coefficient of Varia-
tion (CV) utilizing the first three PCs and an additional indicator. This composite measure
helped to reduce false positive results during the association analysis (Figure S3A,B).

2.3. Genome-Wide Association Study and Functional Annotations

Our investigation identified 19 significant markers associated with the pre-harvest
sprout (PHS) trait in quinoa, located on chromosomes 2B, 4B, 5A, 6B, and 9B (Figure 5).
Among these, five markers are related to the PHS upper asymptote (parameter a), with
the maximum phenotypic variation explained by Cq9B_243431086 (p = 1.61 × 10−9,
PVE = 76.8%). Additionally, six markers are associated with the PHS growth rate (parame-
ter b), with Cq7A_17313829 explaining the maximum phenotypic variation (p = 1.97 × 10−9,
PVE = 83.8%). Furthermore, eight markers are linked to PHS maximum growth (parameter
c), with Cq6A_8709044 explaining most of the phenotypic variation (p = 2.57 × 10−17,
PVE = 91%). Notably, the most significant marker, Cq2A_11615394 on chromosome 2A, is
related to maximum growth. Seventeen markers had a matching locus on NCBI according
to blasting with the Chenopodium quinoa genome as the reference. Functional annotation
revealed five GO terms, including integral component of membrane, transcription factor ac-
tivity, sequence-specific DNA binding, rRNA processing, and calcium-transporting ATPase
activity, among others. These terms are related to KEGG pathways such as transporters,
aminoacyl-tRNA biosynthesis, and metabolic pathways (Table 1).
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Figure 5. Manhattan and quantile–quantile (QQ) plots depicting genome-wide association analysis
for preharvest sprouting (PHS). The plots were generated using BLINK, employing the first three
principal components (PCs) and one indicator (based on PC1 value) as the coefficient of covariate.
The PHS-associated markers for different sigmoid parameters a, b, and c are positioned above the
Bonferroni line (green line), calculated at a 0.05 significance level with 48,025 markers. In the QQ plot,
the gray shaded area denotes the 95% confidence interval under the null hypothesis.

Table 1. BLASTing against the Chenopodium quinoa genome revealed matching loci for seventeen SNP
markers on the NCBI platform. Functional annotations for the putative genes were obtained from NIH
DAVID (Database for Annotation, Visualization, and Integrated Discovery) bioinformatics website.

SNP Locus Gene List (DAVID)

Cq1B_66402375 XM_021904375 basic leucine zipper 23-like (LOC110724880)

Cq2A_11615394 XM_021877804 uncharacterized mitochondrial protein AtMg00810-like (LOC110700265)
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Table 1. Cont.

SNP Locus Gene List (DAVID)

Cq2B_60857052 XM_021883400 glutamyl-tRNA(Gln) amidotransferase subunit C, chloroplastic/mitochondrial-like (LOC110705514)

Cq2B_9387424 XM_021895300 putative calcium-transporting ATPase 11, plasma membrane-type (LOC110716652)

Cq3A_10231545 XM_021874234 transcription termination factor MTERF2, chloroplastic-like (LOC110696907)

Cq3A_14217269 XM_021883755 uncharacterized LOC110705822 (LOC110705822)

Cq4B_4014100 XR_002507314 uncharacterized LOC110701120 (LOC110701120)

Cq4B_56717106 XM_021880529 katanin p80 WD40 repeat-containing subunit B1 homolog (LOC110702783)

Cq5A_582429 XM_021887486 protein MAIN-LIKE 1-like (LOC110709270)

Cq6A_8709044 XM_021911740 uncharacterized LOC110731845 (LOC110731845)

Cq6B_83520732 XM_021858518 ABC transporter G family member 11-like (LOC110682235)

Cq6B_9876457 XR_002509647 uncharacterized LOC110712666 (LOC110712666)

Cq7A_17313829 XM_021919715 peter Pan-like protein (LOC110739250)

Cq7A_17874020 XM_021919734 heavy metal-associated isoprenylated plant protein 36-like (LOC110739269)

Cq8A_9702538 XM_021910407 pentatricopeptide repeat-containing protein At1g71490-like (LOC110730586)

Cq9B_12163476 XM_021894216 G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290 (LOC110715629)

Cq9B_24343108 XR_002510671 uncharacterized LOC110717110 (LOC110717110)

3. Discussion

This study aimed to better understand PHS in quinoa by adapting a PHS screening
method commonly used in cereals and by developing a scoring scale specific to panicles.
To assess sprouting diversity, experiments were performed on a diversity panel comprising
336 quinoa genotypes.

Variability in PHS tolerance was expected given the genetic diversity of quinoa and
previous reports of phenotypic variation among genotypes [37]. Variation in PHS was
observed and partially matched the results from previous assessments. For example,
Peterson and Murphy [38] reported observing less sprouting for genotype PI-614880 (PHS
ID #223), which is consistent with the sprouting index and slope values reported in the
current study. Genotype PI-614880 scored 16th out of 336 in the PHS tolerance ranking,
with an SI = 0.627 and a slope value of 0.715. Another case was genotype PI-614880, which
has several identifiers, including the names Chadmo, NSL-106393, and QQ065. Ceccato
et al. [4] reported Chadmo, or PI-614880 in this study, as a potential source of PHS tolerance.
The correlation between the slopes and SI values (0.751) is indicative of a linear relationship
between the parameters and gives confidence for their use.

With the exception of four varieties (Ames-13725, Ratuqui, D-11924, and Ames-13740),
this study evaluated sprouting in the same varieties previously screened for the presence of
seed dormancy in [14]. It was initially hypothesized that lower sprouting scores would be
associated with varieties identified with stronger seed dormancy. In fact, this was observed
for genotypes CHEN-291, PI-614883, CHEN-299, and D-12020. However, it was also the
case that 43 genotypes identified with some degree of seed dormancy in [14] showed
susceptibility to sprouting in this study. Namely, both Redhead and QQ74, the genotypes
used as the tolerant and susceptible controls for this study, were identified as having no seed
dormancy at physiological maturity [14]. Taken together, these results suggest that seed
dormancy is only one component of PHS tolerance in quinoa and that after-ripening time
and panicle architecture are also important. The role of panicle architecture is supported
by the observation that although both controls used in the current study were originally
classified as non-dormant [14], they displayed vastly different degrees of resistance to
sprouting. Both were selected as controls based on the observed presence or absence of
sprouting in the field. Redhead, selected as the PHS-tolerant control, had an SI of 0.534,
consistent with an increased PHS tolerance, whereas our susceptible control (QQ74) had
an SI of 1.643, consistent with lower PHS tolerance. Future work will need to evaluate
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sprouting scores in parallel with seed dormancy screens to understand the impacts of
after-ripening on PHS status. Additionally, the relationship between panicle morphology,
the impacts of domestication, and PHS will need to be investigated.

Though this study provides quantitative data (SI and slope values) to determine the
tendency of quinoa genotypes towards PHS susceptibility or resistance, it did not set a
threshold to categorize the different levels in the spectrum. PHS is a quantitative trait; it is
complex to divide observations into either resistant or susceptible given that PHS exists as
a degree of tolerance in each of the quinoa genotypes. Studying the PHS trait over seven
days added complexity to our results, as a given genotype can appear resistant to PHS
on day 1 but become susceptible after 7 days of misting. Integration of the temporal data
into the SI and slope values allowed us to look at each genotype holistically. Like Rasul
et al. [39], future research on quinoa could propose well-defined levels of PHS resistance
(susceptible, tolerant, and resistant) based on SI, FN, and germination index measurements.

The PHS scores were consistently low for the PHS-tolerant control (Redhead) and
higher for the PHS-susceptible (QQ74) control across the batches and PDs. It is important
to note that these control genotypes were chosen based on their observed percent sprouting
in the field rather than PHS screening and did not end up representing the most tolerant or
resistant lines found within the WCC. However, they still represented contrasting ends of
the sprouting spectrum and served as a reference and a point of comparison for the rest of
the genotypes in the ranking. Considering the slope and sprouting index values together,
our rankings identified ten genotypes with less sprouting than Redhead (PHS-tolerant
control) and could help future PHS research to select even more PHS-susceptible or PHS-
tolerant genotypes than those used as controls in this study. Genotypes with phenotypic
divergence, or in this case with contrasting PHS phenotypes, are valuable for plant breeding
studies aiming to develop recombinant inbred lines (RILs) to fine-map the regions where
causative loci lie and to develop markers for marker-assisted selection [34].

Planting date (PD) was included in the experimental design to provide a complete
replication in time and space of the misting experiments. Differences between PD1 and PD2
were observed, with the PHS scores from PD2 being overall higher than those from PD1.
An explanation for this is the delay in harvesting for the panicles from PD2, which were
harvested over a longer period than PD1. Batches were included in the experimental design
for logistical reasons; that is, to allow for handling of a smaller number of plants each
week according to labor capacity. The sprouting results for the controls were consistent
throughout the experiment; that is, Redhead sprouted less compared to QQ74. Though
we believe that the effect of batch is negligible, possible sources of variability include
differences in scoring from person to person and variation in scoring across time. These
are all likely explanations for the lower-than-average scores in batch 2 and for the overall
differences across batches (data not shown).

Our GWAS results identified 19 significant SNPs from the panicle-wetting assays.
Given quinoa’s status as a relatively new crop with limited annotation information for
downstream GWAS, we employed bioinformatic methods using BLASTing and the DAVID
database to predict the potential functionality of the PHS-associated markers. Although
the identified SNPs were not associated with previously identified PHS markers in wheat,
the analysis showed that 10 of the identified SNPs may be associated with seed dormancy
and germination (Table 1). More specifically, basic leucine zipper repeat (bZIP) proteins,
mitochondrial transcription termination-factor (mTERF), and pentatricopeptide repeat (PPR)
proteins play roles in osmotic stress responses and ABA signaling and sensitivity [40–45],
whereas ABC transport G-family-like, G-type lectin S-receptor-like, Main-Like 1, and Peter
Pan-like proteins function in seed development, germination embryogenesis, cell division,
and elongation in many plants, including Arabidopsis, barley, maize, and rice [43,46–49].
The predicted results could provide valuable insights into future research directions and
assist other researchers in making informed decisions regarding marker design or gene
cloning in their breeding population. Future work will need to investigate the robustness
of the identified SNPs as markers for improving PHS tolerance in quinoa.



Plants 2024, 13, 1297 9 of 15

4. Materials and Methods
4.1. Germplasm

A total of 315 accessions from the quinoa WCC, 19 entries from Washington State
University’s quinoa variety trials, and 2 Ecuadorian varieties donated by Angel Murillo
at INIAP Ecuador were used in the current study. The subset used is part of the WCC,
an international collection of accessions assembled by researchers at KAUST to represent
high levels of geographic and genetic diversity. All the information on the accessions used,
including study number, accession name, and geographical region of origin, is provided in
Table S3.

4.2. Experimental Design and Greenhouse Conditions

A complete randomized design (CRD) was used for the panicle-wetting tests to
ensure equal distribution of the environmental gradient inside the greenhouse across
all the panicles. All genotypes had at least 3 replicates in total, and when available,
four replicates were analyzed on each of the two planting dates (PDs). The number of
biological replicates included for each genotype is shown in Table S2. The second PD was
separated from the first by three weeks to allow for complete experimental replication
across time and space. Due to the vast genetic diversity in quinoa, physiological maturity
occurs at different times after sowing. To accommodate differences in maturity date
and to streamline screening, the genotypes were planted in a staggered manner. Long-
maturing genotypes were planted first, and short-maturing genotypes were planted last to
synchronize harvest at physiological maturity. Batches were included in the experimental
design to accommodate the large number of plants. The experiment was broken down
into 11 parts, starting with plants from PD1 and continuing to PD2. Each batch contained
between 100 and 300 panicles. To negate any effects of the batch, control genotypes were
included in every batch. Controls were selected based on previous field observations
(Figure 6) and included 3 PHS-tolerant (Redhead genotype) and 3 PHS-susceptible (QQ74
genotype) plants per batch.
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4.3. Development of the PHS Scoring Scale

Given the lack of literature and methods for assessing PHS in quinoa, a scoring scale
based on the relative percentage of sprouted seeds was developed based on similar studies
in wheat [8,50]. The initial step consisted of taking a reference picture of a sprouted
panicle and dividing the image into clusters; sprouted seeds were counted individually
and compared to the total number of seeds per cluster to obtain the average sprouting
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in the panicle (Figure S3). This process was developed into a visual scoring scale with
6 levels, each representing a range of the sprouting percentage in the panicle (Figure 7).
The defined levels were 0 (0% sprouting), 1 (1–19% sprouting), 3 (20–39% sprouting),
5 (40–59% sprouting), 7 (60–79% sprouting), and 9 (>80% sprouting). This scoring system
used odd numbers, similar to plant-level phenotyping for traits like panicle density [51,52],
to maintain consistency with quinoa phenotyping methodologies.
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Figure 7. PHS scoring scale for quinoa panicles. Levels are based on the relative percentage of
sprouted seeds in the quinoa panicle. Level 0 indicates no sprouting; Level 1 indicates the presence of
radicle emergence (white) and a sprouting range from 1 to 19%; Level 3 indicates first observance of
hypocotyls (pink-red) and a sprouting range from 20 to 39%; Level 5 is indicated by an intensification
of the red color in the hypocotyls and a sprouting range from 40 to 59%; Level 7 is indicated by the
observation of first true leaves and a sprouting range from 60 to 79%; Level 9 is indicated by the
presence of mold and > 80% sprouting. Quinoa variety Redhead is pictured.

4.4. Data Collection and Analysis

The total number of harvested plants, excluding the controls, was 2424, where 1267 cor-
responded to PD1 and 1157 to PD2. The sprouting scores were recorded daily for each
panicle, using the PHS scale developed here. Data analysis was carried out with 2250 plants,
corresponding to 336 genotypes (controls included), and excluded genotypes with poor
seed development or that molded during misting. All the data were analyzed using R 4.1.2
software [53]. The packages used to visualize the distribution, discover patterns, and spot
anomalies included tidyverse [54], naniar [55], visdat [56], and ggplot2 [57].

The average sprouting per day of all the replicates in each genotype was calculated
using the recorded scores. The genotype averages per day were used for two calculations:
slope (rate of sprouting over time) and sprouting index (SI), defined as
(7 × Sday1 + 6 × Sday2 . . . + 1 × Sday7)/(7 × n), where S corresponds to the PHS
score each day and n is the maximum sprouting score [45]. A starting value of 0 on day
0 was added to all the genotypes before fitting a simple linear model. Then, the slopes were
plotted in XY plots with the R lattice package [58], and the slope values were extracted and
organized in ascending order from the lowest to highest slopes to rank all the genotypes.

4.5. Phenotypic and Genotypic Data Integration for PHS Association Study

A subset of 279 quinoa accessions for which genotypic data were available was used
for GWAS. The averages for each accession were calculated using Excel PivotTables. The
calculation was based on the scores from seven days, with eight replications, and two dif-
ferent planting dates. These average PHS scores were then integrated into sigmoid curves
using the equation:

y =
a

1 − e−b(t−c)

where y represents the average PHS score, a denotes the upper asymptote, b is the growth
rate, c is the time of maximum growth, and t corresponds to the day on which the observa-
tion was made (1 to 7), following the approach outlined by McCulloch and Pitts [59].
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The genotypic data, provided by Patiranage et al. [37], were meticulously processed.
Sequences with less than five reads were excluded, and SNP markers with a missing rate
exceeding 20% or a minor allele frequency below 5% were removed. A total of 48,025
markers were retained for the subsequent association analyses. The imputation procedures
were executed using GAPIT v3 [35].

4.6. Population Structure Analysis

To address potential confounding effects arising from population stratification, a
robust approach leveraging the first three principal components (PCs) and an indicator
derived from the first PC, designated as the coefficient of variation (CV) matrix, was applied
within our association model. Principal Component Analysis (PCA) was executed using
GAPIT v3, utilizing the genotype data. A threshold of 0 for the PC1 values was employed
as the criterion for identifying population stratification. Specifically, PC1 values greater
than or equal to 0 were coded as 1, while those smaller than 0 were coded as 0. Visualization
of the population structure was accomplished through PC plots generated using the R
ggplot2 package [57]. This step ensured appropriate adjustment of population structure
effects for the association study.

4.7. Association Study for Integrating Planting Date Effects Using an Additive–Additive
(AA) Model

This study collected phenotype data across two distinct planting dates: PD1, compris-
ing 229 accessions, and PD2, comprising 228 accessions. Notably, 211 accessions are shared
between the two PDs, while each accession within a single PD exhibits unique phenotype
data. To consolidate phenotypes, genetic effects, and PD information, we implemented
a restructured additive–additive (AA) model for the association study (Figure 8). The
original genotype matrix represents genotypes as 0, 1, and 2, with 0 and 2 indicating
homozygous genotypes and 1 representing heterozygous genotypes. In the AA model,
we recode the genotypes into 0 and 1, designating 0 for heterozygous genotypes and 1 for
homozygous genotypes. Following the recoding process, the genotype matrix is diagonally
and symmetrically adjusted before being concatenated vertically and horizontally with
two zero matrices. This transformation prepares the data for the association analysis. The
association study was executed using the BLINK method [30] implemented in GAPIT v3.
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5. Conclusions

Overall, this research was successful at implementing PHS screening in quinoa and
capturing the variability across genotypes. This initial screening assisted in the identifica-
tion of natural sources of PHS tolerance within a diverse quinoa panel and constitutes the
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first step in the selection of elite parental lines for future breeding programs. The results
presented here may support efforts to grow regionally adapted quinoa varieties, which will
provide farmers with an alternative to diversify their cropping systems and eliminate the
risk of yield loss.

Future experiments looking to replicate this study could choose not to stagger the
planting date and solely rely on storing the panicles at −20 ◦C after harvest, which has
been shown to preserve dormancy status in quinoa [14,60–62]. Our research aimed to have
all the plants reach maturity by the same date to avoid differences in the post-harvest
conditions, but it was logistically challenging to harvest all the plants at once.

Future research will look at defining mathematical thresholds for PHS susceptibility
and tolerance based on the results provided in the current study. Additionally, measure-
ments such as FNs or enzyme assays that measure alpha-amylase activity may complement
our visual results and improve the current understanding of quinoa seed dormancy.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants13101297/s1. Table S1. Sprouting indices. Table S2. Slope
values. Table S3. Quinoa passport data. Figure S1. XY plots for PHS scores. Figure S2. Composites
to reduce false positives for BLINK. Figure S3. Illustration of panicle division used to determine
sprout score.
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