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Abstract: Despite the popularity of factor models with simple loading matrices, little attention has
been given to formally address the identifiability of these models beyond standard rotation-based
identification such as the positive lower triangular (PLT) constraint. To fill this gap, we review the
advantages of variance identification in simple factor analysis and introduce the generalized lower
triangular (GLT) structures. We show that the GLT assumption is an improvement over PLT without
compromise: GLT is also unique but, unlike PLT, a non-restrictive assumption. Furthermore, we
provide a simple counting rule for variance identification under GLT structures, and we demonstrate
that within this model class, the unknown number of common factors can be recovered in an
exploratory factor analysis. Our methodology is illustrated for simulated data in the context of
post-processing posterior draws in sparse Bayesian factor analysis.
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1. Introduction

Ever since the pioneering work of Thurstone (1935, 1947), factor analysis has been
a popular method to model the covariance matrix Ω of correlated, multivariate observa-
tions yt of dimension m (see, e.g., Anderson (2003) for a comprehensive review). Assum-
ing r uncorrelated factors in a basic factor model, for instance, yields the representation
Ω = ΛΛ> + Σ0, with a m× r factor loading matrix Λ and a diagonal matrix Σ0. This con-
siderable reduction in the number of parameters compared to the m(m + 1)/2 parameters
of an unconstrained covariance matrix is the main motivation for applying factor models
to covariance estimation, especially if m is large (see, among many others, Fan et al. (2008)).
In addition, shrinkage estimation has been shown to lead to very efficient covariance
estimation (see, for example, Kastner (2019) in Bayesian factor analysis and Ledoit and
Wolf (2020) in a non-Bayesian context).

In numerous applications, factor analysis reaches beyond covariance modeling (see,
among many others, Forni et al. (2009) in the context of structural factor models). From
the very beginning, the goal of factor analysis has been to extract the underlying loading
matrix Λ to understand the driving forces behind the observed correlation between the
measurements (see, e.g., Owen and Wang (2016) for a recent review). However, also in this
setting, the only source of information is the observed covariance of the data, making the
decomposition of the covariance matrix Ω into the cross-covariance matrix ΛΛ> and the
variance Σ0 of the idiosyncratic errors more challenging than estimating only Ω itself.

A huge amount of literature, dating back to Koopmans and Reiersøl (1950) and Reiersøl
(1950), has addressed this problem of identification which can be resolved only by imposing
additional structure on the factor model. Anderson and Rubin (1956) consider two kinds of
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conditions for identification. The first problem, also known as solving rotational invariance,
aims at identifying Λ, assuming that ΛΛ> is determined uniquely. This problem has
received considerable attention in econometrics, statistics, and machine learning. The
most popular condition for solving rotational invariance is to consider positive lower
triangular (PLT) loading matrices (see, e.g., Geweke and Zhou (1996); Lopes and West
(2004); West (2003)), although other strategies have been put forward (see, e.g., Neudecker
(1990), Bai and Ng (2013), Aßmann et al. (2016), Chan et al. (2018), and Williams (2020)). In
related strands, Anderson et al. (2016) examine the generic identifiability of dense vector
autoregressive systems with mixed frequencies, and their theory is also applicable to static
factor models.

In the second problem, Anderson and Rubin (1956) consider conditions for variance
identification, i.e., unique identification of ΛΛ> and Σ0 assuming that the covariance
matrix Ω = ΛΛ> + Σ0 arises from a basic factor model. Examples in Bartholomew (1987),
for instance, show that two different models could imply the same covariance matrix.
Sufficient conditions for ensuring variance identification have received much less attention
than the first problem. Conditions include the row-deletion property (Anderson and Rubin
1956) and a simple counting rule for the number of non-zero loading in each column of the
factor loading matrix in the context of dedicated factor models (Conti et al. 2014); see also
Bekker (1989) for related work.

In this work, we discuss conditions for identification based on ordered and unordered
generalized lower triangular (GLT) structures which relax the PLT condition, see Figure 1
for illustration. This concept was first introduced in the unpublished work by Frühwirth-
Schnatter and Lopes (2018) as part of an MCMC sampler for sparse Bayesian factor analysis
where the number of factors is unknown. In the present paper, GLT structures are given
a full and comprehensive mathematical treatment. It will be proven that GLT structures
simultaneously address rotational invariance and variance identification in factor models.
Variance identification relies on a counting rule for the number of non-zero elements in the
loading matrix Λ, which is a sufficient condition that extends the previous work by Sato
(1992) and Conti et al. (2014).
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Figure 1. (Left): simple ordered GLT matrix with six factors and pivot rows (l1, . . . , l6) =

(1, 3, 10, 11, 14, 17). (Center): one of the 26 · 6! corresponding simple unordered GLT matrices
with pivot rows (l1, . . . , l6) = (3, 10, 1, 11, 14, 17). (Right): a corresponding simple PLT matrix, i.e.,
enforced non-zeros on the main diagonal, with pivot rows (l1, . . . , l6) = (1, 2, 3, 4, 5, 6). Pivot rows are
marked by triangles, unconstrained loadings are marked by circles, and zero loadings are left blank.
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In addition, we show that unordered GLT structures are useful in exploratory factor
analysis where the factor dimension r is unknown. Identification of the number of factors
in applied factor analysis is a notoriously difficult problem for many latent factor models,
with considerable ambiguity about which method works best, be it BIC-type criteria for
approximate factor models (Bai and Ng 2002), marginal likelihoods for basic factor models
(Lopes and West 2004), techniques from Bayesian non-parametrics involving infinite-
dimensional factor models (Bhattacharya and Dunson 2011; Legramanti et al. 2020; Ročková
and George 2017) or more heuristic procedures for dynamic factor models (Kaufmann and
Schumacher 2019). Imposing an unordered GLT structure in exploratory factor analysis
allows us to identify the true factor dimension by spotting spurious columns in a possibly
overfitting model and to identify the true loading matrix Λ and the matrix Σ0.

The theoretical results of the present paper are exploited in related work. Relying
on ordered and unordered GLT structures, Frühwirth-Schnatter et al. (2023) develop an
efficient reversible jump MCMC sampler for sparse Bayesian factor analysis under very
general shrinkage priors when the number of factors is unknown and use the counting
rules introduced in this paper for postprocessing the posterior draws.

The current paper is structured as follows. Section 2 reviews the role of identification
in a basic factor model using illustrative examples. Section 3 introduces ordered and
unordered GLT structures, proves identification for simple GLT structures, and shows that
any full column-rank unconstrained loading matrix has a unique representation as a GLT
matrix. Section 4 addresses variance identification under GLT structures. Section 5 discusses
exploratory factor analysis under unordered GLT structures and addresses additional
identification problems that arise in a basic factor model when the number of factors is
unknown. Section 7 presents illustrative applications to simulated and empirical data.
Section 8 concludes.

2. The Basic Factor Model
2.1. Model Definition

Let (y1, . . . , yT) be a sequence of observations, where yt = (y1t, . . . , ymt)> for t =
1, . . . , T is a vector of m measurements assumed to arise from a multivariate normal distri-
bution, yt ∼ Nm(0, Ω), with zero mean and covariance matrix Ω. In factor analysis, the
correlation among the measurements in yt is assumed to be driven by a latent r-variate
random variable ft = ( f1t, . . . , frt)>, the so-called common factors, through the following
observation equation:

yt = Λft + εt, (1)

where the m × r matrix Λ containing the factor loadings Λij is of full column rank,
rk (Λ) = r, equal to the factor dimension r.

In the present paper, we focus on the so-called basic factor model where the obser-
vations (y1, . . . , yT) are assumed to be iid. Furthermore, the vector εt = (ε1t, . . . , εmt)>

accounts for the independent, idiosyncratic variation in each measurement and is dis-
tributed as εt ∼ Nm(0, Σ0), with Σ0 = Diag

(
σ2

1 , . . . , σ2
m
)

being a positive definite diagonal
matrix. The common factors are orthogonal, meaning that ft ∼ Nr(0, Ir), and independent
of εt. In this case, the observation Equation (1) implies the following covariance matrix Ω,
when we integrate with respect to the latent common factors ft:

Ω = ΛΛ> + Σ0. (2)

Finally, the model assumes independence of ft and fs, ft and εs, and εt and εs for all s 6= t.
All cross-sectional dependence among the m measurements in yt is explained through
the latent common factors and the off-diagonal elements of ΛΛ> define the marginal
covariance between any two measurements yi1,t and yi2,t:

Cov(yi1,t, yi2,t) = Λi1,•Λ
>
i2,•, (3)
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where Λi,• is the ith row of Λ. Consequently, we will refer to ΛΛ> as the cross-covariance
matrix. Since the number of factors, r, is often considerably smaller than the number of
measurements, m, (2) can be seen as a parsimonious representation of the dependence
between the measurements, with considerably fewer parameters in the factor loading
matrix Λ than the m(m − 1)/2 off-diagonal elements in an unconstrained covariance
matrix Ω.

2.2. Loading Matrices with a Simple Structure

The factor loading matrices given in Figure 1 are examples of simple structures in the
sense specified by Thurstone (1947), where each variable loads only on specific factors and
factors affect only a subset of variables. In traditional factor analysis, after estimating an
identified matrix of loadings, factors are rotated so as to enhance a simple structure, the
most popular procedure being Varimax (see, e.g., Magnus and Neudecker (2019, sct. 17.14)).
In sparse Bayesian factor analysis, which will be discussed in more detail in Section 6.1,
priors are chosen that encourage automatic rotation to a simple structure (see, e.g., Ročková
and George (2017)).

Subsequently, we will make use of a representation of a factor loading matrix Λ with a
simple structure called the sparsity matrix. The sparsity matrix δ is a binary indicator matrix
of 0 s and 1 s of the same dimension as Λ and contains the information which elements
of a factor loading matrix with a simple structure are equal to 0 and which elements are
unconstrained, i.e., if δij = 0, then Λij = 0, while Λij ∈ R if δij = 1.

The sparsity matrix δ contains a lot of information about the structure of Λ (see the left-
hand matrix in Figure 1 for illustration). In total, six factors are needed to fully explain the
variation in these 22 measurements. The fifth row contains only zeros, which tells us that
measurement y5t is uncorrelated with the remaining measurements, since Cov(yit, y5t) = 0
for all i 6= 5. The measurements 1, 3, 10, 11, 14, and 17 each constitute a new factor. Hence,
the variation in the first nine measurements can be explained by at most two factors which
also load on some (but not all) of the remaining measurements. The rows which constitute
a new factor will play an instrumental role for identification in the present paper. More
specifically, the sparsity matrix on the left hand side tells us that the underlying loading
matrix Λ has an ordered GLT structure, while the matrix in the middle is one of many
unordered GLT structures that can be derived from Λ. The sparsity matrix on the right hand
side indicates that the loading matrix Λ has the commonly applied PLT structure where
the first six measurements lead the six factors. Ordered and unordered GLT structures will
be discussed in full details in Section 3.

2.3. A Brief Review of Identification When the Number of Factors Is Known

Since the factors ft are unobserved, the only information available to estimate Λ and
Σ0 is the covariance matrix Ω, which creates well-known identification issues for the basic
factor model. Consider, for example, the following factor loading matrix Λ and all loading
matrices β = ΛPαb defined as a rotation of Λ:

Λ =



λ11 0
λ21 0
λ31 0
λ41 λ42
0 λ52
0 λ62

, Pαb =

(
cos α (−1)b sin α

− sin α (−1)b cos α

)
, β =



β11 β21
β21 β22
β31 β32
β41 β42
β51 β52
β61 β62

. (4)

Then, for any α ∈ [0, 2π) and b ∈ {0, 1}, the factor loading matrix β yields the same
cross-covariance matrix for yt as Λ:

ββ> = ΛPαbP>αbΛ> = ΛΛ>. (5)
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The rotational invariance apparent in (5) holds for any basic factor model (1), as is
easily verified. Take any r× r rotation matrix P (i.e., PP> = Ir) and define the basic factor
model

f?t ∼ Nr(0, Ir), yt = βf?t + εt, εt ∼ Nm(0, Σ0), (6)

where β = ΛP and f?t = P>ft. Obviously, both models imply the same covariance Ω,
given by (2). Hence, without imposing further conditions, Λ is in general not identified
from the cross-covariance matrix ΛΛ>. The usual way of dealing with this rotational
invariance is to constrain Λ in such a way that the only possible rotation is the identity
P = Ir. For orthogonal factors, at least r(r − 1)/2 restrictions on the elements of Λ are
needed to eliminate rotational indeterminacy (Anderson and Rubin 1956).

As Anderson and Rubin (1956) point out, additional insight can be gained by compar-
ing the number of parameters in Ω, namely m(m + 1)/2, with the number of parameters
in the pair (Λ, Σ0), namely m(r + 1). If r(r − 1)/2 restrictions are imposed to eliminate
rotational indeterminacy, this yields the necessary condition (m− r)2 > m + r (see also
Anderson (2003, sct. 14.2.2)). However, this condition is by no means sufficient for identi-
fication, as will be illustrated in Example (9) below, where m = 5 and r = 2 satisfies this
condition, but identifiability fails.

A rigorous approach toward the identification of factor models was first offered by
Anderson and Rubin (1956). Assume that a pair of parameters (Λ, Σ0), where Λ is an
m× r matrix and Σ0 is a positive definite diagonal matrix, satisfying (2) is given. Let (β, Σ),
where β is an m× r matrix and Σ is a positive definite diagonal matrix, be another pair of
parameters satisfying (2). Then,

Ω = ββ> + Σ = ΛΛ> + Σ0,

and both pairs imply the same Gaussian distribution yt ∼ Nm(0, Ω) for every possible
realization yt. For an identified model, it would follow that the two pairs of parameters
are identical, i.e., β = Λ and Σ = Σ0. However, as discussed above, identification can be
achieved for a basic factor model only by imposing conditions on Λ and Σ0.

Anderson and Rubin (1956) consider two kinds of conditions for identification. First,
they consider conditions assuming that ΛΛ> and Σ0 are determined uniquely. According
to their Lemma 5.1, any alternative loading matrix β which satisfies ββ> = ΛΛ> (while
Σ = Σ0) and, consequently, implies the same covariance matrix Ω as Λ, is an orthogonal
rotation P of Λ, i.e., β = ΛP. Conditions are then imposed on the structure of Λ to solve this
rotational invariance problem (see Section 2.4 for details). Second, they consider conditions
that ensure that ΛΛ> and Σ0 are, indeed, determined uniquely. In their Theorem 5.1,
they formulate a row-deletion property as a sufficient condition to resolve the variance
identification problem and ensure unique identification of the variance decomposition
in (2) (see Section 2.5 for details). The literature on factor analysis often reduces the
identification of factor models to the first problem; however, as we will argue in the present
paper, variance identification is equally important, in particular for loading matrices with a
simple structure.

2.4. Conditions Resolving Rotational Invariance

Let us assume that variance identification holds and ΛΛ> and Σ0 are determined
uniquely from Ω. By far, the most popular constraints to deal with rotational invariance
are positive lower triangular (PLT) loading matrices, where the upper triangular part
is constrained to be zero and the main diagonal elements Λ11, . . . , Λrr of Λ are strictly
positive.1 The corresponding sparsity matrix δ also exhibits a PLT structure (see the right-
hand side of Figure 1 for illustration).

Despite its popularity, the PLT structure is restrictive, as outlined already by Jöreskog
(1969). Let ββ> be an arbitrary cross-covariance matrix with factor loading matrix β. A
PLT representation for ββ> is possible if the top r rows of β are linearly independent,
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or, equivalently, if a rotation matrix P exists such that β can be rotated into a PLT matrix
Λ = βP. However, as example (4) illustrates, this is not necessarily the case. Obviously,
Λ is not a PLT matrix, since Λ22 = 0. Any of the possible rotations β = ΛPαb have non-
zero elements above the main diagonal and are not PLT matrices either. This example
demonstrates that the PLT representation is restrictive. To circumvent this problem in
Example (4), one could reorder the measurements in an appropriate manner. However, in
applied factor analysis, such an appropriate ordering is typically not known in advance
and the choice of the first r measurements is an important modeling decision under PLT
constraints (see, e.g., Lopes and West (2004) and Carvalho et al. (2008)).

An alternative identification condition, also dating back to Anderson and Rubin (1956),
is assuming diagonality of Λ>Σ−1

0 Λ and requires the corresponding diagonal elements
d1, . . . , dr to be different. In practice, however, weak identifiability might occur if some
of the elements d1, . . . , dr are similar, even if not equal. Furthermore, in an attempt to
formalize the criteria for simplicity of Thurstone (1947), Reiersøl (1950) put forward a
condition which requires a minimum of r zero factor loadings in each column. However,
this condition rules out the existence of a “market” factor that loads on all measurements
as for the financial returns in our empirical case study in Section 7.2.

In Section 3, we discuss a new identification strategy to resolve rotational invariance
in factor models based on the concept of generalized lower triangular (GLT) structures.
Loosely speaking, GLT structures generalize PLT structures by freeing the position of the
first non-zero factor loading in each column (see the examples in Figure 1 and the loading
matrix Λ in (4)). Consequently, the use of GLT structures for rotational identification does
not imply that the first r rows of the loading matrix are linearly independent, as the use
of PLT structures would, but only that there exist r linearly independent rows in Λ. This
weakened condition hints at a wider applicability of GLT structures compared to PLT
structures. In particular, we show in Section 3.2 that a unique GLT structure Λ can be
identified from any cross-covariance matrix ββ>, provided that variance identification
holds and, consequently, ββ> itself is identified. Even if ββ> is obtained from a loading
matrix β that does not take the form of a GLT structure, such as the matrix β in (4), we
show that an orthogonal matrix G exists which represents β = ΛG> as a rotation of an
ordered GLT structure Λ and defines the unique rotation Λ = βG of β into GLT. Hence, the
GLT representation is unrestrictive in the sense of Anderson and Rubin (1956) and Jöreskog
(1969), and is a generic way to resolve rotational invariance for any factor loading matrix.

2.5. Conditions for Variance Identification

Conditions that resolve rotational invariance typically take variance identification,
i.e., identification of ΛΛ>, for granted (see, e.g., Geweke and Zhou (1996)). Variance
identification refers to the problem that the idiosyncratic variances σ2

1 , . . . , σ2
m in Σ0 are

identified only from the diagonal elements of Ω, as all elements in the cross-variance
matrix ΛΛ> are independent of the σ2

i s (see again (3)). To achieve variance identification
of σ2

i from Ωii = Λi,•Λ
>
i,• + σ2

i , all factor loadings have to be identified solely from the
off-diagonal elements of Ω. Variance identification, however, is easily violated, as the
following examples illustrate.

Let us consider a factor model with the following loading matrix (also known as a
dedicated factor model; see, e.g., Conti et al. 2014):

Λ =



λ11 0
λ21 0
λ31 0
0 λ42
0 λ52
0 λ62

. (7)
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The corresponding covariance matrix Ω is given by:

Ω =


λ2

11 + σ2
1 λ11λ21 λ11λ31

λ11λ21 λ2
21 + σ2

2 λ21λ31 0
λ11λ31 λ21λ31 λ2

31 + σ2
3

λ2
42 + σ2

4 λ42λ52 λ42λ62
0 λ42λ52 λ2

52 + σ2
5 λ52λ62

λ42λ62 λ52λ62 λ2
62 + σ2

6

. (8)

Let us assume that the sparsity matrix δ of Λ is given (i.e., we know which elements in
(7) are zero), but the specific values of the unconstrained loadings (λ11, . . . , λ62) are un-
known. An interesting question is the following. Knowing Ω and δ, can the unconstrained
loadings λ11, . . . , λ62 and the idiosyncratic variances σ2

1 , . . . , σ2
m be identified uniquely?

Given Ω, the three nonzero covariances Cov(y1t, y2t) = λ11λ21, Cov(y1t, y3t) = λ11λ31
and Cov(y2t, y3t) = λ21λ31 are available to identify the three factor loadings (λ11, λ21, λ31).
Similarly, the three nonzero covariances Cov(y4t, y5t) = λ42λ52, Cov(y4t, y6t) = λ42λ62 and
Cov(y5t, y6t) = λ52λ62 are available to identify the factor loadings (λ42, λ52, λ62). Hence,
variance identification holds. However, when we remove the last measurement from the
loading factor matrix defined in (7), we obtain

Λ =


λ11 0
λ21 0
λ31 0
0 λ42
0 λ52

, (9)

and the corresponding covariance matrix Ω reads:

Ω =


λ2

11 + σ2
1 λ11λ21 λ11λ31

λ11λ21 λ2
21 + σ2

2 λ21λ31 0
λ11λ31 λ21λ31 λ2

31 + σ2
3

λ2
42 + σ2

4 λ42λ52
0 λ42λ52 λ2

52 + σ2
5

.

While the three factor loadings (λ11, λ21, λ31) are still identified from the off-diagonal
elements of Ω as before, variance identification of σ2

4 and σ2
5 fails. Since Cov(y4t, y5t) =

λ42λ52 is the only non-zero element that depends on the loadings λ42 and λ52, infinitely
many different parameters (λ42, λ52, σ2

4 , σ2
5 ) imply the same covariance matrix Ω.

From these considerations, it is evident that a minimum of three non-zero loadings is
necessary in each column to achieve variance identification, a condition which dates back
to Anderson and Rubin (1956). At the same time, this condition is not sufficient. For illustra-
tion, consider the rotation β = ΛPαb of the loading matrix Λ in (9) with α 6= {0, π

2 , π, 3π
2 },

where all elements of the corresponding sparsity matrix are equal to 1. Although each
column of β has six non-zero elements, variance identification obviously does not hold.

For more general loading matrices, variance identification is not as easily verified as
for these examples and we rely in the present paper on the row-deletion property introduced
by Anderson and Rubin (1956).

Definition 1 (Row-deletion property AR (Anderson and Rubin 1956)). An m × r factor
loading matrix Λ satisfies the row-deletion property if the following condition is satisfied: whenever
an arbitrary row is deleted from Λ, two disjoint submatrices of rank r remain.

Anderson and Rubin (1956, Theorem 5.1) prove that the row-deletion property is a
sufficient condition for the identification of ΛΛ> and Σ0 from the marginal covariance ma-
trix Ω given in (2). For any (not necessarily GLT) factor loading matrix Λ, the row-deletion
property AR can be trivially tested by a step-by-step analysis, where every single row of Λ
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is sequentially deleted and the two distinct submatrices are determined from examining the
remaining matrix (Hayashi and Marcoulides 2006). However, this procedure is inefficient
in higher dimensions and simpler conditions for verifying variance identification under
the row-deletion property AR are warranted.

The literature provides necessary conditions for AR that are based on counting the
number of non-zero factor loadings in Λ, such as: for every nonsingular r-dimensional
square matrix G, the matrix β = ΛG contains at least three nonzero factor loadings in each
column, and at least five nonzero factor loadings in each pair of columns (Anderson and
Rubin 1956). Sato (1992, Theorem 3.3) extends these necessary conditions in the following
way: every subset of 1 ≤ q ≤ r columns of β = ΛG contains at least 2q + 1 nonzero
factor loadings for every nonsingular matrix G. We call this the 3579 counting rule for
obvious reasons.

For illustration, apply the 3579 counting rule to all rotations β = ΛPαb of the loading
matrix Λ in Example (7) for which we already verified variance identification. We find that
the counting rules are satisfied for all rotations β, and one might wonder if the 3579 counting
rule can also lead to a sufficient criterion for variance identification under AR.

Sufficiency of counting rules was proven by Conti et al. (2014) in the context of a
dedicated factor model, where the factor loading matrix Λ has a perfect simple structure,
i.e., each measurement yit loads on at most one factor, as in (7) and (9); however, the sparsity
matrix δ, i.e., the exact position of the non-zero elements, is unknown. Conti et al. (2014)
consider a dedicated factor model with correlated factors, ft ∼ Nr(0, R), and prove that
the following conditions are both necessary and sufficient for uniqueness of the variance
decomposition: the correlation matrix R is of full rank, rk (R) = r, and each column of Λ

contains at least three nonzero loadings.
In the present paper, we aim for simple structures with potentially more than one non-

zero loading in each row and generalize this work to basic factor models with orthogonal
factors. We impose a GLT condition on the loading matrices Λ and provide sufficient
conditions for variance identification in Section 4. These conditions are formulated as
counting rules for the sparsity matrix δ of Λ. More specifically, if the 3579 counting rule of
Sato (1992, Theorem 3.3) holds for δ, then this is a sufficient condition for the row-deletion
property AR and, consequently, for variance identification, except for a set of measure 0.

Assuming a GLT structure also avoids the need to check the counting rule for all
rotations of a given loading matrix. For illustration, we return to example (9) and use
the counting rule of Sato (1992) to verify variance identification for β. If no condition to
resolve rotational invariance is imposed on β, then the counting rule of Sato (1992) has to
be checked not only for β, but for all rotations βG or, equivalently, for all possible rotations
ΛPαb of Λ. Nearly all rotations have five non-zero rows and do not violate the counting
rules, except for the eight rotations where (α, b) ∈ {0, π

2 , π, 3π
2 } × {0, 1} leads to trivial

rotations of Λ:
λ11 0
λ21 0
λ31 0
0 λ42
0 λ52




λ11 0
λ21 0
λ31 0
0 −λ42
0 −λ52



−λ11 0
−λ21 0
−λ31 0

0 λ42
0 λ52



−λ11 0
−λ21 0
−λ31 0

0 −λ42
0 −λ52




0 λ11
0 λ21
0 λ31

λ42 0
λ52 0




0 −λ11
0 −λ21
0 −λ31

λ42 0
λ52 0




0 λ11
0 λ21
0 λ31
−λ42 0
−λ52 0




0 −λ11
0 −λ21
0 −λ31
−λ42 0
−λ52 0

.

(10)

On the other hand, if we impose an unordered GLT structure on β, then the set of
all possible rotations βG reduces to the eight permutations in (10) and lack of variance
identification can be verified by applying the counting rule of Sato (1992) to a single one
of them.
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3. Solving Rotational Invariance through GLT Structures
3.1. Ordered and Unordered GLT Structures

In this work, we introduce a new identification strategy to resolve rotational invariance
based on the concept of generalized lower triangular (GLT) structures. Throughout this
section, we assume that variance identification holds and ΛΛ> and Σ0 are uniquely deter-
mined from Ω. First, we introduce the notion of pivot rows of a factor loading matrix Λ.2

Definition 2 (Pivot rows). Consider an m× r factor loading matrix Λ with r non-zero columns.
For each column j = 1, . . . , r of Λ, the pivot row lj is defined as the row index of the first non-zero
factor loading in column j, i.e., Λij = 0, ∀ i < lj and Λlj ,j 6= 0. The factor loading Λlj ,j is called the
leading factor loading of column j.

Conditions on the pivot rows define different structures on the factor loading matrix. If
the pivot rows lie on the main diagonal, i.e., (l1, . . . , lr) = (1, . . . , r), then the factor loading
matrix Λ exhibits a PLT structure and the leading factor loadings are equal to Λjj for all
columns j = 1, . . . , r. GLT structures also require the pivot rows (l1, . . . , lr) to be pairwise
distinct, but impose less stringent conditions on their position than a PLT structure. We
will distinguish between two types of GLT structures, namely ordered and unordered GLT
structures. In the first case, the pivots l1 < . . . < lr are ordered by size (see Definition 3),
whereas they may take arbitrary positions (l1, . . . , lr) for unordered GLT structures, as long
as they are pairwise distinct (a more formal definition is given below). Examples of all
three structures are displayed in Figure 1 for a model with r = 6 factors. Obviously, GLT
structures contain the PLT structure as the special case where lj = j for j = 1, . . . , r.

Definition 3 (Ordered GLT structures). An m× r factor loading matrix Λ with full column
rank r has an ordered GLT structure if the pivot rows l1, . . . , lr of Λ are ordered, i.e., l1 < . . . < lr,
and the leading factor loadings are positive, i.e., Λlj ,j > 0 for j = 1, . . . , r.

Since the “diagonal” loadings Λjj are allowed to be zero for an ordered GLT structure,
measurements different from the first r ones may lead the factors. For each factor j, the
leading variable is the response variable ylj ,t corresponding to the pivot row lj. From a
mathematical viewpoint, one could argue that the m measurements y1t, . . . , ymt can be
rearranged such that a PLT structure holds and the diagonal of the first r rows of Λ has
non-zero elements. However, in practice, it is not obvious which measurements are able to
constitute a new factor; in particular, if we expect the loading matrix Λ to exhibit a simple
structure, but the measurements have no natural grouping. Even if such a grouping exists,
rearranging the measurements might be challenging, if more than one factor is needed to
explain the group-specific covariance.

As opposed to PLT, under GLT structures, we may learn from the data whether the
ith row of the loading matrix is linearly independent of the previous rows 1 to i− 1. Only
in this case, the measurement yit constitutes an additional factor and row i defines the
next pivot. In the empirical case study in Section 7.2, for instance, the measurements are
grouped by industry and the pivot rows learned from the data show that this ordering is in
conflict with the PLT assumption (see also Figure 2).

Imposing an ordered GLT structure resolves rotational invariance if the pivot rows
are known. For any two ordered GLT matrices β and Λ with identical pivot rows l1, . . . , lr,
the identity β = ΛP evidently holds if P = Ir. GLT structures where the pivot rows are
unknown will be discussed in Section 3.3.

In some treatment, it is customary to impose conditions that resolve rotational in-
variance up to column and sign switching (see, e.g., Conti et al. (2014)). This trivial form
of rotational invariance does not impose any additional mathematical challenges and is
often convenient from a computational viewpoint, in particular for Bayesian inference (see
also Frühwirth-Schnatter et al. (2023)). More formally, so-called signed permutations are
introduced to permute the columns of the factor loading matrix Λ and to reverse the sign
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of all factor loadings in specific columns. Such a signed permutation β of a loading matrix
Λ is defined as

β = ΛP±Pρ, (11)

where the permutation matrix Pρ corresponds to one of the r! permutations of the r columns
of Λ and introduces column switching. The reflection matrix P± = Diag(±1, . . . ,±1)
corresponds to one of the 2r possibilities to either keep or reverse the sign of each of the r
columns of Λ and introduces sign switching. This generates a whole equivalence class of
loading matrices given by all 2rr! signed permutations β = ΛP±Pρ of Λ.

It is easy to verify how identification up to signed permutations can be achieved
for GLT structures. For r = 2, for instance, all eight signed permutations of the ordered
GLT structure Λ defined in (9) are depicted in (10). Applying all signed permutations to
an arbitrary ordered GLT structure leads to the specification of so-called unordered GLT
structures as loading matrices where the pivot rows l1, . . . , lr simply occupy r different
rows (see Definition 4).

Definition 4 (Unordered GLT structures). An m× r factor loading matrix β with full column
rank r has an unordered GLT structure if the pivot rows l1, . . . , lr of β are pairwise distinct.

In Definition 4, no order constraint is imposed on the pivot rows and no sign constraint
is imposed on the leading factor loadings. This very general structure allows us to design
highly efficient sampling schemes for Bayesian factor analysis under GLT structures (see
Frühwirth-Schnatter et al. (2023)).

For unordered GLT structures with known pivots, rotational invariance is resolved
only up to signed permutations; however, full identification can be easily obtained. Any
unordered GLT structure β has (unordered) pivot rows l1, . . . , lr occupying different rows.
The corresponding ordered GLT structure Λ is recovered from β by sorting the columns of
β such that the pivot rows of Λ are equal to the order statistics l(1) < . . . < l(r) of the pivot
rows l1, . . . , lr of β (see again Figure 1). This procedure resolves rotational invariance, since
the pivot rows l1, . . . , lr in the unordered GLT structure are distinct. Furthermore, imposing
the condition Λlj ,j > 0 in each column j resolves sign switching: if Λlj ,j < 0, then the sign
of all factor loadings Λij in column j is reversed.

3.2. Rotation into GLT

Ordered GLT structures generalize the PLT constraint, but one might wonder how
restrictive this condition still is. Theorem 1 proves that it is unrestrictive in the sense of An-
derson and Rubin (1956) and Jöreskog (1969). We show that for any basic factor model with
an unconstrained loading matrix β there exists an equivalent representation involving an
ordered GLT structure Λ, which is related to β by an orthogonal transformation, provided
that uniqueness of the variance decomposition holds. See Appendix A for a proof.

Theorem 1 (Rotation into GLT). Let β be an arbitrary loading matrix with full column rank r
and let βl,• denote the lth row of β. Then, the following statements hold:

(a) There exists an equivalent unique representation of β involving an ordered GLT structure Λ,

β = ΛG>, (12)

where G is a rotation matrix. Λ is called the GLT representation of β;
(b) To compute G from β, first find the smallest row index l1 such that the l1th row of β is not

fully zero. Next, in an iterative manner, given indices (l1, . . . , li−1) for 2 ≤ i ≤ r, find the
smallest row index li such that βl1,•, . . . , βli−1,• and βli ,• together form a linearly independent
set of vectors. After the last iteration, the rows βl1,•, . . . , βlr ,• form an r× r invertible matrix

β̃. Then, G is the ‘Q’ part of the QR-decomposition of β̃
>.3
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Does a similar result hold for PLT structures? The answer is definitely no, as has
already been established in Section 2; in (4), for example. As mentioned above, ordered
GLT structures encompass PLT structures as a special case. Hence, as a consequence of
Theorem 1, if a PLT representation Λ exists for a loading matrix β = ΛP, then the ordered
GLT representation in (12) automatically reduces to the PLT structure Λ with the “rotation
into GLT” being G = P>. On the other hand, if the ordered GLT representation Λ differs
from a PLT structure, then no equivalent PLT representation exists. Hence, forcing a
PLT structure in the representation (1) may introduce a bias in estimating the marginal
covariance matrix Ω.

In practice, the pivot rows l1, . . . , lr of a GLT structure are unknown and need to be
identified from the marginal covariance matrix Ω for a given number of factors r. Given
variance identification, i.e., assuming that the cross-covariance matrix ΛΛ> is identified,
an interesting question regarding the identification of a GLT factor model is whether Λ is
uniquely identified from ΛΛ> if the pivot rows are unknown. Non-trivial rotations Λ̃ = ΛP
of a loading matrix Λ might exist such that Λ̃Λ̃

>
= ΛΛ>, while the pivot rows l̃1, . . . , l̃r of

Λ̃ are different from the pivot rows l1, . . . , lr of Λ.
For ordered GLT structures with unknown pivots, we obtain as an immediate (and

somewhat trivial) consequence of Theorem 1 that Λ̃ is the unique ordered GLT represen-
tation of Λ, and therefore P = Ir. Indeed, when we compute the rotation matrix G in
Λ = Λ̃G> as described in Part (b), we find that the matrix β̃ is equal to the pivot rows
of Λ. Therefore, β̃

> is an upper triangular matrix of full rank and the ‘Q’ part of its QR-
decomposition is equal to the identity matrix. Since Λ = Λ̃P> and rotation into GLT is
unique, we obtain that P> = G> = Ir. This insight is formalized in Corollary 1.

Corollary 1. An ordered GLT structure is uniquely identified, provided that uniqueness of the
variance decomposition holds, i.e., if Λ and Λ̃ are GLT matrices, respectively, with pivot rows
l1 < . . . < lr and l̃1 < . . . < l̃r that satisfy Λ̃Λ̃

>
= ΛΛ>, then Λ̃ = Λ and, consequently,

(l̃1, . . . , l̃r) = (l1, . . . , lr).

For unordered GLT structures with unknown pivots, the factor loading matrix Λ

is identified from ΛΛ> up to signed permutations and Λ̃ and Λ have the same pivot
rows l1, . . . , lr, provided that ΛΛ> is identified. This can be easily shown by extending
Corollary 1 to unordered GLT structures, as any signed permutation Λ̃ = ΛPρP± of

Λ is uniquely identified from Λ̃Λ̃
>

= ΛΛ>. To summarize, Theorem 1 together with
Corollary 1 establish the existence and uniqueness of GLT structures for any basic factor
model, provided that uniqueness of the variance decomposition holds.

3.3. Simple GLT Structures

In Definitions 3 and 4, “structural” zeros are introduced for a GLT structure for all
factor loading above the pivot row lj, while the factor loading Λlj ,j in the pivot row is
non-zero by definition. We call Λ a dense GLT structure if all loadings below the pivot rows
are unconstrained and can take any value in R.

A simple GLT structure results if factor loadings at unspecified places below the
pivot rows are zero and only the remaining loadings are unconstrained. As discussed in
Section 2.2, any simple structure can be characterized by the sparsity matrix δ, defined
as a binary indicator matrix of 0/1s of the same size as Λ, where δ = I(Λ 6= 0) and the
indicator function is applied element-wise. Evidently, the sparsity matrix of a GLT structure
Λ exhibits the same pivots as Λ, regardless of whether the structure is ordered or unordered
(see again Figure 1 for an illustration).

In sparse Bayesian factor analysis, single factor loadings take zero-values with positive
probability and the corresponding sparsity matrix δ is a random binary matrix that has
to be identified from the data (see Section 6.1 for more details). Identification in sparse
Bayesian factor analysis has to provide conditions under which the entire 0/1 pattern in
δ can be identified from a given covariance matrix Ω, if δ is unknown. Whether this is
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possible hinges on variance identification, i.e., whether the decomposition of Ω into ΛΛ>

and Σ0 is unique. How variance identification can be verified for simple GLT structures is
investigated in detail in Section 4. Let us assume at this point that variance identification
holds, i.e., the cross-covariance matrix ΛΛ> is identified. Then, an important step toward
the identification of a factor model with a simple structure is to verify whether the 0/1
pattern of Λ, characterized by the sparsity matrix δ, is uniquely identified from ΛΛ>. If
Λ exhibits an ordered GLT structure, then it follows immediately from Corollary 1 that
the indicator matrix δ is, indeed, uniquely identified from ΛΛ>, since Λ is identified and
δij = 0 if Λij = 0 for all i, j.

We would like to emphasize that in sparse Bayesian factor analysis with unconstrained
loading matrices Λ, this is not necessarily the case. The sparsity matrix δ is, in general, not
uniquely identified from ΛΛ>, because rotations may change the zero pattern in β = ΛP,
while ββ> = ΛΛ>. For illustration, let us return to Example (4) and assume that the
sparsity matrix δ is unknown. While δ is uniquely identified from ΛΛ> under GLT, two
distinct solutions δ exist if the loading matrix is left unconstrained and any rotation β =
ΛPαb of Λ is an admissible solution. For all rotations where (α, b) ∈ {0, π

2 , π, 3π
2 } × {0, 1},

β corresponds to one of the eight signed permutations of Λ (similar to the rotations in (10))
and δ is equal to the sparsity matrix of Λ up to column switching. For all other rotations,
all elements of β are different from zero and δ is simply a matrix of ones.

4. Variance Identification for Simple GLT Structures

As mentioned in the previous sections, conditions imposed on the structure of a factor
loading matrix Λ will resolve rotational invariance only if the uniqueness of the variance
decomposition holds and the cross-covariance matrix ΛΛ> is identified. However, such
conditions do not necessarily guarantee the uniqueness of the variance decomposition.

One exception is the popular factor analysis model where Λ takes the form of a dense
PLT matrix, where all factor loadings below the main diagonal are unconstrained and may
take any value in R. For this model, condition AR and hence variance identification holds,
except for a set of measure 0, provided that the condition

m ≥ 2r + 1 ⇐⇒ r ≤ m− 1
2

(13)

on the number of factors is satisfied for the given number m of measurements. For simple
structures variance identification is easily violated; consider, e.g., a simple PLT loading
matrix where only a single factor loading below the diagonal is nonzero in some column.

In Section 4.1, we derive sufficient conditions for variance identification of simple GLT
structures based on the 3579 counting rule of Sato (1992, Theorem 3.3). In Section 4.2, we
discuss how to verify variance identification for simple GLT structures in practice.

4.1. Counting Rules for Variance Identification

First, of all, we need not constrain the factor loading matrix to take the form of an
ordered GLT structure, since variance identification is invariant to signed permutations.
If we can verify the variance identification for a single signed permutation β = ΛP±Pρ

of a loading matrix Λ, as defined in (11), then variance identification of Λ holds, since β
and Λ imply the same cross-covariance matrix ΛΛ>. Hence, we focus in this section on
the variance identification of unordered GLT structures. We will show how to verify from
the 0/1 pattern of the sparsity matrix δ of an unordered, possibly simple GLT structure β,
whether the row-deletion property AR holds for β and all its signed permutations. Our
condition is a structural counting rule expressed solely in terms of the sparsity matrix δ
underlying β, and does not involve the values of the unconstrained factor loadings in β,
which can take any value in R.

Next, we recall the so-called extended row-deletion property in Definition 5, introduced
by Tumura and Sato (1980) which applies to arbitrary loading matrices β.
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Definition 5 (Extended row-deletion property RD(r, s)). An m× r factor loading matrix β
satisfies the row-deletion property RD(r, s) if the following condition is satisfied: whenever s ∈ N0
rows are deleted from β, then two disjoint submatrices of rank r remain.

The row-deletion property of Anderson and Rubin (1956) results as a special case
where s = 1. As will be shown in Section 5, the extended row-deletion properties RD(r, s)
for s > 1 are useful in exploratory factor analysis, when the factor dimension r is unknown.
In Definition 6, we introduce a counting rule for binary matrices.

Definition 6 (Counting rule CR(r, s)). Let δ be an m× r binary matrix. For each q = 1, . . . , r,
consider all submatrices δq,`, ` = 1, . . . , (r

q), built from q columns of δ. δ is said to satisfy the
CR(r, s) counting rule for s ∈ N0 if the matrix δq,` has at least 2`+ s nonzero rows for all (q, `).

Note that the counting rule CR(r, s), like the extended row-deletion property RD(r, s),
is invariant to signed permutations. Lemma A1 in Appendix A summarizes further useful
properties of CR(r, s).

For a given binary matrix δ of dimension m× r, let Θδ be the space generated by the
non-zero elements of all unordered simple GLT structures β with the same sparsity matrix
δ and all their 2rr!− 1 signed permutations βP±Pρ. We prove in Theorem 2 that for simple
GLT structures, the counting rule CR(r, s) and the extended row-deletion property RD(r, s)
are equivalent conditions for all simple loading matrices in Θδ with the same sparsity
matrix δ, except for a set of measure 0.

Theorem 2. Let δ be a binary m× r matrix with an unordered GLT structure. Then, the follow-
ing holds:

(a) If δ violates the counting rule CR(r, s), then the extended row-deletion property RD(r, s) is
violated for all simple structures β ∈ Θδ generated by δ;

(b) If δ satisfies the counting rule CR(r, s), then the extended row-deletion property RD(r, s)
holds for all simple structures β ∈ Θδ except for a set of measure 0.

See Appendix A for a proof. The special case s = 1 is relevant for verifying the row-deletion
property AR. It proves that, for unordered simple GLT structures, the 3579 counting rule of
Sato (1992) is not only a necessary, but also a sufficient condition for AR to hold. In addition,
this means that the counting rule needs to be verified only for the sparsity matrix δ of a
single signed permutation β = ΛP±Pρ rather than for every non-singular matrix G. This
result is summarized in Corollary 2.

Corollary 2 (Variance identification rule for simple GLT structures). For any unordered
simple GLT structure β of size m× r, the following holds:

(a) If a binary matrix δ of size m× r satisfies the 3579 counting rule, i.e., every column of δ has
at least three non-zero elements, every pair of columns at least five, and, more generally, every
possible combination of q = 3, . . . , r columns has at least 2q + 1 non-zero elements, then
variance identification is given for all simple unordered GLT structures β ∈ Θδ except for
a set of measure 0; i.e., for any other factor decomposition of the marginal covariance matrix
Ω = ββ> + Σ = β̃β̃

>
+ Σ̃, where β̃ is an unordered GLT matrix, it follows that Σ̃ = Σ, i.e.,

β̃β̃
>
= ββ>, and β̃ = βP±Pρ.

(b) If a binary matrix δ of size m× r violates the 3579 counting rule, then for all β ∈ Θδ, the
row-deletion property AR does not hold.

(c) For r = 1, r = 2, and r = 3, condition CR(r, 1) is both sufficient and necessary for
variance identification.

A few comments are in order. If δ satisfies CR(r, 1), then AR holds for all β ∈ Θδ and
a sufficient condition for variance identification is satisfied. As shown by Anderson and
Rubin (1956), AR is a necessary condition for variance identification only for r = 1 and
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r = 2. Tumura and Sato (1980, Theorem 3) show the same for r = 3, provided that m ≥ 7. It
follows that CR(r, 1) is a necessary and sufficient condition for variance identification for all
models summarized in (c). In all other cases, variance identification may hold for loading
matrices β ∈ Θδ, even if δ violates CR(r, 1).

The definition of unordered GLT structures given in Section 3 imposes no condition
on the position of the pivot rows l1, . . . , lr beyond the assumption that they are distinct.
This may lead to GLT structures that can never satisfy the 3579 rule, even if all elements
below the pivot rows are non-zero. Consider, for instance, a GLT matrix with the pivot
row in column r being equal to lr = m− 1. The loading matrix has at most two nonzero
elements in column r and violates the necessary condition for variance identification. This
example shows that there is an upper bound for the pivot elements beyond which the 3579
rule can never hold. This insight is formalized in Definition 7.

Definition 7. An unordered GLT structure β fulfills condition GLT-AR, if the pivots l1, . . . , lr
satisfy the following condition, where zj is the rank of lj in the ordered sequence l(1) < . . . < l(r):

lj ≤ m− 2(r− zj + 1). (14)

For an ordered GLT structure Λ with pivots l1 < . . . < lr, condition GLT-AR reduces to:

lj ≤ m− 2(r− j + 1). (15)

For the special case of a PLT structure where lj = j, condition (15) reduces to the upper
bound for the number of factors given in (13).

For dense GLT structures, condition GLT-AR is a sufficient condition for AR. However,
for simple GLT structures with zeros below the pivot rows, GLT-AR is only a necessary
condition for AR, as discussed above for an example, and the 3579 rule has to be verified
explicitly. Very conveniently for verifying variance identification in factor analysis based
on GLT structures, Theorem 2 and Corollary 2 operate solely on the sparsity matrix δ
summarizing the simple structure in β.

4.2. Variance Identification in Practice

To verify CR(r, s) in practice, all submatrices of q columns have to be extracted from
the sparsity matrix δ to verify if at least 2q + 1 rows of this submatrix are non-zero. For
q = 1, 2, r− 1, r, this condition is easily verified from simple functionals of δ; see Corollary 3,
which follows immediately from Theorem 2 (see Appendix A for details).

Corollary 3 (Simple counting rules for CR(r, s)). Let δ be a m× r unordered GLT sparsity
matrix. The following conditions on δ are necessary for CR(r, s) to hold:

1r×m · δ + δ>(1m×r − δ) ≥ 4 + s− 2Ir, (16)

11×m · I(δ? > 0) ≥ 2r + s, δ? = δ · 1r×1, (17)

11×m · I(δ? > 0) ≥ 2(r− 1) + s, δ? = (1m×m − Im) · δ, (18)

where the indicator function I(δ? > 0) is applied element-wise and 1n×k denotes an n× k matrix
of ones. For r ≤ 4, these conditions are also sufficient for CR(r, s) to hold for δ.

Using Corollary 3 for s = 1, one can efficiently verify if the 3579 counting rule and
hence the row-deletion property AR holds for simple unordered GLT factor models with
up to four (r ≤ 4) factors. For models with more than four factors (r > 4), a more
elaborated strategy is needed. After checking the conditions of Corollary 3, CR(r, s) could
be verified for a given binary matrix δ by iterating over all remaining r!/(q!(r− q)!) subsets
of q = 3, . . . , r− 2 columns of δ. While this is a finite task, such a naïve approach may need
to visit 2r − 1 matrices in order to make a decision and the combinatorial explosion quickly
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becomes an issue in practice as r increases. Recent work by Hosszejni and Frühwirth-
Schnatter (2022) establishes the applicability of this framework for large models.4

5. Identification in Exploratory Factor Analysis

In this section, we discuss how the concept of GLT structures is helpful for addressing
identification problems in exploratory factor analysis.

5.1. Exploratory Factor Analysis

Consider data {y1, . . . , yT} from a zero-mean multivariate Gaussian distribution,
where an investigator wants to perform factor analysis since she expects that the covariances
of m measurements are driven by common factors. In practice, the number of factors is
often unknown and it may be uncertain whether all measurements are actually correlated.
It is then common to employ exploratory factor analysis (EFA) by fitting the following basic
factor model with an assumed maximum number of factors, H, to all measurements in yt:

yt = βHft + εt, εt ∼ Nm(0, ΣH), (19)

where βH is an m× H loading matrix, not necessarily of full column rank, ft ∼ NH(0, IH),
and ΣH is a diagonal matrix with strictly positive entries. The EFA model (19) is potentially
overfitting in two ways. First, if some measurements in yt are uncorrelated with the
remaining measurements, then βH allows for too many non-zero rows. However, as will
be discussed in Section 5.3, such irrelevant measurements are easily identified. Second,
the assumed number of factors H is possibly larger than the true number of factors r, i.e.,
βH has too many columns. The goal is then to extract the true number of factors from the
non-zero columns of βH , collected in a m× k submatrix βk of rank k. Before we discuss
this challenging problem in more detail in Section 6.3, additional identification issues for
overfitting factor models have to be addressed.

We assume that the data are generated by a basic factor model with error covariance
matrix Σ0 and a loading matrix Λ of factor dimension equal to r. Therefore, yt ∼ Nm(0, Ω),
where the covariance matrix Ω has a representation as in (2):

Ω = ΛΛ> + Σ0. (20)

Furthermore, we assume that variance identification holds for (20) and the true cross-
correlation matrix ΛΛ> as well as Σ0 are uniquely determined from Ω.

Two questions arise in this context and can be answered based on Reiersøl (1950). First,
under which conditions the covariance matrix is implied by the loading matrix βk extracted
from the EFA model (19) equivalent to the true covariance matrix of the data, i.e., when
does the following hold (note that Σk = ΣH):

βkβ>k + Σk = Ω? (21)

Second, if such an equivalent representation exists, does variance identification still hold,
i.e., can βkβ>k and Σk be uniquely determined from (21)?

It follows from Reiersøl (1950) that no equivalent representation exists, if k ≤ H < r.
Reiersøl (1950) show that the true number of factors r is equal to the smallest value k that
satisfies (21). Hence, if the assumed number of factors H in the EFA model is equal to the
true number of factors r and βH has full column rank, then such a representation obviously
exists. Since variance identification of (20) holds, we obtain that βH β>H = βrβ>r = ΛΛ>

and ΣH = Σr = Σ0. Consequently, βH = βr = ΛP is a rotation of Λ.
Equivalent representations also exist for H ≥ k > r, in which case the EFA model is

overfitting. It follows from Reiersøl (1950, Theorem 3.3) that any structure (Λ, Σ0) in a basic
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factor model of factor dimension r creates infinitely many solutions (βk, Σk) of dimension
k = r + 1, . . . , H which imply the same covariance matrix Ω as (Λ, Σ0), i.e.,

Ω = βkβ>k + Σk = ΛΛ> + Σ0, (22)

where the rank of the loading matrix βk is equal to k > r and Σk is a positive definite matrix
different from Σ0 (see also Geweke and Singleton (1980)). Since infinitely many solutions
can be created that differ in Σk, the decomposition (22) is no longer variance identified.

For illustration, we return to Example (4), where r = 2, and construct infinitely many
solutions for k = 3. The first two columns of β3 are equal to Λ, the third column is a
so-called spurious factor with a single non-zero loading, and Σ3 is defined as follows:

β3 =



λ11 0 0
λ21 0 β23
λ31 0 0
λ41 λ42 0
0 λ52 0
0 λ62 0

, Σ3 = Diag
(

σ2
1 , σ2

2 − β2
23, σ2

3 , σ2
4 , σ2

5 , σ2
6

)
. (23)

We can place the spurious factor loading βi3 in any row i ∈ {1, . . . , m} and it can
take any value satisfying 0 < β2

i3 < σ2
i . It is easy to verify that any such pair (β3, Σ3)

indeed implies the same covariance matrix Ω as the pair (Λ, Σ0). Therefore, while variance
identification holds for r = 2, it fails for k = 3, because infinitely many solutions with
different error covariance matrices Σ3 are available, depending on the choice of i and the
spurious factor loading βi3. On the other hand, the spurious column is easily spotted
for any such solution β3 and the true loading matrix Λ is clearly identified from the two
remaining columns. One may even recover Σ0, by adding β2

i3 to the ith diagonal element
of Σk.

So far in this section, we imposed no conditions that resolve rotational invariance,
either on the true loading matrix Λ or on the overfitting loading matrix β3. In this case,
additional solutions are obtained by rotating the loading matrices β3 in (23), e.g.,

β̃3 =



0 0 λ11
β23 0 λ21
0 0 λ31
0 −λ42 λ41
0 −λ52 0
0 −λ62 0

, ˜̃β3 =



−λ11 sin α 0 λ11 cos α
β23 cos α− λ21 sin α 0 λ21 cos α
−λ31 sin α 0 λ31 cos α
−λ41 sin α λ42 λ41 cos α

0 λ52 0
0 λ62 0

, (24)

both combined with the same Σ3 as in (23). The first solution β̃3 is a signed permutation of
β3, while the second solution ˜̃β3 combines a signed permutation of β3 with a rotation of
the spurious and Λ’s first column involving Pαb. In β̃3, the spurious column is still easily
spotted and the true loading matrix Λ is identified from the two remaining columns of β3
up to column and sign switching.5 However, for ˜̃β3 the presence of a spurious column is no
longer obvious. While the second column of Λ still pops up, the first column is disguised.

To summarize, further identifiability problems arise for r < k ≤ H beyond the
ones discussed in the previous sections for a basic factor model where r is known. We
discuss these problems in a more formal manner in Section 5.2 and investigate the class of
overfitting GLT structures where an unordered GLT condition is imposed on the non-zero
columns βk of the loading matrix βH in the EFA model (19). We apply results by Tumura
and Sato (1980) to this class and prove that under this condition, (a) spurious factors in
βk are as easily spotted as in β̃3, and (b) the non-spurious columns are an unordered GLT
representation of the true loading matrix Λ. Our strategy relies on the concept of extended
variance identification and the extended row-deletion property introduced by Tumura and
Sato (1980), where more than one row is deleted from the loading matrix. The extended
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counting rule RD(r, s) with s > 1 introduced in Definition 5 in Section 4 will be useful in
this context.

5.2. “Revealing the Truth” in an Overfitting EFA Model

As illustrated in Section 5.1, fundamental identifiability problems arise if an overfitting
EFA model with r < k ≤ H is fitted to data arising from a basic factor model of factor
dimension r. The question arises if we could, nevertheless, recover the true loading
matrix Λ from the non-zero columns βk of βH . We will show how this can be achieved
mathematically by combining the important work by Tumura and Sato (1980) with the
framework of GLT structures.

We have demonstrated in Section 5.1, using examples (23) and (24) for a model where
k = r + 1, how to construct infinitely many solutions (βk, Σk) with the same covariance
matrix Ω = βkβ>k + Σk as the true factor model. First, set the first r columns of βk to Λ

and append a spurious column to its right with the single non-zero loading βlk ,k lying in
any row lk ∈ {1, . . . , m} taking any value that satisfies 0 < β2

lk ,k < σ2
lk

. Then, reduce the
idiosyncratic variance in row lk to σ2

lk
− β2

lk ,k, and finally apply an arbitrary rotation P:

βk =

 Λ

∣∣∣∣∣∣
0

βlk ,k
0

P, Σk = Diag
(

σ2
1 , . . . , σ2

lk
− β2

lk ,k, . . . , σ2
m

)
. (25)

The following questions arise: under which conditions is (25) an exhaustive represen-
tation of all possible solutions βk of rank k where the degree of overfitting defined as s = k− r
is equal to one? How can all possible solutions βk be represented if s > 1?

Such identifiability problems in overfitting EFA models have been analyzed in depth
by Tumura and Sato (1980). They provide a general representation of the factor loading
matrix βk in an overfitting representation (22) with k > r. In addition, they show that a
stronger condition than RD(r, 1) is needed for Λ in the underlying variance decomposition
(21) to ensure that only spurious factors, and no additional common factors, are present
in (21).

Theorem 3. (Tumura and Sato 1980, Theorem 1) Suppose that Ω has a decomposition as in (20)
with r factors, and that for some S ∈ N with 2r + S + 1 ≤ m the extended row-deletion property
RD(r, 1 + S) holds for Λ. If Ω has another decomposition such that Ω = βkβ>k + Σk where βk is
an m× (r + s)-matrix of rank k = r + s with 1 ≤ s ≤ S, then there exists an orthogonal matrix
Tk of rank k such that

βkTk =
(

Λ Ms
)
, Σk = Σ0 −MsM>s , (26)

where the off-diagonal elements of MsM>s are zero.

The m× s-matrix Ms is a so-called spurious factor loading matrix that does not contribute
to explaining the covariance in yt, since

βkβ>k + Σk = βkTkT>k β>k + Σk = ΛΛ> + MsM>s + (Σ0 −MsM>s ) = ΛΛ> + Σ0 = Ω.

While this theorem is an important result, Tumura and Sato (1980) did not impose
conditions that resolve rotational invariance, either on the true loading matrix Λ or on the
overfitting loading matrix βk. However, without such conditions, the factor loading matrix
βk in an overfitting EFA model does not immediately “reveal the truth”, as the separation
of βk into the true factor loading matrix Λ and the spurious factor loading matrix Ms is
possible only up to an arbitrary rotation Tk of βk.

However, the “truth” in an overfitting EFA model can be recovered if Tumura and
Sato (1980, Theorem 1) is applied within the class of unordered GLT structures introduced
in this paper. Under the condition that Λ is a GLT structure which satisfies the extended



Econometrics 2023, 11, 26 18 of 30

row-deletion property RD(r, 1 + S), we prove in Theorem 4 the following result. If the
factor loading matrix βk in an overfitting EFA model satisfies the unordered GLT condition,
then βk has a representation, where the rotation in (26) reduces to a signed permutation
Tk = P±Pρ. Furthermore, the spurious factor loading matrix Ms takes the form of a spurious
unordered GLT structure, introduced in Definition 8.

Definition 8 (Spurious unordered GLT structures). An m× s unordered GLT structure Ms
with pivots rows {n1, . . . , ns} is a spurious unordered GLT structure if all columns exhibit a single
nonzero loading in the corresponding pivot row.

Theorem 4. Let Λ be an m× r factor loading matrix with an unordered GLT structure with pivot
rows l1, . . . , lr and assume that Λ obeys the extended row-deletion property RD(r, 1 + S) for some
S ∈ N. Assume that the m× k matrix βk in the EFA variance decomposition Ω = βkβ>k + Σk is
of rank rk (βk) = k = r + s, where 1 ≤ s ≤ S. If an unordered GLT condition is imposed on βk,
then (26) reduces to

βkP±Pρ =
(

Λ Ms
)
, Σk = Σ0 −Ms(Ms)

>,

where Ms is a spurious unordered GLT structure with pivot rows n1, . . . , ns which are distinct from
the r pivot rows in Λ. Hence, r columns of βk are a signed permutation of the true loading matrix
Λ, while the remaining s columns of βk are a spurious unordered GLT structure with pivots rows
n1, . . . , ns.

See Appendix A for a proof. Theorem 4 is employed in Section 6.3 to recover the number of
factors from a Bayesian inference of the EFA model (19) using sparsity priors.

5.3. Identifying Irrelevant Variables

In applied factor analysis, the assumption that each measurement yit is correlated with
at least one other measurement is too restrictive, because irrelevant measurements might be
present that are uncorrelated with all the other measurements. As argued by Boivin and Ng
(2006) and Kaufmann and Schumacher (2017) for various latent factor models, it is useful to
identify such variables. Within the framework of sparse Bayesian factor analysis, irrelevant
variables are identified in Kaufmann and Schumacher (2017) by exploring the sparsity
matrix δ of a factor loading matrix Λ with respect to zero rows. Since Cov(yit, ylt) = 0
for all l 6= i if the entire ith row of Λ is zero (see also (3)), the presence of m0 irrelevant
measurements causes the corresponding m0 rows of Λ and δ to be zero.

Let us investigate the identification of the zero rows in Λ and the corresponding
sparsity matrix δ for the case that the assumed and the true number of factors in the EFA
model (19) are identical, i.e., H = r. Provided that variance identification of (20) in the
underlying model holds, we obtain that βr = ΛP is a rotation of Λ. Therefore, the position
of the zero rows both in Λ and βr are identical and all irrelevant variables can be identified
from βr or the corresponding sparsity matrix δr, regardless of the conditions imposed to
resolve rotational invariance.

To ensure variance identification under condition AR, the loading matrix Λ has to
satisfy the row-deletion property RD(r, 1). If Λ contains m0 zero row, then a necessary
condition for RD(r, 1) is that 2r + 1 ≤ m−m0. This leads to a tighter bound for r than (13),
namely

m−m0 ≥ 2r + 1 ⇐⇒ r ≤ m−m0 − 1
2

. (27)

Hence, there is a trade-off between m0 and r: the more irrelevant measurements are included
among the m measuements, the smaller the maximum number of factors r can be.
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6. Identifying the Number of Factors in Sparse Bayesian Factor Analysis
6.1. Sparse Bayesian Factor Analysis

Sparse Bayesian factor analysis operates in the exploratory factor analysis (EFA) model
(19), which allows up to H factors, but the true factor dimension r is unknown (see, among
many others, Ročková and George (2017), Frühwirth-Schnatter and Lopes (2018), and
Ohn and Kim (2022)). Often, spike-and-slab priors are employed, where the elements βij
of the loading matrix βH in the EFA model a priori are allowed to be exactly zero with
positive probability. This is achieved through a suitable prior on the corresponding m× H
sparsity matrix δH . In each column j of δH , the binary indicators δij are active a priori
with a column-specific probability τj, i.e., Pr(δij = 1|τj) = τj for i = 1, . . . , m, where the
probabilities τ1, . . . , τH arise from an exchangeable shrinkage process (ESP) prior:

τj|H ∼ B
(

γ
α

H
, γ
)

, j = 1, . . . , H. (28)

If γ = 1, then (28) is a so-called one-parameter-beta (1PB) prior, otherwise (28) is a so-called
two-parameter-beta (2PB) prior. The 1PB prior converges to the Indian buffet process prior
(Teh et al. 2007) for H → ∞.

This specification leads to a Dirac-spike-and-slab prior for the loadings βij in βH ,

βij|κ, σ2
i , τj ∼ (1− τj)∆0 + τjN

(
0, κσ2

i
)
, (29)

where a Gaussian slab distribution is assumed and the scale of the prior depends on the
idiosyncratic variance σ2

i and a random global shrinkage parameter κ. The priors σ2
i ∼

G−1(cσ, bσ) and κ ∼ G−1(cκ , bκ) are assumed for σ2
1 , . . . , σ2

m and κ. Other slab distributions
are possible (see, e.g., Zhao et al. (2016) and Frühwirth-Schnatter et al. (2023)).

As shown by Frühwirth-Schnatter (2023), the ESP prior (28) has a representation as
a cumulative shrinkage process (CUSP) prior (Legramanti et al. 2020). For the 1PB prior,
e.g., the decreasing order statistics τ(1) > . . . > τ(H) of the slab probabilities, τ1, . . . , τH can
be expressed by the following multiplicative (stick-breaking) representation in terms of
independent beta random variables, i.e., for j = 1, . . . , H:

τ(j) =
j

∏
`=1

ν`, ν` ∼ B
(

α
H − `+ 1

H
, 1
)

, ` = 1, . . . , H. (30)

With the largest slab probability following τ(1) ∼ B(α, 1), the subsequent slab proba-
bilities τ(j) = τ(j−1)νj are rapidly converging to zero as j increases. Hence, the columns of
the loading matrix βH (if permuted according to the order statistics τ(1) > . . . > τ(H)) are
increasingly pulled toward 0 and the ESP prior induces column sparsity, with the number
of non-zero columns k in βH being considerably smaller than H a priori.

The hyperparameters α and γ of the ESP prior are instrumental in controlling prior
column sparsity and retrieving the number of factors from an EFA model (see Section 6.3)
and are learned from the data under the priors α ∼ G(aα, bα) and γ ∼ G(aγ, bγ).

6.2. MCMC Estimation

For a given choice of hyperparameters (cσ, bσ, cκ , bκ , aα, bα, aγ, bγ), Markov chain
Monte Carlo (MCMC) methods are applied to sample from the posterior distribution
p(βH , ΣH , δH |y), given T multivariate observations y = (y1, . . . , yT) (see, e.g., Kaufmann
and Schumacher (2019) among many others). In Frühwirth-Schnatter et al. (2023), such a
sampler is developed for GLT factor models. To move between factor models of different
factor dimensions, Frühwirth-Schnatter et al. (2023) exploit Theorem 4 proven in the present
paper to add and delete spurious columns through a reversible jump MCMC (RJMCMC)
sampler. We refer to Frühwirth-Schnatter et al. (2023) for full details of this algorithm.
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6.3. Identifying the Number of Factors

Identification of the number of factors is a notoriously difficult problem which is
closely related to the intrinsic identifiability problems of overfitting EFA models discussed
in Section 5.2. Any EFA model, where H is overfitting the true number of factors, may
generate decompositions of Ω which contain spurious columns. This ambiguity makes
estimating the number of factors in applied factor analysis challenging.

A common procedure is to apply an incremental procedure, by increasing the max-
imum number of factors H step by step, and to use model selection criteria such as in-
formation criteria (Aßmann et al. 2016; Bai and Ng 2002) or Bayes factors (Lee and Song
2002; Lopes and West 2004) to choose the number of factors. Kaufmann and Schumacher
(2019) estimate a sparse dynamic factor model with an increasing number H of potential
factors and use so-called “extracted factor representation” during post-processing MCMC
draws to select the number of factors. In sparse Bayesian analysis, the number of factors is
usually estimated in one sweep jointly with all unknown parameters using shrinkage priors,
such as the ESP prior (28). For instance, based on the prior multiplicative gamma process
(Bhattacharya and Dunson 2011), Carvalho et al. (2008) infer r as the number columns that
remain after removing columns in the loading matrix with a few nonzero elements in a
fairly heuristic manner.

In the present paper, we suggest a one-sweep approach within the framework of
sparse Bayesian inference of the overfitting EFA model (19). We identify the number of
factors by post-processing the posterior draws of the matrix βk containing the k nonzero
columns of the loading matrix βH , where we rely on the insights gained in Section 5.2
regarding the role of variance identification and spurious columns.6

Analyzing the problem from the viewpoint of variance identification is helpful in
understanding some of the fundamental difficulties. If the number of factors is unknown,
then we need to find a decomposition of Ω as in (21), where βkβ>k is identified. If variance
identification holds, then (20) and (21) are equivalent and unique. Therefore, k = r, and we
can identify the true loading matrix Λ = βrP from βr up to a rotation P. On the other hand,
for any decomposition (21) which is not variance identified, we can deduce that k is bigger
than the true number of factors.

In an overfitting EFA model, many posterior draws with k nonzero columns will
have a representation as in Theorem 3 or Theorem 4, and contain a submatrix Ms with
s spurious columns. Hence, these draws violate even the most simple conditions for
variance identification. As a consequence, the number of non-zero columns k overestimates
r since k = r + s or, equivalently, r = k− s. These insights show that verifying variance
identification is essential for recovering the true number of factors, and this has implications
for applied factor analysis. Most importantly, methods of inferring the number of factors
from the rank or the number of non-zero columns of the posterior draws βH in an overfitting
factor model are prone to overestimate the number of factors.

In addition, we operate under the GLT condition and rely on the mathematically
justified representation of βk in an overfitting EFA model provided by Theorem 4. Under
an unordered GLT condition, spurious columns among the non-zero columns βk are easily
spotted, as the m× s spurious factor loading matrix Ms has an extremely simple structure
with a single non-zero loading in each column.7 Furthermore, the remaining columns
βr are an unordered GLT representation of the true factor loading matrix Λ, if variance
identification holds and βrβ>r is identified.

These considerations imply the following strategy for postprocessing the posterior
draws obtained by the RJMCMC procedure of Frühwirth-Schnatter et al. (2023). For
each posterior draw of the non-zero columns βk of βH , the active columns βr (i.e., all
columns with at least two non-zero elements) and the corresponding sparsity matrix δr
are determined. If δr satisfies the counting rule CR(r, 1), then βr is a signed permutation
of Λ by virtue of Theorem 4. The corresponding error covariance matrix is equal to Σr =
Σk + Ms(Ms)>, where Ms contains the spurious columns of βk. These variance identified
draws are kept for further inference and the number of columns of βr is considered a
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posterior draw of the unknown factor dimension r. The posterior distribution p(r|y) can
be estimated from these draws and the posterior mode provides a point estimator of the
number of factors r.

The proposed strategy of recovering the number of factors through a sparse Bayesian
analysis of an overfitting EFA model is illustrated in Section 7 for simulated as well as real
data (see also Frühwirth-Schnatter et al. (2023) for further applications).

7. Illustrative Applications
7.1. An Illustrative Simulation Study

For illustration, we perform a simulation study with m = 30 and T = 150, and consider
three different scenarios for the factor loading matrix Λ. In all three scenarios, rtrue = 5
factors are assumed, but the sparsity matrix δ is quite different. The first setting is a dedicated
factor model, where the first six variables load on factor 1, the next six variables load on
factor 2, and so forth, and the final six variables load on factor 5. The second scenario is
a block factor model, where the first 15 observations load only on factors 1 and 2, while
the remaining 15 observations only load on factors 3, 4, and 5, and the covariance matrix
has a block-diagonal structure. All factor loadings within a block are non-zero. The third
scenario is a dense factor loading matrix without any zero loadings. For all three scenarios,
non-zero factor loadings are drawn as λij = (−1)bij(1 + 0.1N (0, 1)), where the exponent
bij is a binary variable with Pr(bij = 1) = 0.2. With the exception of the first scenario, no
GLT condition is imposed on the simulated loading matrix. In all three scenarios, Σ0 = I. A
total of 21 data sets are sampled under these three scenarios from the basic factor model (1).

The overfitting exploratory factor model (19) with the maximum number of factors
H = 14 being equal to the upper bound defined in (13) is fitted to each simulated data set.
Regarding rotational invariance, we compare a model where the non-zero columns of the
factor loading matrix βk extracted from βH obey an unordered GLT structure with a model
where βH is left unconstrained.

Inference is based on the Bayesian approach described in Section 6.1. We consider
both a 1PB and a 2PB shrinkage prior on the sparsity matrix δH , and select the following
priors: σ2

i ∼ G−1(2.5, 1.5), i = 1, . . . , 30, κ ∼ G−1(5, 25), α ∼ G(6, 2) and γ ∼ G(6, 6). Using
the RJMCMC algorithm of Frühwirth-Schnatter et al. (2023), 3000 posterior draws are
generated after a burn-in of 2000 draws.8 As discussed in Section 6.3, the active columns βr
are retrieved for each MCMC draw of the loading matrix βH . Under the GLT condition, βr
is checked for variance identification using the counting rule CR(r, 1). For sparse Bayesian
factor analysis with unstructured loading matrices, the draws of βr are not screened for
variance identification and inference is based on all draws.

For each of the 21 simulated data sets, we evaluate all 12 combinations of data scenar-
ios, structural constraints (GLT versus unconstrained) and priors on the sparsity matrix
(1PB versus 2PB) through Monte Carlo estimates of the following statistics: to assess the
performance in estimating the true number rtrue of factors, we consider the mode r̂ of the
posterior distribution p(r|y) as a point estimator of r. In addition, we consider the mag-
nitude of the posterior ordinate p(r̂ = rtrue|y) as a measure of how strongly the posterior
distribution concentrates around the true value. The closer this value is to 1, the smaller is
the uncertainty in estimating r. To assess the accuracy in estimating the true covariance
matrix Ω0 = ΛΛ>+Σ0 of the data via the posterior draws of Ωr = βrβ>r +Σr, we consider
the mean squared error (MSE) defined by

MSEΩ = ∑
i

∑
`≤i

E((Ωr,i` −Ω0,i`)
2|y)/(m(m + 1)/2),

which accounts both for variance and bias. Table 1 reports, for all 12 combinations, the
median, the 5% and the 95% quantile of these statistics across all simulated data sets. For
GLT structures, the fraction of variance identified draws is also reported and is, in general,
pretty high.
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Table 1. Sparse Bayesian factor analysis under GLT and unconstrained structures (EFA) under a 1PB
prior (α ∼ G(6, 2)) and a 2PB prior (α ∼ G(6, 2), γ ∼ G(6, 6)). The true number of factors is equal to 5.
GLT and EFA-V use only the variance identified draws (MV is the percentage of variance identified
draws), EFA uses all posterior draws.

MV r̂ p(r̂ = rtrue|y) MSEΩ

Scenario Prior Med (QR) Med (QR) Med (QR) Med (QR)

Dedic GLT 1PB 97.0 (91.5, 98.3) 5 (5, 5) 0.90 (0.94, 0.99) 0.018 (0.014, 0.030)
2PB 97.6 (87.7, 98.9) 5 (5, 5) 0.99 (0.83, 1.00) 0.019 (0.016, 0.027)

EFA 1PB - 5 (5, 6) 0.66 (0.09, 0.79) 0.020 (0.015, 0.026)
2PB - 5 (5, 6) 0.69 (0.36, 0.80) 0.019 (0.014, 0.024)

EFA-V 1PB 80.3 (49.8, 87.0) 5 (5, 6) 0.81 (0.17, 0.91) 0.020 (0.015, 0.026)
2PB 82.6 (63.4, 87.9) 5 (5, 6) 0.84 (0.53, 0.92) 0.019 (0.014, 0.024)

Block GLT 1PB 96.5 (39.4, 98.9) 5 (5, 5) 0.99 (0.28, 0.99) 0.12 (0.08, 0.18)
2PB 98.7 (61.9, 99.4) 5 (5, 5) 0.99 (0.54, 1.00) 0.10 (0.08, 0.14)

EFA 1PB - 5 (4, 5) 0.78 (0.22, 0.88) 0.14 (0.11, 0.20)
2PB - 5 (4, 5) 0.79 (0.08, 0.89) 0.12 (0.08, 0.24)

EFA-V 1PB 87.0 (55.0, 91.5) 5 (4, 5) 0.89 (0.09, 0.96) 0 .14 (0.11, 0.20)
2PB 85.9 (28.3, 90.4) 5 (4, 5) 0.92 (0.03, 0.97) 0.12 (0.08, 0.24)

Dense GLT 1PB 95.7 (84.6, 98.6) 5 (5, 5) 0.98 (0.92, 0.99) 0.67 (0.44, 1.12)
2PB 99.4 (90.8, 99.8) 5 (5, 5) 0.99 (0.93, 1.00) 0.68 (0.51, 1.18)

EFA 1PB - 5 (5, 6) 0.76 (0.43, 0.85) 0.54 (0.39, 0.76)
2PB - 5 (5, 5) 0.80 (0.66, 0.91) 0.59 (0.43, 0.90)

EFA-V 1PB 84.4 (76.0, 90.2) 5 (5, 6) 0.89 (0.57, 0.95) 0.54 (0.39, 0.76)
2PB 89.7 (80.4, 93.9) 5 (5, 5) 0.93 (0.77, 0.98) 0.59 (0.43, 0.90)

Med is the median and QR are the 5% and the 95% quantile of the various statistics over the 21 simulated data sets.

Several conclusions can be drawn from Table 1. First, of all, sparse Bayesian factor
analysis under the GLT constraint successfully recovers the true number of factors in all
three scenarios. For most of the simulated data sets, the posterior ordinate p(r̂ = rtrue|y) is
larger than 0.9. Sparse Bayesian factor analysis with unstructured loading matrices is also
quite successful in recovering rtrue, but with less confidence. Both over- and underfitting is
observed, and p(r̂ = rtrue|y) is much smaller than under a GLT structure. For both structures,
the 2PB prior yields higher posterior ordinates than the 1PB prior.

Recently, Hosszejni and Frühwirth-Schnatter (2022) proved that the counting rule
CR(r, 1) can also be applied to verify variance identification of βr for unconstrained loading
matrices. As is evident from Table 1, the fraction of variance identified draws is, however,
much smaller than under GLT structures. Nevertheless, inference with respect to to the
number of factors can be improved also for an unconstrained EFA model by rejecting all
draws of βr that do not obey the counting rule CR(r, 1).

7.2. A Real Data Example

For further illustration, we consider monthly log returns from the New York Stock
Exchange (NYSE) for two industry sectors. For each month t = 1, . . . , T from February
1999 till August 2019 (i.e., T = 247), we consider m = 28 firms. The first 10 measurements
in yt correspond to all firms in the energy sector, the remaining 18 measurements to all
firms in the health care sector.9 We compare sparse Bayesian factor analysis with maximum
likelihood estimation and to this aim demean and standardize the data.

Bayesian inference is based on the approach described in Section 6.1. The overfitting
exploratory factor model (19) is fitted to this data set under an unordered GLT structure
with the maximum number of factors H = 13 being equal to the upper bound defined
in (13). MCMC estimation is run for 30,000 iterations after a burn-in of 20,000 using the
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RJMCMC algorithm of Frühwirth-Schnatter et al. (2023). Prior choices are exactly as in
Section 7.1 and we report results for the 2PB prior.

As discussed in Section 6.3, the active columns βr are retrieved for each MCMC draw
of the loading matrix βH and checked for variance identification using the counting rule
CR(r, 1). The fraction of variance identified MCMC draws for the 2PB prior is equal to
63%. The number of columns for each variance identified draw βr changes due to the
dimension-changing nature of the RJMCMC algorithm and can be considered a posterior
draw of the number of active factors r by virtue of Theorem 4. As shown in Table 2, the
posterior distribution p(r|y) derived in this manner is rather disperse and models from
four up to six factors receive considerable posterior probability.

Table 2. Posterior distribution p(r|y) of the number of factors based on all variance identified
posterior draws.

r 0–3 4 5 6 7 8 9–13

p(r|y) 0 0.28 0.45 0.25 0.02 0.001 0

We proceed with the posterior mode estimator of the number of factors and compare
various estimators of the factor loading matrix Λ for a basic factor model (1) where r = 5
is assumed. First, we estimate Λ̂ML using maximum likelihood methods and apply the
Varimax procedure to rotate Λ̂ML into a simple structure Λ̂VM.10

Second, we derive two Bayesian estimators where we impose, respectively, the PLT
and the GLT condition. Under the GLT condition we learn the pivot rows l = (l1, . . . , l5)
from the data, while l = (1, . . . , 5) under the PLT condition. To identify simple PLT and
GLT structures, we perform variable selection beyond the pivot rows and assume the
uniform prior τj ∼ B(1, 1) (instead of 1PB or 2PB shrinkage priors), since the number
of factors is known. The prior on the factor loadings and the idiosyncratic variances is
the same as before. 10,000 posterior draws are generated by adjusting the algorithm of
Frühwirth-Schnatter et al. (2023) to these models. The draws are screened for variance
identification using the counting rule CR(5, 1). The average of the variance identified
draws immediately yields the Bayesian estimator Λ̂PLT under the PLT condition.

Under the GLT condition, the sampler operates within an unordered GLT structure
with unknown pivot rows. All variance identified posterior draws are identified up to a
signed permutation. Full identification is achieved by resolving column and sign switching
for each posterior draw. Column switching is resolved by ordering the pivot rows such
that l1 < . . . < l5 and an ordered GLT structure is imposed on Λ by reordering the columns
accordingly. Among these ordered GLT posterior draws of Λ, the combination of pivot
rows l̂ = (1, 4, 11, 12, 15) is visited most often. All ordered GLT draws where the pivot rows
coincide with l̂ are averaged to derive the Bayesian estimator Λ̂GLT of the GLT factor loading
matrix Λ. Beforehand, sign switching in the posterior draws is resolved by imposing the
constraint Λ11 > 0, Λ42 > 0, Λ11,3 > 0, Λ12,4 > 0 and Λ15,5 > 0 on Λ.

All four estimators are depicted in Figure 2. Note that the measurements are grouped
by industry. The pivot rows learned under GLT from the data clearly show that this
ordering is in conflict with the PLT assumption. The varimax estimator Λ̂VM, as well as
both Bayesian estimators Λ̂PLT and Λ̂GLT, exhibit a simple structure, and sparsity is more
pronounced for the two Bayesian estimators due to variable selection on the factor loadings.
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Figure 2. Comparing estimators of the loading matrix Λ for the NYSE data (1–10, firms in the
energy sector; 11–28, firms in the health care sector) for a basic factor model with r = 5 factors.
Heatmaps from left to right: Bayesian estimator Λ̂GLT of the GLT representation of the loading
matrix; Bayesian estimator Λ̂PLT obtained by imposing a PLT condition; ML estimator Λ̂ML and the
corresponding Varimax rotation Λ̂VM. Red, white, and blue colors denote positive, zero, and negative
values, respectively.

In our opinion, the Bayesian GLT estimator Λ̂GLT allows a clearer interpretation of
the four factors than the other estimators. In particular, forcing a PLT assumption leads
to a less clear interpretation of the factors. The first factor is a market factor that loads on
all 28 firms. The second factor captures additional correlations among the 10 firms in the
energy sector, as well as cross-sectional correlations with specific firms in the health care
sector. Three additional factors are present that are specific to firms in the health care sector,
with factor three loading on nearly all firms in this sector.

8. Concluding Remarks

We have given a full and comprehensive mathematical treatment to generalized lower
triangular (GLT) structures, an identification strategy that relaxes the popular positive
lower triangular (PLT) assumption for factor loadings matrices. We have proven that GLT
retains PLT’s good properties: uniqueness and rotational invariance. At the same time, and
unlike PLT, a GLT structure exists for any factor loadings matrix; i.e., it is not a restrictive
assumption. Furthermore, we have shown that verifying variance identification under
GLT structures is simple and is based purely on the zero-nonzero pattern of the factor
loadings matrix. Additionally, we have embedded the GLT model class into exploratory
factor analysis with unknown factor dimension and discussed how easily spurious factors
and irrelevant variables are recognized in that setup. At the end, we demonstrated our
framework in a simulation study and for real data.
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Appendix A

Proof of Theorem 1. First, note that G, the result of the procedure described in part (b),
exists: there exists a set of r linearly independent rows in β due to its rank r, and therefore
the described procedure always succeeds at finding row indices (l1, . . . , lr). We show that
Λ = βG is an ordered GLT matrix with pivot rows (l1, . . . , lr) and positive leading elements.
This will prove both part (a), which describes that a rotation such as G exists, and part (b),
which describes how said G is constructed.

Let the QR-decomposition of β̃
> be β̃

>
= GΛ̃

>, where Λ̃ is the r× r lower triangular
submatrix of Λ that consists of, clearly, the l1th, . . . , lrth rows of Λ. We choose G such
that Λ̃

> has positive diagonal elements; we can do so according to Golub and Van Loan
(2013), and this way G is also unique. We proceed column-by-column in Λ, starting with
the first column. Note that Λl1,1 = Λ̃1,1 is positive, therefore l1 is a candidate for a pivot
row. Next, assume that l1 is not a pivot row because Λ•,1 has a nonzero entry Λi,1 for i < l1.
This implies that βi,• contains a nonzero entry, which contradicts how l1 is found by the
procedure. Therefore, l1 is the pivot row for the first column.

Now, we examine the second column of Λ. Note that Λl2,2 = Λ̃2,2 is positive, so l2 is a
candidate for a pivot row. Also note that Λl1,2 is zero because it is the second element of
Λ̃1,•. Next, assume that l2 is not a pivot row because Λ•,2 has a nonzero entry Λi,2 for i < l2.
This implies that Λi,• is linearly independent from Λl1,•, which implies that βi,• is linearly
independent from βl1,•, which contradicts how l2 is found by the procedure. Therefore,
l2 > l1 is the pivot row for the second column.

We proceed in this manner, applying the observations for the second column to the
third and later columns, until we find that l1 < l2 < . . . < lr are the pivot rows of Λ and Λ

is ordered GLT. This concludes the proof.

Lemma A1. The counting rule CR(r, s) has the following properties:

(a) CR(r, s) holds for δ if CR(q, s) holds for every submatrix of q ∈ {1, . . . , r} columns of δ;
(b) If CR(r, s) holds for δ and arbitrary s̃ ≤ s rows are deleted from δ, then the remaining matrix

satisfies CR(r, s− s̃);
(c) If CR(r, s) holds for δ and some or all zero rows are removed from δ, then CR(r, s) also holds

for the remaining matrix.

The proof is straightforward.

Proof of Theorem 2. Any matrix β ∈ Θδ has the same non-zero rows as δ. Hence, if
CR(r, s) does not hold for δ, then it also does not hold for any β ∈ Θδ. According to
Theorem 3.4. by Sato (1992) with their rotation G being the identity, this implies that
RD(r, s) is violated for all β ∈ Θδ. This proves part (a).

We prove part (b) by induction. If CR(1, s) holds for a m× 1 sparsity vector δ, then at
least m1 ≥ 2 + s elements of δ are different from 0. It trivially follows that all β ∈ Θδ have
same number of non-zero elements. After deleting s elements, two subvectors with at least
one non-zero element can be formed and RD(1, s) is satisfied for β. For any r ≥ 2, assume
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that part (b) of Theorem 2 holds for r− 1 and that the counting rule CR(r, s) holds for an
m× r ordered GLT sparsity matrix δ. A suitable permutation of the rows of δ yields:

Πrδ =

(
δc 0
δb δA

)
,

where δA is a GLT sparsity matrix with r− 1 columns, δb and δc are column vectors, and
δc contains d1 ≥ 1 non-zero elements and no zero elements. According to Lemma A1 δA

satisfies CR(r− 1, s) and the first column ((δc)>, (δb)>)> satisfies CR(1, s). Consequently,
δb contains at least 2 + s− d1 non-zero elements. Let Λ ∈ Θδ be an ordered GLT matrix. If
the same s rows are deleted from Πrδ and ΠrΛ, we obtain the following matrices:

δ̃ =

(
δ̃

c 0
δ̃

b
δ̃

A

)
, Λ̃ =

(
Λ̃

c 0
Λ̃

b
Λ̃

A

)
,

where 0 ≤ s1 ≤ min(d1, s) non-zero elements are deleted from the vector δc and d1 − s1

non-zero elements remain in the vectors δ̃
c and Λ̃

c, while the vectors δ̃
b and Λ̃

b contain
d2 ≥ max(0, 2 + s1 − d1) non-zero elements. Since we removed s − s1 rows from δA,
according to Lemma A1(b), the sparsity matrix δ̃

A satisfies CR(r− 1, s1) and, hence, Λ̃
A

obeys RD(r − 1, s1) except for a set of measure 0. We proceed with those matrices Λ̃
A

where RD(r− 1, s1) holds. If further s1 rows are deleted from Λ̃
A, then a matrix results

which contains two sub matrices A1 and A2 of rank r − 1. Let the s1 × (r − 1) matrix B
contain the rows that were deleted from of Λ̃

A. If the same rows are deleted from Λ̃
b, then

the vector b containing the deleted elements has at least max(0, 2− (d1 − s1)) non-zero
elements. Next, we consider three cases. First, if d1 − s1 ≥ 2, then we use two of the d1 − s1
non-zero elements of δ̃

c to define the following submatrices of Λ:(
δ̃

c
i1 0
× A1

)
,
(

δ̃
c
i2 0
× A2

)
. (A1)

Both matrices obviously have rank r. Second, if d1 − s1 = 1, then we use the only non-zero
element of δ̃

c and one of the non-zero elements of b, denoted by bi2 , and the corresponding
row Bi2,• of B to define the following submatrices of Λ:(

δ̃
c
i1 0
× A1

)
,
(

bi2 Bi2,•
× A2

)
. (A2)

The first matrix obviously has rank r. The rank of the second matrix is at least equal to
rk (A2) = r− 1. The row vector Bi2,• contains 0 ≤ d3 ≤ r− 1 non-zero elements, which
take arbitrary values in R. Hence, the set of matrices where the row (bi2 Bi2,•) is linearly
dependent on the other rows and rank deficiency occurs has measure zero. Finally, if
d1 − s1 = 0, then we use two of the at least two non-zero elements in b, denoted by bi1 and
bi2 , and the corresponding rows Bi1,• and Bi2,• of B to define the following submatrices
of Λ: (

bi1 Bi1,•
× A1

)
,
(

bi2 Bi2,•
× A2

)
. (A3)

Using the same argument as above, both matrices are of rank r, except for a set of
measure 0. This proves that RD(r, s) holds for all GLT matrices Λ ∈ Θδ, except for a set of
measure 0. The counting rule CR(r, s) is invariant to signed permutations of δ. Therefore,
if CR(r, s) implies RD(r, s) for an ordered GLT matrix Λ ∈ Θδ, then this holds for all signed
permutations β = ΛP±Pρ of Λ. This completes the proof of part (b), since the set where
RD(r, s) does not hold is a finite union of sets of measure 0.
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Proof of Corollary 3. The conditions in Corollary 3 follow immediately from Theorem 2.
The (j, l)th elements of the matrix on the left hand of (16) is given by dj + ∑m

i=1 δij(1− δil),
where dj = ∑m

i=1 δij is the total number of non-zero indicators in column j. The diagonal
elements (j = l) are equal to dj (since δij(1− δij) = 0) and check if each column contains
at least 2 + s non-zero indicators. The off-diagonal elements (j 6= l) count the number of
nonzero rows in columns j and l. Hence, the matrix on the right hand of (16) has diagonal
elements equal to 2 + s and off-diagonal elements equal to 4 + s . The column vector δ? in
(17) is equal to the number of non-zero indicators in each row. Hence, (17) verifies if the
total number of nonzero rows of δ is at least equal to 2r + s. Finally, (18) verifies if each
submatrix of r− 1 columns has at least 2r− 1 nonzero rows. The jth column of the matrix
δ? in (18) is the number of non-zero indicators in each row of the submatrix δ−j excluding
the jth column. The matrix I(δ? > 0) indicates nonzero rows in δ−j and the jth element of
the row vector 11×m · I(δ? > 0) counts the number of nonzero rows in δ−j.

Proof of Theorem 4. We start by proving further properties of the spurious factor matrix
Ms in representation (26) beyond the characterization given in Tumura and Sato (1980, The-
orem 1). More specifically, we show that the spurious cross-covariance matrix MsM>s = Ds
is equal to a diagonal matrix of rank s, with s nonzero entries dn1 , . . . , dns in rows n1, . . . , ns.
From rk (βkTk) = min(rk (βk), rk (Tk)) = r + s, we obtain that Ms has full column rank
rk (Ms) = s. Therefore, rk (Ds) = rk (Ms) = s and only s diagonal elements dn1 , . . . , dns of
Ds in rows n1, . . . , ns are different from 0. It follows that Ms has exactly the same s nonzero
rows n1, . . . , ns as Ds: using for each row Mi,· of Ms that Mi,·M>i,· = ‖Mi,·‖2

2 = di, it follows
for any i 6= {n1, . . . , ns} that ‖Mi,·‖2

2 = 0 and, therefore, Mi,· = 0, whereas the remaining
rows with i ∈ {n1, . . . , ns} are nonzero, since ‖Mi,·‖2

2 > 0. The submatrix M0 of nonzero
rows in Ms satisfies M0M>0 = D2

0 with D2
0 = Diag(dn1 , . . . , dns) being a diagonal matrix of

rank s. It follows that D−1
0 MsD−1

0 M>s = I, hence D−1
0 Ms = Q for any arbitrary rotation

matrix Q of rank s. Therefore, M0 = D0Q.
These results allow following representation of the βkTk in (26). Let β?

k , Σ?
k , M?

s , Λ?,
and Σ?

0 , be the matrices that result from deleting the rows n1, . . . , ns (and for Σk and Σ0 also
the columns) from the matrices βk, Σk, Ms, Λ, and Σ0. Since M?

s = O, we obtain:

β?
k Tk =

(
Λ? O

)
, Σ?

k = Σ?
0 . (A4)

Condition RD(r, 1 + S) for Λ implies that Λ? satisfies condition RD(r, 1), and the
variance decomposition Ω? = Λ?(Λ?)> + Σ?

0 is unique. Hence, β?
k (β?

k )
> = Λ?(Λ?)> and

β?
k has reduced rank rk (β?

k ) = rk (Λ?) = r. Regarding the s rows βd
k and Λd that were

deleted from, respectively, βk and Λ, we obtain

βd
k Tk =

(
Λd M0

)
, M0 = D0Q, (A5)

where D0 is a diagonal matrix and Q is an arbitrary rotation matrix, both of rank s. These
results are valid regardless of the conditions imposed on βk to resolve rotational invariance
(if any). If an unordered GLT condition is imposed, then it can be shown that M0 is a
spurious unordered GLT matrix and Tk reduces to a signed permutation. Without loss of
generality, we assume that the true loading matrix Λ also takes the form of an unordered
GLT structure.

First, we show that under an unordered GLT condition βk takes a similar form as βkTk
does in (A4) and (A5), up to a signed permutation. βk has rk (βk) = r + s distinct pivot
rows. Let n1, . . . , ns be the non-zero rows in the spurious loading matrix Ms. When these
rows are deleted from βk, the resulting matrix β?

k has reduced rank r which implies that
s among the r + s pivot rows of βk are identical to n1, . . . , ns. Furthermore, β?

k contains
a m× r submatrix β?

r that obeys an unordered GLT condition with the remaining r rows
serving as pivots. Since both β?

k and β?
r have rank r, the remaining m× s submatrix of β?

k
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has rank zero, and is equal to a nullmatrix except for a set of measure zero. Hence, a signed
permutation matrix P of size r + s can be used to reorder the columns of β?

k :

β?
k P =

(
β?

r O
)
. (A6)

If the same signed permutation is applied to βd
k , then we obtain:

βd
k P =

(
βd

r βs

)
, (A7)

where βd
r is an s× r matrix. The s× s submatrix βs has an unordered GLT structure with

pivot rows n1, . . . , ns and is equal to a lower triangular matrix L̃ of rank s up to column
switching, i.e., βs = L̃P̃ρ.

Next, let us investigate the spurious submatrix M0 in (A5). Since under an unordered
GLT condition, any rotation βkTk generated from βk through (26) also exhibits an unordered
GLT structure, it follows from (A4) and (A5) that M0 is an unordered GLT matrix with
pivot rows n1, . . . , ns. Therefore, M0 = LPρ is equal to a lower triangular matrix L up to
column switching. From LL> = M0M>0 = D2

0, it follows that L = D0P± is equal to the
diagonal matrix D0 up to sign switching and, therefore:

M0 = D0PM, (A8)

where PM is a signed permutation of size s. This proves the first claim that under the
unordered GLT framework, that the spurious factor matrix of any rotation βkTk generated
through (26) can be represented as a spurious unordered GLT matrix Ms.

To complete the proof, we show that the rotation matrix T? defined by T? := P>Tk is
a signed permutation. T? is split it in the following way:

T? =

(
T?

1 T?
3

(T?
3)
> T?

2

)
, (A9)

with square matrices T?
1 and T?

2 of size r and s. We obtain from (A4) and (A6):

β?
k Tk = β?

k PP>Tk =
(

β?
r T?

1 β?
r T?

3
)
=
(

Λ? O
)
.

Since β?
r has full column rank, we obtain from β?

r T?
3 = O by left multiplication with

((β?
r )
>β?

r )
−1(β?

r )
> that T?

3 = O. Furthermore, β?
r T?

1 = Λ?. Application of Corollary 1
to the unordered GLT matrix β?

r , which satisfies β?
r (β?

r )
> = Λ?(Λ?)>, yields β?

r = Λ?Pr,
where Pr is a signed permutation of size r. From β?

r T?
1 = Λ? = β?

r P>r , we obtain that
T?

1 = P>r is a signed permutation. Finally, we obtain from (A5), (A7), and (A8):

βd
k Tk = βd

k PT? =
(

βd
r βs

)
T? =

(
βd

r P>r L̃P̃ρT?
2

)
=
(

Λd D0PM
)
.

It follows that L̃L̃> = D2
0, and therefore the lower triangular matrix L̃ is equal to

D0 up to sign switching. Consequently, L̃P̃ρT?
2 = D0PsT?

2 = D0PM, where Ps is a signed
permutation of size s. It follows immediately that T?

2 = P>s PM is also a signed permutation
matrix of size s. Therefore, both the rotation matrix T? defined in (A9), as well as Tk = T?P,
are signed permutations of size r + s.

Notes
1 The sign condition on Λii is needed to avoid sign switching, since 2r − 1 loading matrices β can be constructed, which differ from

Λ by a sign switch in a subset of columns, but yield the same cross-covariance matrix ββ> = ΛΛ> (see also Section 3). Without
sign conditions, Λ would not be identified. However, any other sign condition, such as Λii < 0, i = 1, . . . , r, could be applied.

2 Our use of the term “pivot” is inspired by the concept of pivot columns in a row reduced echelon form (RREF), which is the
result of Gauss–Jordan elimination. In particular, if Λ> is in RREF, then pivot rows of Λ are the pivot columns of Λ>. For more
details, see, e.g., Anton and Rorres (2013).
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3 The pivot rows l1, . . . , lr thus coincide with the pivot columns of the row reduced echelon form (RREF) of β>.
4 Their algorithm for the efficient verification of CR(r, 1) is implemented in R and MATLAB. The computer code is publicly

available at https://github.com/hdarjus/sparvaride (accessed on 31 October 2023) and, respectively, https://github.com/
hdarjus/sparvaride-matlab (accessed on 31 October 2023).

5 Note that the non-spurious columns of β̃3 form an unordered GLT structure, while Λ is GLT.
6 Evidently, zero columns (if any) in a posterior draw of βH can be ignored, since βH β>H = βkβ>k .
7 It should be noted that Dirac-spike-and-slab priors such as (29) are useful in this regard, since they are able to identify the (m− 1)s

exact zeros in the columns corresponding to spurious factors. Under continuous shrinkage priors *(see, e.g., Bhattacharya and
Dunson (2011); Ročková and George (2017)), how to identify and remove spurious factors is not straightforward.

8 This algorithm is designed for inference in EFA models under the GLT condition, but can be easily extended to models with
unconstrained loading matrices βH .

9 See Frühwirth-Schnatter et al. (2023) for a case study involving additional industry sectors.
10 These computation were carried out using the function factoran in MATLAB.
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