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Abstract: This paper develops a Stein-like combined estimator for large heterogeneous panel data
models under common structural breaks. The model allows for cross-sectional dependence through
a general multifactor error structure. By utilizing the common correlated effects (CCE) estimation
technique, we propose a Stein-like combined estimator of the CCE full-sample estimator (i.e., esti-
mation using both the pre-break and post-break observations) and the CCE post-break estimator
(i.e., estimation using only the post-break sample observations). The proposed Stein-like combined
estimator benefits from exploiting the pre-break sample observations. We derive the optimal com-
bination weight by minimizing the asymptotic risk. We show the superiority of the CCE Stein-like
combined estimator over the CCE post-break estimator in terms of the asymptotic risk. Further, we
establish the asymptotic properties of the CCE mean group Stein-like combined estimator. The finite
sample performance of our proposed estimator is investigated using Monte Carlo experiments and
an empirical application of predicting the output growth of industrialized countries.

Keywords: common correlated effects; cross-sectional dependence; heterogeneous panels; structural
breaks
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1. Introduction

Panel data sets have been increasingly used in economics and statistics, as they provide
a flexible way to model variations over both cross-section units and time. Considering
structural breaks in panel data is of great importance in empirical economics questions. This
is because a structural break is considered as an exogenous shock (such as financial crises
or technological progress) which may influence the relationship among economic variables.
It is likely that this shock to have impacts on economic variables simultaneously. Recently
there has been a growing literature on the detection of changes and common structural
breaks, and its associated asymptotic properties in panel data models. The importance
of common structural breaks is evident when the global financial or technological shocks
affect all markets or firms at the same time.

Estimation of multiple break points in the linear regression model is analyzed in
Bai and Perron (1998, 2003) in which they also propose tests for detecting the num-
ber of breaks. Bai (2010) studies the asymptotic properties of the break point estimator
for the cross sectionally independence panel data model but allowing serially correla-
tion within each individual unit. For break points detection in panel data models, see
Kao et al. (2012), Kim (2011, 2014), Qian and Su (2016), Li et al. (2016), Baltagi et al. (2016,
2019), Baltagi et al. (2017), Perron et al. (2020), Okui and Wang (2021), and Lumsdaine et al.
(2023), among others. While the issues related to the detection of break points have drawn a
lot of attention in both econometrics and statistics, relatively small attention has been paid
to improving estimation of unknown slope coefficients under structural breaks. It is known
that model averaging and combined estimation techniques can improve estimations and
consequently forecasts under model uncertainty. Since the structural break models can be
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viewed as the model uncertainty, one can benefit from combined estimation techniques, see
for example Stock and Watson (2004), Hansen (2009), Lee et al. (2022a, 2022b), and Parsaeian
(2023) who considers a weighted average estimator in a seemingly unrelated regression
model in which the cross-section dimension is small while the time series dimension is
large. Pesaran (2006) develops a common correlated effects (CCE) estimator that filters out
the unobserved common factors by means of the cross-sectional averages of the dependent
variable and the individual-specific regressors as the cross-section dimension tends to
infinity. In this paper, we develop a Stein-like combined estimator for a large heterogeneous
panel data model under structural breaks with a general multifactor error structure which
is due to unobservable common factors. The break point is common for all individual
units. By utilizing the CCE estimation method, we introduce a CCE Stein-like combined
estimator which can improve estimation of the slope coefficients in the sense of asymptotic
risk. Our proposed estimator is a combination of two estimators: the CCE full sample
estimator and the CCE post-break estimator. The CCE full-sample estimator ignores the
break point and uses the full-sample of observations to estimate the slope coefficients. Thus,
it is the most efficient estimator while it is biased. The CCE post-break estimator is the
consistent estimator but less efficient since it only uses the observations after the break point.
Therefore, combining these two estimators balances the trade-off between the bias and
variance efficiency. The combination weight is inversely related to a weighted quadratic
loss function, and takes the form of the James-Stein weight, cf. James and Stein (1961).1 We
establish the asymptotic risk of the proposed Stein-like combined estimator, and show that
its asymptotic risk is less than that of the CCE post-break estimator, which is the common
estimation method of the slope coefficients under structural breaks. Furthermore, we
develop the CCE mean group (referred to as CCEMG) Stein-like combined estimator, which
is a simple average of the individual CCE estimators. We obtain the asymptotic distribution,
and the asymptotic risk of the CCEMG Stein-like combined estimator, and show that it has
a lower asymptotic risk than that of the CCEMG post-break estimator.

It is a well-established idea in the panel data models to use the averaging estimates of
the individual cross-section units to estimate the common mean, see for example chapter
6 of Hsiao and Pesaran (2008), and chapter 28 of Pesaran (2015). Since the CCEMG esti-
mators estimate the common mean in the panel, it is fruitful to compare these estimators.
Specifically when the number of individual units (N) in panel is large, it is hard and not
quite informative to compare the individual CCE estimators. We therefore undertake
Monte Carlo simulation studies to evaluate the finite sample forecasting performance of the
proposed CCEMG Stein-like combined estimator, the CCEMG post-break estimator, and the
CCEMG full-sample estimator. We further compare the performance of the CCEMG estima-
tors in an empirical study of forecasting the output growth rate of industrialized countries.

The rest of the paper is organized as follows. Section 2 introduces a heterogenous
panel data model which allows for structural changes and multifactor error structure,
and develops the CCE Stein-like combined estimator. For simplicity, we discuss the model
under a single break, which simplifies the idea. Although, the generalization of the method
to multiple break points is straightforward. Section 3 establishes the asymptotic distribution
and asymptotic risk of the proposed CCE Stein-like combined estimator. Section 4 develops
the asymptotic risk of the CCEMG Stein-like combined estimator. Section 5 reports Monte
Carlo simulation. Section 6 presents empirical analysis. Section 7 concludes. All the proofs
are given in the Appendix A.

Notation: For an m × n real matrix A, we denote its transpose as A′. When m = n,
λmax(A) denotes the maximum eigenvalues of A. Let tr(A) be the trace of a square matrix

A. Im and 0m×1 denote m × m identity matrix and m × 1 vector of zeros. The operators d−→,

and
p−→ denote convergence in distribution, and probability, respectively. an = O(bn) states

that the deterministic sequence an is at most of order bn, xn = Op(yn) states that the vector
of random variables, xn, is at most of order yn in probability. Joint convergence of N and T
will be denoted by (N, T) → ∞. Restrictions on the relative rates of convergence of N and
T will be specified separately.
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2. The Model

Consider the following heterogeneous panel data model with a multifactor error struc-
ture, and a common structural break at time T1 as

yit = x′itβi(T1) + eit, (1)

eit = γ′
i ft + ϵit, (2)

where i = 1, . . . , N, t = 1, . . . , T, xit is a k × 1 vector of regressors, eit is the error terms
which are cross-sectionally correlated and modelled by a multifactor structure in (2), ft is
an m × 1 vector of unobserved factors, γi is the corresponding loading vector, and ϵit are
the idiosyncratic errors independent of xit. The unobserved factors ft could be correlated
with xit as

xit = Γ′
i ft + vit, (3)

where Γi is an m × k factor loading matrix, and vit is a k × 1 vector of zero mean distur-
bances assumed to follow a general covariance stationary process. The vector of coefficients,
βi(T1), are subject to the structural break across individuals at time T1 such that

βi(T1) =

{
βi(1) for t = 1, . . . , T1,
βi(2) for t = T1 + 1, . . . , T.

(4)

Let Yi =
(
Y′

i(1), Y′
i(2)

)′ be a vector of T× 1 dependent variable with Yi(1) =
(
yi1 , . . . , yiT1

)′
and Yi(2) =

(
yiT1+1 , . . . , yiT

)′, Xi =
(
X′

i(1), X′
i(2)

)′ be a T × k matrix of regressors with

Xi(1) =
(

xi1 , . . . , xiT1

)′ and Xi(2) =
(
xiT1+1 , . . . , xiT

)′, and ei =
(
e′i(1), e′i(2)

)′ be a T × 1

vector of error terms with ei(1) =
(
ei1, . . . , eiT1

)′ and ei(2) =
(
eiT1+1, . . . , eiT

)′ denote the
stacked data and errors for individuals, i = 1, . . . , N, over the time period observed. Let
b1 ≡ T1/T ∈ (0, 1). Thus, the model in (1) can be written as{

Yi(1) = Xi(1)βi(1) + ei(1),
Yi(2) = Xi(2)βi(2) + ei(2).

(5)

Remark 1. We note that one can also allow a common structural break in the error factor loadings
at the same or different break point, T1. As shown in Section 3, the CCE method filters out the
unobserved common factors by means of the cross-sectional averages of the dependent variable and
the individual-specific regressors. Thus, a common break in loadings does not affect the consistency of
the break point estimator and the slope parameters estimator asymptotically, see Baltagi et al. (2019).

Remark 2. We note that the method of break point estimation is based on the least-squares method.
That is, for the given break point T1, the associated least-squares estimates of the slope coefficients
are obtained by minimizing the sum of squared residuals.By substituting these estimated slope
coefficients in the objective function, the estimated break point is obtained. Theorems 1 and 2
in Baltagi et al. (2016) show that, in large panels, (N, T) → ∞, the break point T1 can be
consistently estimated, i.e., T̂1 − T1 = op(1), which implies that compared to a time series setting,
the cross-sectional observations improve the accuracy of the estimated break point.2

CCE Stein-like Combined Estimator

We propose the CCE Stein-like combined estimator, which is a combination of the
CCE full-sample estimator and the CCE post-break estimator, under common correlated
effect models. Since the ultimate interest is on forecasting, the parameters of interest are
βi(2). We propose the CCE Stein-like combined estimator for βi(2) as

β̃i = αNT β̃i,Full + (1 − αNT ) β̃i(2), (6)
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where β̃i is the CCE Stein-like combined estimator, β̃i,Full is the CCE full-sample estimator
which uses all observations in the full sample and therefore ignores the break across
individuals, and β̃i(2) is the CCE post-break estimator which uses the observations in the
post-break sample, t > T1, for each individual. The combination weight, αNT , depends on
the sample. For notational simplicity, we use α ≡ αNT . Specifically, the combination weight
depends on a weighted squared loss function, and is defined as

α =

{
τ
DT

if DT ≥ τ

1 if DT < τ,
(7)

where τ is a positive parameter that controls the degree of shrinkage, and DT is the
weighted quadratic loss function which measure the distance between the CCE full-sample
and the CCE post-break estimators and is equal to

DT = T
(

β̃i(2) − β̃i,Full
)′W(β̃i(2) − β̃i,Full

)
, (8)

in which W is a positive definite weight matrix. For example, when W =
(
Ṽi(2) − Ṽi,Full

)−1,
where Ṽi,Full and Ṽi(2) are the consistent estimators of the asymptotic variances of the CCE
full-sample and the CCE post-break estimators, then DT becomes the Hausman statistics.
This is a suitable choice for W since the Hausman statistics is the ratio of the bias over
variance efficiency. Thus, using this weight matrix in the combination weight helps to give
suitable weight to each of the CCE full-sample estimator and the CCE post break estimator.
Alternatively, when W = Ik, then DT is unweighted quadratic loss, which is a suitable
choice for W when the slope parameters are of equal importance.

We note that the combination weight, α, is inversely proportional to the weighted
quadratic loss function, and the degree of shrinkage depends on the ratio of τ/DT . Large
values of DT (or when DT > τ) indicate large break sizes. In this case, the combined
estimator assigns a large weight to the CCE post-break estimator and a small weight to the
CCE full-sample estimator which is largely biased under large break sizes. However, small
values of DT indicate small break sizes. In this case, the combined estimator assigns a large
weight to the CCE full-sample estimator to gain from its efficiency, and a small weight to
the CCE post-break estimator. Therefore, the proposed CCE Stein-like combined estimator
balances the trade-off between the bias and variance efficiency, and assigns appropriate
weights to each of the CCE full-sample and the CCE post-break estimators based on the
break sizes.

3. Common Correlated Effects Model

In this section, we derive the asymptotic distributions of the full-sample, the post-
break and the Stein-like combined estimators, for each i = {1, . . . , N}, by considering the
common correlated effects ft in the errors and regressors, as defined in (2) and (3). We call
them the CCE full-sample estimator, the CCE post-break estimator, and the CCE Stein-like
combined estimator, respectively. The asymptotic distribution theory is developed under
a local asymptotic framework under which the CCE Stein-like combined estimator has a
nondegenerate asymptotic distribution. Further, we derive the asymptotic risk for the CCE
Stein-like combined estimator.

Assumption 1. The break size in the coefficients is local to zero, i.e., for i = 1, . . . , N,

βi(2) − βi(1) =
δi√
T

, (9)

where δi ∈ R. Assumption 1 indicates that for any fixed δi, the break size shrinks as the sample
size T increases. We note that the break size in the slope coefficients (δi) can be different across
individuals.
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Assumption 2. The disturbances ϵit, for i = 1, . . . , N, are cross-sectionally independent, with a
well-defined variance, Var(ϵit) = σ2

i < ∞. Besides, for each series i, ϵit is serially uncorrelated,
and independent of xit for all i and t.

Assumption 3. Common factors ft are covariance stationary with absolute summable autocovari-
ances, distributed independently of errors ϵis and vis for all i, s, t.

Assumption 4. ϵis and vjt are independent for all i, j, s, t, and Var(vit) = Σi,v < ∞.

Assumption 5. Factor loadings γi and Γi are i.i.d. across i, and independent of ϵjt, vjt and ft for
all i, j, t. Also, assume that γi = γ + ϱi, ϱi ∼ i.i.d. (0, Ωϱ), and Γi = Γ + ξi, ξi ∼ i.i.d. (0, Ωξ),
where the means, γ and Γ, are nonzero and the variances, Ωϱ and Ωξ , are well-defined.

Assumptions 3–5, are the same as Assumptions 8–10 of Baltagi et al. (2016), or similar
to Assumptions 1–3 of Pesaran (2006).

Because of the unobserved common factor effect ft in the error terms and its corre-
lation with xit , the usual ordinary least squares (OLS) estimation method is inconsistent.
Pesaran (2006) proposes to use the cross-sectional averages of yit and xit as proxies for the
unobserved ft. We define the (k + 1)× 1 vector of wit as

wit =

(
yit
xit

)
= C′

i(T1) ft + uit(T1), (10)

where Ci(T1)︸ ︷︷ ︸
m×(k+1)

=
(
γi, Γi

)( 1 01×k
βi(T1) Ik

)
=

Ci(1) =
(
γi + Γiβi(1), Γi

)
, for t = 1, . . . , T1,

Ci(2) =
(
γi + Γiβi(2), Γi

)
, for t = T1 + 1, . . . , T,

and uit(T1)︸ ︷︷ ︸
(k+1)×1

=

(
ϵit + v′itβi(T1)

vit

)
.

Let w̄t = ∑N
i=1 θiwit be the cross-sectional averages of wit using weights θi, for

i = 1, . . . , N, where the weights satisfy θi = O( 1
N ), ∑N

i=1 θi = 1 and ∑N
i=1 |θi| < ∞. There-

fore,
w̄t = C̄′(T1) ft + ūt(T1), (11)

where C̄(T1)︸ ︷︷ ︸
m×(k+1)

= ∑N
i=1 θiCi(T1) =

{
C̄(1) = ∑N

i=1 θiCi(1) for t = 1, . . . , T1,
C̄(2) = ∑N

i=1 θiCi(2) for t = T1 + 1, . . . , T,
and

ūt(T1)︸ ︷︷ ︸
(k+1)×1

= ∑N
i=1 θiuit(T1) =



(
ϵ̄t + ∑N

i=1 θiv′itβi(1)

v̄t

)
, for t = 1, . . . , T1,(

ϵ̄t + ∑N
i=1 θiv′itβi(2)

v̄t

)
, for t = T1 + 1, . . . , T.

Assumption 6. Rank(C̄(1)) = Rank(C̄(2)) = m ≤ k + 1.

Assumption 6 indicates that the number of common factors cannot be larger than the
number of observable used in estimation. Under Assumption 6, C̄(T1) is of full rank. Thus,
ft can be written as

ft =
(
C̄(T1)C̄(T1)

′)−1 C̄(T1)
(
w̄t − ūt(T1)

)
. (12)

As shown in Lemma 1 in Pesaran (2006), as N → ∞, the cross-sectional averages of
the errors, ϵ̄t and v̄t, disappear in both regimes. Therefore,

ft −
(
C̄(T1)C̄(T1)

′)−1 C̄(T1)w̄t
p−→ 0. (13)
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This suggests using w̄t as observable proxies for ft. We note that the model, presented in (1)
and (2), for each i = {1, . . . , N}, is given by{

Yi(1) = Xi(1)βi(1) + F(1)γi + ϵi(1)

Yi(2) = Xi(2)βi(2) + F(2)γi + ϵi(2),
(14)

where F(1) =
(

f1, . . . , fT1

)′ is the T1 × m matrix of the unobserved factors in the first

regime, and F(2) =
(

fT1+1, . . . , fT
)′ is the (T − T1) × m matrix of the unobserved fac-

tors in the second regime. Let W̄(1) =
(
w̄1, . . . , w̄T1

)′ be a matrix of T1 × (k + 1), and

W̄(2) =
(
w̄T1+1, . . . , w̄T

)′ be a matrix of (T − T1) × (k + 1). Thus, their corresponding

orthogonal projection matrices is defined as Mw(1) = IT1 − W̄(1)
(
W̄ ′

(1)W̄(1)
)−1W̄ ′

(1) and

Mw(2) = IT−T1 − W̄(2)
(
W̄ ′

(2)W̄(2)
)−1W̄ ′

(2). Pre-multiplying each regime in (14) by Mw(1) and
Mw(2) , respectively, we get{

Ỹi(1) = X̃i(1)βi(1) + Mw(1) F(1)γi + ϵ̃i(1) = X̃i(1)βi(1) + ϵ̃∗i(1)
Ỹi(2) = X̃i(2)βi(2) + Mw(2) F(2)γi + ϵ̃i(2) = X̃i(2)βi(2) + ϵ̃∗i(2),

(15)

where Ỹi(1) = Mw(1)Yi(1), X̃i(1) = Mw(1)Xi(1), and ϵ̃i(1) = Mw(1)ϵi(1). Similarly, we can

define the transformed data in the second regime as Ỹi(2) = Mw(2)Yi(2), X̃i(2) = Mw(2)Xi(2),
and ϵ̃i(2) = Mw(2)ϵi(2). Also, ϵ̃∗i(1) = Mw(1) F(1)γi + ϵ̃i(1), and ϵ̃∗i(2) = Mw(2) F(2)γi + ϵ̃i(2).

As shown in Appendix A.1, the order of each elements of Mw(1) F(1)γi = Op(
1√
N
), and

Mw(2) F(2)γi = Op(
1√
N
). Thus, the order vanishes as (N, T) → ∞. This implies that

asymptotically ϵ̃∗i(1) and ϵ̃∗i(2) can be treated as ϵ̃i(1) and ϵ̃i(2), respectively. In Theorem 1, we
derive the asymptotic distribution and the asymptotic risk for the proposed CCE Stein-like
combined estimator.

Assumption 7. For i = 1, . . . , N, the matrices X̃′
i X̃i/T, X̃′

i(1)X̃i(1)/T1, and X̃′
i(2)X̃i(2)/(T − T1)

are non-singular and converge in probability to some non-random positive definite matrices.

Theorem 1. Under Assumptions 1–7, when
√

T/N → 0 as (N, T) → ∞, the joint asymp-
totic distribution of the CCE full-sample estimator and the CCE post-break estimator, for each
i = {1, . . . , N}, is

√
T

[
β̃i,Full − βi(2)
β̃i(2) − βi(2)

]
d−→ V1/2

i Zi, (16)

where Zi ∼ N
(
ηi, I2k

)
, ηi = V−1/2

i

[
b1Σ−1

i Σi(1)δi
0k×1

]
, and Vi =

[
Vi,Full Vi,Full
Vi,Full Vi(2)

]
, with Vi,Full ≡

plim
T→∞

σ2
i
( X̃′

i X̃i
T
)−1, Vi(2) ≡ plim

T→∞

1
1−b1

σ2
i
( X̃′

i(2)X̃i(2)
T−T1

)−1 , Σ−1
i ≡ plim

T→∞

( X̃′
i X̃i
T
)−1, and Σi(1) ≡

plim
T→∞

( X̃i(1)′X̃i(1)
T1

)
. Besides, the asymptotic distribution of the Hausman statistic is

DT = T
(

β̃i(2) − β̃i,Full
)′(Ṽi(2) − Ṽi,Full

)−1(
β̃i(2) − β̃i,Full

)
d−→ Z′

iV
1/2
i G

(
Vi(2) − Vi,Full

)−1G′ V1/2
i Zi

≡ Z′
i MiZi,

(17)
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where G =
(
− Ik Ik

)′ and Mi ≡ V1/2
i G

(
Vi(2) − Vi,Full

)−1G′ V1/2
i is an idempotent matrix

with rank k. Finally, the asymptotic distribution of the CCE Stein-like combined estimator is
√

T
(

β̃i − βi(2)
)
=

√
T
(

β̃i(2) − βi(2)
)
− α

√
T
(

β̃i(2) − β̃i,Full
)

d−→ G′
2 V1/2

i Zi −
( τ

Z′
i MiZi

)
1

G′ V1/2
i Zi,

(18)

where G2 =
(
0 Ik

)′ and (a)1 = min[1, a].

Proof. See Appendix A.1.

Theorem 1 shows that the joint asymptotic distribution of the CCE full-sample estima-
tor and the CCE post-break estimator is normally distributed. The Hausman statistic has an
asymptotic non-central chi-square distribution. Furthermore, the asymptotic distribution of
the CCE Stein-like combined estimator is a nonlinear function of normal random vector Zi.

Asymptotic Risk for the CCE Estimator

In this section, we derive the asymptotic risk of the proposed estimator by using the

results of Theorem 1. When an estimator has an asymptotic distribution,
√

T(β̂ − β)
d−→ ξ,

we define the asymptotic risk of the estimator as ρ(β̂,W) = E(ξ ′W ξ), where W is a
positive definite weight matrix, see Lehmann and Casella (1998). Utilizing the asymptotic
distribution of the CCE Stein-like combined estimator in (18), we obtain the asymptotic
risk for this estimator for any positive definite choice of weight matrix W. We minimize
the asymptotic risk to derive the optimal combination weight, α. Theorem 2 shows the
asymptotic risk of the CCE Stein-like combined estimator when W =

(
Vi(2) − Vi,Full

)−1,
which is the inverse of the difference of the asymptotic variances of the CCE post-break and
the CCE full-sample estimators. This choice of weight greatly simplifies the calculations.
The asymptotic risk of the CCE Stein-like combined estimator for any user-specific positive
definite choice of W is available in the Appendix A.2.

Theorem 2. Under Assumptions 1–7, when
√

T/N → 0 as (N, T) → ∞, the asymptotic risk of
the CCE Stein-like combined estimator, for each i = {1, . . . , N}, is

ρ
(

β̃i,W
)
= ρ

(
β̃i(2),W

)
− τ(2 − τ

k − 2
)
[
e−µi 1F1

( k
2
− 1;

k
2

; µi
)]

, (19)

provided k > 2, where 1F1(.; .; .) is the confluent hypergeometric function defined as 1F1(a; b; µi) =

∑∞
n=0

(a)n µn
i

(b)n n! , where (a)n = a(a + 1) . . . (a + n − 1), (a)0 = 1, and µi = η′
i Miηi/2 is the

non-centrality parameter. Also, ρ
(

β̃i(2),W
)
= tr(WVi(2)).

Proof. See Appendix A.2.

Theorem 2 shows that the asymptotic risk of the CCE Stein-like combined estimator is
less than the asymptotic risk of the CCE post-break estimator if k > 2, meaning that as long
as the number of regressors are greater than two, the CCE Stein-like combined estimator
outperforms the CCE post-break estimator in term of the asymptotic risk.

Using the results presented in Theorem 2, we derive the optimal value for the shrinkage
parameter, denoted by τ∗, as τ∗ = k − 2, which is positive so long as k > 2. By substituting
the optimal value of the shrinkage parameter into the asymptotic risk formula in (19),
we obtain the asymptotic risk of the CCE Stein-like combined estimator. Corollary 1
summarizes the results.
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Corollary 1. Under Assumptions 1–7, when
√

T/N → 0 as (N, T) → ∞, if 0 ≤ τ ≤ 2(k − 2),
the asymptotic risk for the CCE Stein-like combined estimator, for each i = {1, . . . , N}, is

ρ
(

β̃i,W
)
= ρ

(
β̃i(2),W

)
− (k − 2)

[
e−µi 1F1

( k
2
− 1;

k
2

; µi
)]

. (20)

Corollary 1 shows that the asymptotic risk of the CCE Stein-like combined estimator
is strictly less than the asymptotic risk of the CCE post-break estimator, for all parameter
values and each i = {1, . . . , N}, so long as the number of regressors (k) exceeds two. We note
that (20) holds for all values of localizing parameter δi, even very large values of break sizes.
Thus, the CCE Stein-like combined estimator dominates the CCE post-break estimator.

Remark 3. We note that the extension of the proposed estimator to the multiple break points is
straightforward. Under multiple breaks, the proposed CCE Stein-like combined estimator is the
combination of the CCE full-sample estimator (the efficient estimator) and the CCE post-break
estimator after the most recent break point (the consistent estimator). For a similar discussion in a
time-series model with no common correlated factor structures see Lee et al. (2022c).

4. Mean Group Stein-like Combined Estimator

It is known in the panel data model literature to use the averaging estimates of the
individual cross-section units to estimate the common mean. Pesaran (2006) introduces
the common correlated effect mean group estimator (CCEMG), which is a simple average
of the individual-specific CCE estimators. In this section, we develop the mean group
estimator based on the individual CCE Stein-like combined estimators introduced in
the previous Section. We define the CCEMG Stein-like combined estimator as β̃MG =
α β̃MG,Full + (1 − α) β̃MG(2), where β̃MG,Full is the CCEMG full-sample estimator, β̃MG(2) is
the CCEMG post-break estimator, and α is similar to (7) except that the weighted squared
loss function defined in (8) is now DN = N

(
β̃MG(2) − β̃MG,Full

)′W (
β̃MG(2) − β̃MG,Full

)
. In

this section, we first develop the asymptotic distribution of the CCEMG Stein-like combined
estimator, and then we establish its asymptotic risk.

Assumption 8. For i = 1, . . . , N, βi(1) = β(1) + νi,β(1)
with νi,β(1)

∼ i.i.d.(0, Σβ(1)
), and βi(2) =

β(2) + νi,β(2)
with νi,β(2)

∼ i.i.d.(0, Σβ(2)
). Besides, the random deviations νi,β(1)

and νi,β(2)
are

independent of γj, Γj, ϵjt and vjt for all i, j and t.

Assumption 8 states that βi(1) and βi(2) are independent of Γj. This implies that

as N → ∞, C̄(1) = ∑N
i=1 θiCi(1)

p−→ E(Ci(1)) = (γ + Γβ(1), Γ) and C̄(2) = ∑N
i=1 θiCi(2)

p−→
E(Ci(2)) = (γ + Γβ(2), Γ). Thus, the rank condition in Assumption 6 requires non-zero
means for γ and Γ which is satisfied based on Assumption 5.

Theorem 3. Under Assumptions 1–8, and
√

N/T → c as (N, T) → ∞ in which c is fixed,
the joint asymptotic distribution of the CCEMG full-sample estimator and the CCEMG post-break
estimator is

√
N

[
β̃MG,Full − β(2)
β̃MG(2) − β(2)

]
d−→ η̇ + Ż, (21)

where η̇ =

[
b1c Q−1Q1δ1

0k×1

]
, Ż ∼ N

(
0, V̇

)
, 1

N ∑N
i=1
( X̃′

i X̃i
T
)−1 p−→ Q−1, 1

N ∑N
i=1
( X̃′

i(1)X̃i(1)
T1

) p−→

Q1, and V̇ =

[
VMG,Full cov

cov VMG(2)

]
is the variance-covariance matrices of β̃MG,Full and β̃MG(2)

with cov being their asymptotic covariance matrix.
Besides, the asymptotic distribution of the weighted squared loss function is

DN = N
(

β̃MG(2) − β̃MG,Full
)′W (

β̃MG(2) − β̃MG,Full
)

d−→
(
Ż + η̇

)′P(Ż + η̇
)
,

(22)
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where P ≡ GWG′. Finally, the asymptotic distribution of the CCEMG Stein-like combined
estimator, denoted by β̃MG, is

√
N
(

β̃MG − β(2)
)
=

√
N
(

β̃MG(2) − β(2)
)
− α

√
N
(

β̃MG(2) − β̃MG,Full
)

d−→ G′
2Ż −

( τ(
Ż + η̇

)′P(Ż + η̇
))

1
G′ (Ż + η̇

)
.

(23)

Proof. See Appendix A.3.

Theorem 3 shows that the joint asymptotic distribution of the CCEMG full-sample
estimator and the CCEMG post-break estimator is normally distributed. Besides, the asymp-
totic distribution of the CCEMG Stein-like combined estimator is a nonlinear function of Ż.

Using the results of Theorem 3, we derive the asymptotic risk for the CCEMG Stein-like
combined estimator. The results are summarized in Theorem 4 below.

Theorem 4. Under Assumptions 1–8, and
√

N/T → c as (N, T) → ∞ in which c is fixed,
for 0 ≤ τ ≤ 2

(
tr(A) − 2λmax(A)

)
, the asymptotic risk of the CCEMG Stein-like combined

estimator for any user specific positive definite choice of W is

ρ
(

β̃MG,W
)
≤ ρ

(
β̃MG(2),W

)
− τ

[2
(
tr(A)− 2λmax(A)

)
− τ

η̇′Pη̇ + tr(PV̇)

]
, (24)

where A ≡ WG′
2V̇G, and λmax(A) denotes the maximum eigenvalues of A. Thus, the asymptotic

risk of the CCEMG Stein-like combined estimator is less than that of the CCEMG post-break estimator.

Proof. See Appendix A.4.

The optimal value of τ, denoted by τ∗
MG, can be obtained by minimizing the asymptotic

risk in (24). Corollary 2 shows the optimal value of the shrinkage parameter and its
corresponding asymptotic risk.

Corollary 2. The optimal value of the shrinkage parameter which minimizes the asymptotic risk of
the CCEMG Stein-like combined estimator is

τ∗
MG = tr(A)− 2λmax(A), (25)

which is positive if tr(A) > 2λmax(A). Further, the asymptotic risk of the CCEMG Stein-like
combined estimator after substituting τ∗

MG is

ρ
(

β̃MG,W
)
≤ ρ

(
β̃MG(2),W

)
−
(
tr(A)− 2λmax(A)

)2

η̇′Pη̇ + tr(PV̇)
. (26)

Corollary 2 shows that the asymptotic risk of the CCEMG Stein-like combined estima-
tor is less than that of the CCEMG post-break estimator.

5. Monte Carlo Simulations

This section employs Monte Carlo simulations to examine the performance of the
CCEMG Stein-like combined estimator developed in the previous section. To do this, we
consider the following data generating process, which is similar to the one considered
in Pesaran (2006) but allows for a structural break,

yit = αi +
3

∑
j=1

xit,jβij(T1) +
4

∑
j=1

γij f jt + ϵit, (27)
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where αi ∼ i.i.d. N(1, 1), γij ∼ i.i.d. N(1, 0.2), and the idiosyncratic errors are generated as
ϵit ∼ i.i.d. N(0, σ2

i ) with σ2
i ∼ i.i.d. U(0.5, 1.5). The break in the slope coefficients is

βij(T1) =

{
βij(1) for t = 1, . . . , T1,
βij(2) for t = T1 + 1, . . . , T,

(28)

where βij(2) = 1 + ηij, and ηij ∼ i.i.d. N(0, 0.04), and the break size in the individual slope
coefficients, δ, is {0.1, 0.3, 0.7, 1}. We consider different break points in the individual slopes
as {0.2T, 0.5T, 0.8T} where T = 100.

The regressor xit,j contain the common correlated effect ft,

xit,j = aij + γ2ij f jt + vit,j, (29)

where aij ∼ i.i.d. N(0.5, 0.5), γ2ij ∼ i.i.d. N(0.5, 0.5) and vit,j ∼ i.i.d. N(0, 1 − ρ2
vij) with

ρvij ∼ i.i.d. U[0.05, 0.95]. The factor f jt is generated by the stationary process

f jt = ρ f j f jt−1 + v f jt, j = 1, 2, 3, 4, t = −49, . . . , 0, 1, . . . , T;

v f jt ∼ i.i.d. N(0, 1 − ρ2
f j), ρ f j = 0.5, and f j,−50 = 0.

We consider different values for individuals, N = {100, 150, 200}. As discussed in
Section 3, the estimated value for the unobserved factors are the cross-sectional averages
of the dependent variable and regressors, i.e, f̂t = w̄t, which by inserting Equation (11)

f̂t = w̄t = C̄′(T1) ft + ūt(T1). As n → ∞, ūt(T1)
p−→ 0. This means that f̂t is consistent for

the space spanned by ft, which is sufficient to control their effects.3

We compare the forecasting performance of the CCEMG Stein-like combined estimator,
the CCEMG post-break estimator and the CCEMG full-sample estimator. Specifically, we
report the relative mean squared forecast error (RMSFE) considering the CCEMG post-break
estimator as the benchmark method.

Tables 1 and 2 report the simulation results. Based on the results, the CCEMG Stein-
like combined estimator outperforms the CCEMG post-break estimator under any break
points and break size. When the break happens toward the end of the sample (i.e., b1 = 0.8),
the out-performance of the CCEMG Stein-like combined estimator is larger since there are
fewer observations in the post-break sample. This is expected because when the break
point happens toward the end of the sample, the gain obtained from using the CCEMG
Stein-like combine estimator relative to the CCEMG post-break estimator increases. This
shows that one can have a better estimation by exploiting the observations in both regimes
(full-sample) instead of only using the post-break sample observations. As the break size
in the slope coefficients increases, the performance of the CCEMG Stein-like combined
estimator becomes closer to the CCEMG post-break estimator. The CCEMG full-sample
estimator performs better than the CCEMG post-break estimator only if the break size in the
slope coefficients is small, and in the other cases, it under-performs it. This is because under
a large break size, the CCEMG full-sample estimator has a large bias and its efficiency can
not offset the large bias.

We have also compared the performance of the proposed combined estimator with
k = 6 regressors in Table 2. The results show that when the number of regressors increases,
there is a larger reduction in the RMSFE for the CCEMG Stein-like combined estimator.
Overall the simulation results show that the CCEMG Stein-like combined estimator always
out-performs or performs equivalent to the CCEMG post-break estimator. Thus, there is no
cost in using the CCEMG combined estimator instead of the CCEMG post-break estimator.
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Table 1. Simulation results for CCEMG estimator, with T = 100 and k = 3.

b1: 0.2 0.5 0.8

δ RMSFEStein RMSFEFull RMSFEStein RMSFEFull RMSFEStein RMSFEFull

N = 100

0.1 0.9450 0.9579 0.7826 0.7417 0.6419 0.3147
0.3 0.9487 1.4013 0.9481 2.8345 0.9442 2.2970
0.7 0.9917 4.2168 0.9775 14.369 0.9917 12.158
1.0 0.9895 7.8498 0.9842 29.299 0.9953 24.770

N = 150

0.1 0.8595 0.8693 0.8122 0.8480 0.6810 0.3969
0.3 0.9548 1.7928 0.9464 3.8780 0.9414 3.3605
0.7 0.9900 6.7270 0.9756 20.497 0.9735 17.710
1.0 0.9894 13.076 0.9827 42.017 0.9864 35.990

N = 200

0.1 0.9664 1.1066 0.8746 1.0783 0.7200 0.5649
0.3 0.9728 2.2019 0.9671 5.6798 0.9771 4.1756
0.7 0.9967 8.7846 0.9852 29.944 0.9955 22.404
1.0 0.9950 17.192 0.9896 61.104 0.9977 45.715

Note: This table reports the RMSFE where the benchmark model is the CCEMG post-break estimator. The first
column shows different values of N, and the second column, δ, is the break size in the slope coefficients. In the
heading of the table, b1 = T1/T, RMSFEStein denotes the relative MSFE of the CCEMG Stein-like estimator
over the CCEMG post-break estimator, and RMSFEFull denotes the relative MSFE of the CCEMG full-samplle
estimator over the CCEMG post-break estimator.

Table 2. Simulation results for CCEMG estimator, with T = 100 and k = 6.

b1: 0.2 0.5 0.8

δ RMSFEStein RMSFEFull RMSFEStein RMSFEFull RMSFEStein RMSFEFull

N = 100

0.1 0.8471 0.8476 0.6056 0.6171 0.3151 0.1301
0.3 0.9427 1.2536 0.9379 2.1680 0.6025 0.6994
0.7 0.9839 3.4538 0.9817 9.9828 0.8911 3.5679
1.0 0.9956 6.2303 0.9887 19.949 0.9429 7.2355

N = 150

0.1 0.8732 0.8737 0.6906 0.7327 0.3363 0.1695
0.3 0.9881 1.5031 0.9873 2.9272 0.6719 0.9848
0.7 0.9929 4.5610 0.9989 13.782 0.9335 5.0456
1.0 0.9924 8.3743 1.0000 27.556 0.9690 10.223

N = 200

0.1 0.9937 0.9966 0.8457 0.9630 0.3688 0.2436
0.3 0.9851 1.9375 0.9632 3.9758 0.7764 1.3880
0.7 0.9948 5.9770 0.9950 18.087 0.9685 6.8912
1.0 0.9960 10.835 0.9956 35.727 0.9898 13.840

Note: See the notes to Table 1.

6. Empirical Analysis

In this section, we evaluate the performance of the proposed CCEMG Stein-like
combined estimator in forecasting the growth rate of real output. We use a quarterly data
set of 18 industrialized countries from 1979:Q1 to 2016:Q4.4 The predictors are: the real
equity prices (eqit), real short term interest rate (rit), term spread (lit − rit) where lit is real
long term interest rate, and the corresponding country-specific foreign variables for each of
the predictors. The foreign variables are generated using moving averages of the annual
trade weights over three year period. The trade weight are computed as shares of exports
and imports for each country. Therefore, the h-step ahead linear forecasting model is

yit+h = x′itβit + γ′
i ft + ϵit+h, (30)

where x′it = (eqit, rit, lit − rit, eq∗it, r∗it, l∗it − r∗it), in which a “star” indicates the foreign vari-
ables. We compute h-step ahead forecasts (h = 1, 4) for different estimation methods
(i.e., the CCEMG Stein-like combined estimator, the CCEMG post-break estimator, and the
CCEMG full-sample estimator), using both rolling and expanding window forecasts. The es-
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timated value for the unobserved factors is f̂t = w̄t, which is the cross-sectional averages of
the dependent and independent variables. Each time that we expand the window, we first
estimate the break point and then obtain forecasts based on the CCEMG Stein-like com-
bined estimator, the CCEMG post-break estimator, and the CCEMG full-sample estimator.
The method of estimating the break point is the standard least-squares, i.e., minimizing the
overall sum of squared residuals, see Baltagi et al. (2016). The rolling window forecasts is
based on the most recent 10 years (40 quarters) of observations.

In order to evaluate the performance of our proposed CCEMG Stein-like combined
estimator, we compute its mean squared forecast errors (MSFE) and compare it with those of
the CCEMG post-break estimator and the CCEMG full-sample estimator. For this purpose,
we divide the sample of observations into two parts. The first T observations are used as
the initial in-sample estimation period, and the remaining observations are the pseudo out-
of-sample evaluation period. We consider two different out-of-sample evaluation periods,
1995:Q1–2016:Q4 and 2005:Q1–2016:Q4, to see the forecasting performance of estimators
with this choice.

Table 3 reports the results based on both rolling window and expanding window
forecasts. In the heading of the table, “CCEMG Stein” reports the MSFE results for the
CCEMG Stein-like combined estimator, “CCEMG Postbk” reports the MSFE results for
the CCEMG post-break estimator, and “CCEMG Full” shows the MSFE results for the
CCEMG full-sample estimator. Panel A shows the MSFEs with the out-of-sample evaluation
periods of 1995:Q1–2016:Q4, while the results with the out-of-sample evaluation periods of
2005:Q1–2016:Q4 are presented in Panel B. To see whether the CCEMG Stein-like combined
estimator significantly outperforms the CCEMG post-break estimator across all individuals,
we report a panel version of the Diebold and Mariano test introduced by Pesaran et al.
(2009) in Table 3, indicated by asterisks. The 1% significance level is denoted by ***. The
break point estimation is stable throughout the estimation procedure. For example, for one-
step-ahead forecast and the out-of-sample evaluation periods of 2005:Q1–2016:Q4, for the
first 18 expanding windows a break point around dot-com bubble of early 2000 is estimated
with the estimated CCEMG Stein-like combination weight, α̂, roughly between 0.1 and
0.3. For the remaining expanding windows, a break point around financial crises of 2008
is detected with the range of α̂ approximately between 0.5–1. We see a similar pattern for
other specifications.

Based on the results, the CCEMG Stein-like combined estimator has a lower MSFE than
that of the CCEMG post-break estimator and the CCEMG full-sample estimator for various
out-of-sample evaluation periods and forecast horizons. This out-performance is statisti-
cally significant at 1% significance level. In Panel A and for h = 1, the out-performance
of the CCEMG Stein-like combined estimator relative to the CCEMG post-break estima-
tor is 52.9% (7.1%) for the rolling window (expanding window) forecasts. When h = 4,
the out-performance is 17.2% (6.6%) for the rolling window (expanding window) fore-
casts. When h = 1 and with the out-of-sample evaluation periods of 2005:Q1–2016:Q4,
the out-performance of the CCEMG Stein-like combined estimator relative to the CCEMG
post-break estimator is 66.3% (8.4%) for the rolling window (expanding window) forecasts.
The out-performance becomes 26.6% (6.7%) for the rolling window (expanding window)
forecasts when h = 4.
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Table 3. Empirical MSFE results for forecasting output growth.

Rolling Window Expanding Window

h CCEMG Stein CCEMG Postbk CCEMG Full CCEMG Stein CCEMG Postbk CCEMG Full

Panel A: 1995:Q1–2016:Q4
1 21.979 *** 46.763 22.028 21.800 *** 23.477 21.858
4 22.802 *** 27.522 23.252 22.489 *** 24.079 22.381

Panel B: 2005:Q1–2016:Q4
1 23.404 *** 69.608 23.908 23.722 *** 25.895 23.880
4 24.323 *** 33.138 25.218 24.426 *** 26.204 24.136

Note: This table reports the empirical MSFE results for the CCEMG Stein-like combined estimator, CCEMG
post-break estimator, and CCEMG full-sample estimator. The first column shows different forecast horizons,
h. Panel A reports the results with the out-of-sample evaluation periods of 1995:Q1–2016:Q4, while the results
with the out-of-sample evaluation periods of 2005:Q1–2016:Q4 are presented in Panel B. An asterisk, ***, denotes
forecast that is significantly better than that of obtained from the CCEMG post-break forecasts based on the panel
Diebold–Mariano test statistic at 1% significance level.

7. Conclusions

In this paper, we introduce a Stein-like combined estimator for estimating the slope
coefficients of large heterogenous panel models with a general multifactor error structure
which is due to unobservable common factors. The proposed CCE Stein-like combined
estimator is the weighted averages of the CCE post-break estimator (i.e., using observations
in the most recent regime) and the CCE full-sample estimator (i.e., using full-sample of
observations). The combination weight is inversely proportional to the difference between
the CCE post-break and the CCE full-sample estimators, and therefore measures the
magnitude of the structural break. Thus, for a large break size, it assigns a small weight
to the CCE full-sample estimator (which is biased), and a large weight to the CCE post-
break estimator. The opposite is true for a small break size. We establish the asymptotic
distribution and the asymptotic risk of the proposed CCE Stein-like combined estimator,
and find the conditions under which the combined estimator uniformly out-performs
the CCE post-break estimator, for any break sizes and break points. Furthermore, we
establish the asymptotic distribution and the asymptotic risk for the CCE mean group
(CCEMG) Stein-like combined estimator, and show that its asymptotic risk is smaller than
that of the CCEMG post-break estimator. Monte Carlo simulations, and the empirical
application of forecasting output growth rates of 18 industrialized countries show the
significant superiority of using the proposed CCEMG Stein-like combined estimator over
the alternative methods.

Even though the proposed combined estimators reduce the asymptotic risk, it is
an open question whether this reduction can be used to improve inference. Besides,
the considered regression model in the paper allows for dynamic structures through the
general dynamics of the common effects in the error term. Alternatively, lagged dependent
variables can be included as the regressors in the model. Furthermore, the extension of the
proposed CCE Stein-like combined estimator to panel vector autoregressive models and
nonlinear models under structural breaks have not been explored yet. These are beyond
the scope of the present paper and we leave them for future work.
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Appendix A. Mathematical Details

Appendix A.1. Proof of Theorem 1

First, we note that βi(T1) = βi(1) +
δi√

T
1(t > T1) =

βi(1) for t = 1, . . . , T1,

βi(2) = βi(1) +
δi√

T
for t = T1 + 1, . . . , T,

where 1(·) is an indicator function. Denote ūt =

(
ϵ̄t + ∑N

i=1 θiv′itβi(1)
v̄t

)
and ∆ūt(T1) =

(
0
0

)
, for t = 1, . . . , T1,

(
∑N

i=1 θiv′it
δi√
T

0

)
, for t = T1 + 1, . . . , T.

Thus, ūt(T1) in (11) is equal to ūt(T1) = ūt + ∆ūt(T1).
Let Ū︸︷︷︸

T×(k+1)

≡ (ū′
(1), ū′

(2))
′ = (ū1, . . . , ūT1 , ūT1+1 . . . , ūT)

′, and ∆Ū(T1)︸ ︷︷ ︸
T×(k+1)

≡
(
∆ū′

(1), ∆ū′
(2)

)′
=

((
0
0

)
, . . . ,

(
0
0

)
,

(
∑N

i=1 θiv′i,T1+1
δi√
T

0

)
, . . . ,

(
∑N

i=1 θiv′i,T
δi√
T

0

))
. Therefore, by stacking the

cross-sectional averages within each regime in (11), w̄t = C̄′(T1) ft + ūt(T1), we get{
W̄(1) = F(1)C̄(1) + Ū(1) for t = 1, . . . , T1,
W̄(2) = F(2)C̄(2) + Ū(2) for t = T1 + 1, . . . , T,

(A1)

where Ū(1) = ū(1) + ∆ū(1) and Ū(2) = ū(2) + ∆ū(2). With this notation, we obtain the
following Lemma, which can be proved similarly to Lemmas 1–3 in Pesaran (2006) and
Lemma 5 in Baltagi et al. (2016).

Lemma A1. Under Assumptions 1–7,

(i)
F′
(1)F(1)

T1
= Op(1);

F′
(2)F(2)
T−T1

= Op(1);

(ii)
Ū′
(1)Ū(1)

T1
= Op

( 1
N
)
;

Ū′
(2)Ū(2)
T−T1

= Op
( 1

N
)
;

(iii)
F̄′
(1)Ū(1)

T1
= Op

( 1
T
√

N

)
;

F̄′
(2)Ū(2)
T−T1

= Op
( 1

T
√

N

)
;

(iv)
X̄′

i(1)F(1)
T1

= Op(1);
X̄′

i(2)F(2)
T−T1

= Op(1);

(v)
X̄′

i(1)Ū(1)
T1

= Op
( 1

N
)
+ Op

( 1√
NT

)
;

X̄′
i(2)Ū(2)
T−T1

= Op
( 1

N
)
+ Op

( 1√
NT

)
;

Using (A1), we obtain

1
T1

W̄ ′
(1)W̄(1) =

1
T1

C̄′
(1)F

′
(1)F(1)C̄(1) +

1
T1

C̄′
(1)F

′
(1)Ū(1) +

1
T1

Ū′
(1)F(1)C̄(1) +

1
T1

Ū′
(1)Ū(1)

=
1
T1

C̄′
(1)F

′
(1)F(1)C̄(1) +E(1) = Op(1),

(A2)

where E(1) ≡ 1
T1

C̄′
(1)F

′
(1)Ū(1) +

1
T1

Ū′
(1)F(1)C̄(1) +

1
T1

Ū′
(1)Ū(1) = Op

( 1
N
)
+ Op

( 1
T
√

N

)
, and

1
T1

C̄′
(1)F

′
(1)F(1)C̄(1) = Op(1) by Lemma A1. Thus, using (A2),
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( 1
T1

C̄′
(1)F

′
(1)F(1)C̄(1)

)−1
−
( 1

T1
W̄ ′

(1)W̄(1)

)−1
=
( 1

T1
C̄′
(1)F

′
(1)F(1)C̄(1)

)−1

−
(

I +
( 1

T1
C̄′
(1)F

′
(1)F(1)C̄(1)

)−1
E(1)

)−1( 1
T1

C̄′
(1)F

′
(1)F(1)C̄(1)

)−1

=

[
I −

(
I +

( 1
T1

C̄′
(1)F

′
(1)F(1)C̄(1)

)−1
E(1)

)−1
]( 1

T1
C̄′
(1)F

′
(1)F(1)C̄(1)

)−1

=
∞

∑
l=1

(−1)l+1
((

C̄′
(1)

F′
(1)F(1)

T1
C̄(1)

)−1
E(1)

)l(
C̄′
(1)

F′
(1)F(1)

T1
C̄(1)

)−1
≡ f (E(1)).

(A3)

Therefore,
(

1
T1

W̄ ′
(1)W̄(1)

)−1
=
(

1
T1

C̄′
(1)F

′
(1)F(1)C̄(1)

)−1
+ f (E(1)). It follows that

Mw(1)F(1) =
(

IT1 − W̄(1)
( 1

T1
W̄ ′

(1)W̄(1)
)−1 1

T1
W̄ ′

(1)

)
F(1)

=

(
IT1 −

(
F(1)C̄(1) + Ū(1)

)((
C̄′
(1)

F′
(1)F(1)

T1
C̄(1)

)−1
+ f (E(1))

) 1
T1

(
F(1)C̄(1) + Ū(1)

)′)F(1)

=

(
IT1 −

(
F(1)C̄(1)

)(
C̄′
(1)F

′
(1)F(1)C̄(1)

)−1(F(1)C̄(1)
)′)F(1)

−
(

F(1)C̄(1)
)(

f (E(1))
( 1

T1
F(1)C̄(1)

)′
+
((

C̄′
(1)

F′
(1)F(1)

T1
C̄(1)

)−1
+ f (E(1))

) 1
T1

Ū′
(1)

)
F(1)

− Ū(1)

((
C̄′
(1)

F′
(1)F(1)

T1
C̄(1)

)−1
+ f (E(1))

)( F(1)C̄(1)

T1
+

Ū(1)

T1

)′F(1)
= F(1)D1(1) + Ū(1)D2(1),

(A4)

where
(

IT1 −
(

F(1)C̄(1)
)(

C̄′
(1)F′

(1)F(1)C̄(1)
)−1(F(1)C̄(1)

)′)F(1) =
(

IT1 − F(1)
(

F′
(1)F(1)

)−1F′
(1)

)
F(1) = 0,

see Pesaran (2006). Also,

D1(1) ≡ −C̄(1) f (E(1))C̄
′
(1)

F′
(1)F(1)

T1
− C̄(1)

((
C̄′
(1)

F′
(1)F(1)

T1
C̄(1)

)−1
+ f (E(1))

)
Ū′
(1)F(1)
T1

= Op
( 1

N
)
+ Op

( 1
T1
√

N

)
+ Op(1)× Op

( 1
T1
√

N

)
= Op

( 1
N
)
+ Op

( 1
T1
√

N

)
,

(A5)

and

D2(1) ≡ −
((

C̄′
(1)

F′
(1)F(1)

T1
C̄(1)

)−1
+ f (E(1))

)(
C̄′
(1)

F′
(1)F(1)

T1
+

Ū′
(1)F(1)
T1

)
= Op(1). (A6)

Thus, using (A4), we obtain

Mw(1)F(1)γi = F(1)D1(1)γi + Ū(1)D2(1)γi

= Op
( 1

N
)
+ Op

( 1
T1
√

N

)
+ Op

( 1√
N

)
= Op

( 1√
N

)
.

(A7)

Similarly, for the second regime Mw(2)F(2)γi = F(2)D1(2)γi + Ū(2)D2(2)γi = Op
( 1√

N

)
,

whereD1(2) ≡ − C̄(2) f (E(2))C̄′
(2)

F′
(2)F(2)
T−T1

− C̄(2)

((
C̄′
(2)

F′
(2)F(2)
T−T1

C̄(2)

)−1
+ f (E(2))

) Ū′
(2)F(2)
T−T1

=
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Op
( 1

N
)
+ Op

( 1
T1
√

N

)
, and D2(2) ≡ −

((
C̄′
(2)

F′
(2)F(2)
T−T1

C̄(2)
)−1

+ f (E(2))
)(

C̄′
(2)

F′
(2)F(2)
T−T1

+

Ū′
(2)F(2)
T−T1

)
= Op(1).

Using the above derivations, we establish the asymptotic distributions for the CCE es-
timators.

The CCE full-sample estimator, for each i, is written as

β̃i,Full =
(

X̃′
i X̃i

)−1
X̃′

iỸi

=
(

X̃′
i X̃i

)−1(
X̃′

i(1)X̃i(1)
(

βi(1) − βi(2)
)
+ X̃′

i(1) ϵ̃
∗
i(1) + X̃′

i(2) ϵ̃
∗
i(2) + X̃′

i X̃iβi(2)

)
= βi(2) +

(
X̃′

i X̃i

)−1(
X̃′

i(1)X̃i(1)
(

βi(1) − βi(2)
)
+ X̃′

i(1)Mw(1) F(1)γi + X̃′
i(1) ϵ̃i(1)

+ X̃′
i(2)Mw(2) F(2)γi + X̃′

i(2) ϵ̃i(2)

)
(A8)

where Ỹi =
(
Ỹ′

i(1), Ỹ′
i(2)

)′ is a T × 1 vector of the transformed dependent variable, and

X̃i =
(
X̃′

i(1), X̃′
i(2)

)′ is a T × k matrix of the transformed regressors. Therefore, the asymp-
totic distribution of the CCE full-sample estimator, for each i, is

√
T
(

β̃i,Full − βi(2)
)
=
( X̃′

i X̃i

T

)−1( X̃′
i(1)X̃i(1)

T1
δib1 +

X̃′
i ϵ̃i√
T

+

√
b1

T1
X̃′

i(1)Mw(1) F(1)γi

+

√
(1 − b1)

T − T1
X̃′

i(2)Mw(2) F(2)γi

)

=
( X̃′

i X̃i

T

)−1[ X̃′
i(1)X̃i(1)

T1
δib1 +

X̃′
i ϵ̃i√
T

+ Op
(√T

N
)
+ Op

( 1√
N

)]
d−→ N

(
b1Σ−1

i Σi(1)δi, σ2
i Σ−1

i
)
.

(A9)

where ϵ̃i = (ϵ̃′i(1), ϵ̃′i(2))
′, σ2

i Σ−1
i ≡ plim

T→∞
σ2

i
( X̃′

i X̃i
T
)−1

= Vi,Full is the variance of the CCE

full-sample estimator, Σi(1) ≡ plim
T→∞

( X̃i(1)′X̃i(1)
T1

)
, and by using Lemma A1

1√
T1

X̃′
i(1)Mw(1) F(1)γi =

1√
T1

X′
i(1)Mw(1) F(1)γi

=
1√
T1

X′
i(1)F(1)D1(1)γi +

1√
T1

X′
i(1)Ū(1)D2(1)γi

=
√

T
(

Op
( 1

N
)
+ Op

( 1
T
√

N

)
+ Op

( 1
N
)
+ Op

( 1√
NT

))
= Op

(√T
N
)
+ Op

( 1√
N

)
.

(A10)

Similarly, 1√
T−T1

X̃′
i(2)Mw(2) F(2)γi = 1√

T−T1
X′

i(2)Mw(2) F(2)γi = Op
(√T

N
)
+ Op

( 1√
N

)
.

This order is asymptotically negligible when
√

T/N → 0 as (N, T) → ∞. Therefore,
the additional condition of

√
T/N → 0 as (N, T) → ∞ is needed to prove this Theorem.

Besides, the asymptotic distribution of the CCE post-break estimator is
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√
T
(

β̃i(2) − βi(2)
)
=
( 1√

1 − b1

)( X̃′
i(2)X̃i(2)

T − T1

)−1
(

X̃′
i(2) ϵ̃i(2)√
T − T1

+
1√

T − T1
X̃′

i(2)Mw(2) F(2)γi

)

=
( 1√

1 − b1

)( X̃′
i(2)X̃i(2)

T − T1

)−1[( X̃′
i(2) ϵ̃i(2)√
T − T1

)
+ Op

(√T
N
)
+ Op

( 1√
N

)]
d−→ N

(
0,

1
1 − b1

σ2
i Σ−1

i(2)

)
,

(A11)

where 1
1−b1

σ2
i Σ−1

i(2) ≡ plim
T→∞

1
1−b1

σ2
i
( X̃′

i(2)X̃i(2)
T−T1

)−1
= Vi(2) is the asymptotic variance of the

CCE post-break estimator. Using (A9) and (A11), the joint asymptotic distribution of the
CCE full-sample estimator and the CCE post-break estimator is derived. This completes
the proof of Theorem 1.

Appendix A.2. Proof of Theorem 2

The asymptotic risk for the CCE Stein-like combined estimator, for any user specific
positive definite choice matrix W, and for each i = 1, . . . , N, is

ρ
(

β̃i,W
)
= E

[
T
(

β̃i − βi(2)
)′W (

β̃i − βi(2)
)]

= T E
[(

β̃i(2) − βi(2)
)
− α

(
β̃i(2) − β̃i,Full

)]′
W
[(

β̃i(2) − βi(2)
)
− α

(
β̃i(2) − β̃i,Full

)]
= ρ

(
β̃i(2),W

)
+ τ2 E

[
(Z′

i MiZi)
−2Z′

i AiZi

]
− 2τ E

[
(Z′

i MiZi)
−1Z′

i BiZi

]
,

(A12)

where Mi ≡ V1/2
i G

(
Vi(2)−Vi,Full

)−1 G′ V1/2
i , Ai ≡ V1/2

i GWG′V1/2
i and Bi ≡ V1/2

i GWG′
2V1/2

i .

Lemma A2. Let χ2
p(µi) denote a noncentral chi-square random variable with the noncentral pa-

rameter µi, for each i = 1, . . . , N, and the degrees of freedom p. Besides, let p denote a positive
integer such that p > 2r. Then

E
[(

χ2
p(µi)

)−r]
= 2−re−µi

Γ( p
2 − r)

Γ( p
2 )

1F1

( p
2
− r;

p
2

; µi

)
,

where 1F1(.; .; .) is the confluent hypergeometric function which is defined as 1F1(a; b; µi) =

∑∞
n=0

(a)n µn
i

(b)n n! , where (a)n = a(a + 1) . . . (a + n − 1) and (a)0 = 1. See Ullah (1974).

Lemma A3. The definition of the confluent hypergeometric function implies the following relations:

1. 1F1(a; b; µi) = 1F1(a + 1; b; µi)−
µi
b 1F1(a + 1; b + 1; µi),

2. 1F1(a; b; µi) =
b−a

b 1F1(a; b + 1; µi) +
a
b 1F1(a + 1; b + 1; µi), and

3. (b − a − 1) 1F1(a; b; µi) = (b − 1) 1F1(a; b − 1; µi)− a 1F1(a + 1; b + 1; µi).

See Lebedev (1972), p. 262.

Lemma A4. Let the T × 1 vector Zi be normally distributed with mean vector θi and covariance
matrix IT , Mi be any T × T idempotent matrix with rank r, and Ai be any T × T matrix, for each
i = 1, . . . , N. We assume ϕ(·) is a Borel measurable function. Then:
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E
[
ϕ
(
Z′

i MiZi
)
Z′

i AiZi

]
= E

[
ϕ
(

χ2
r+2(µi)

)]
tr(Ai Mi) +E

[
ϕ
(

χ2
r+4(µi)

)]
θ′i Mi Ai Miθi

+E
[
ϕ
(

χ2
r (µi)

)]
tr
(

Ai − Ai Mi
)
+E

[
ϕ
(

χ2
r (µi)

)]
θ′i
(

IT − Mi
)

Ai
(

IT − Mi
)
θi

+E
[
ϕ
(

χ2
r+2(µi)

)](
θ′i Ai Miθi + θ′i Mi Aiθi − 2θ′i Mi Ai Miθi

)
,

where µi ≡
θ′i Miθi

2 is the non-centrality parameter. See Lee et al. (2022c) for the proof.

By using Lemmas A2–A4, we calculate the asymptotic risk for the CCE Stein-like
combined estimator in (A12) as

ρ
(

β̃i,W
)
= ρ

(
β̃i(2),W

)
+ τ2 E

[
(Z′

i MiZi)
−2Z′

i AiZi

]
− 2τ E

[
(Z′

i MiZi)
−1Z′

i BiZi

]
= ρ

(
β̃i(2),W

)
+ τ2

{[
χ2

k+2(µi)
]−2

tr
(

Ai Mi
)
+E

[
χ2

k+4(µi)
]−2

η′
i Mi Ai Miηi

}
− 2τ

{
E
[
χ2

k+2(µi)
]−1

tr
(

Bi Mi
)
+E

[
χ2

k+4(µi)
]−1

η′
i MiBi Miηi

+E
[
χ2

k+2(µi)
]−1(

η′
i Bi Miηi + η′

i MiBiηi − 2η′
i MiBi Miηi

)}
= ρ

(
β̃i(2),W

)
+ τ2

{[1
4

e−µi
Γ( k

2 − 1)

Γ( k
2 + 1)

1F1
( k

2
− 1;

k
2
+ 1; µi

)]
tr(Ai)

+
[1

4
e−µi

Γ( k
2 )

Γ( k
2 + 2)

1F1

( k
2

;
k
2
+ 2; µi

)](
η′

i Aiηi
)}

− 2τ

{[1
2

e−µi
Γ( k

2 )

Γ( k
2 + 1)

1F1

( k
2

;
k
2
+ 1; µi

)](
tr(Ai)− η′

i Aiηi
)

(A13)

+
[1

2
e−µi

Γ( k
2 + 1)

Γ( k
2 + 2)

1F1

( k
2
+ 1;

k
2
+ 2; µi

)](
η′

i Aiηi
)}

= ρ
(

β̃i(2),W
)
+ τ2

{[ η′
i Aiηi

(k − 2)η′
i Miηi

][
e−µi 1F1

( k
2
− 1;

k
2

; µi

)]
−
[ η′

i Aiηi

(k − 2)η′
i Miηi

− tr(Ai)

k(k − 2)

][
e−µi 1F1

( k
2
− 1;

k
2
+ 1; µi

)]}

− 2 τ

k − 2

{[
tr(Bi)−

2 η′
i Aiηi

η′
i Miηi

][
e−µi 1F1

( k
2
− 1;

k
2

; µi

)]

−
[
2

tr(Bi)

k
− 2

η′
i Aiηi

η′
i Miηi

][
e−µi 1F1

( k
2
− 1;

k
2
+ 1; µi

)]}

= ρ
(

β̃i(2),W
)
−

τ η′
i Aiηi

k(k + 2)

[
2
( tr(Ai) η′

i Miηi

η′
i Aiηi

− 2
)
− τ

][
e−µi 1F1

( k
2

;
k
2
+ 2; µi

)]
− τ tr(Ai)

k(k − 2)

[
2(k − 2)− τ

][
e−µi 1F1

( k
2
− 1;

k
2
+ 1; µi

)]
,

where Mi is an idempotent matrix with rank k, Ai Mi = Mi Ai = Ai, Mi Ai Mi = Ai, Bi Mi =
Ai, MiBi = Bi, Biηi = 0, MiBi Mi = Ai, and 1F1

( k
2 − 1; k

2 ; µi
)
− 1F1

( k
2 − 1; k

2 + 1; µi
)
=

2µi (k−2)
k(k+1)

[
1F1
( k

2 ; k
2 + 2; µi

)]
. Thus, the asymptotic risk of the CCE Stein-like combined
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estimator is less than that of the CCE post-break estimator for any positive definite choice
of W under the following two conditions:

0 ≤ τ ≤ 2
( tr(Ai) η′

i Miηi

η′
i Aiηi

− 2
)
, (A14)

and
0 ≤ τ ≤ 2(k − 2). (A15)

The upper bound in (A14) is positive if

tr(Ai) > Sup
Φ

2η′
i Aiηi

η′
i Miηi

,

tr
(
W(Vi(2) − Vi,Full)

)
> Sup

Φ

2 Φ′ (Vi(2) − Vi,Full)
1/2 W(Vi(2) − Vi,Full)

1/2 Φ
Φ′Φ

tr
(
W(Vi(2) − Vi,Full)

)
> 2λmax

(
(Vi(2) − Vi,Full)

1/2 W(Vi(2) − Vi,Full)
1/2),

(A16)

where Φ ≡ (Vi(2) − Vi,Full)
−1/2G′V1/2

i ηi. Also, the upper bound in (A15) is positive if
k > 2.

Using the results in (A13), the optimal value for the shrinkage parameter, denoted by

τ∗
i , is τ∗

i =
tr(Ai) η′i Miηi

η′i Aiηi
− 2, which is positive so long as the condition in (A16) is satisfied.

Substituting the optimal value of the shrinkage parameter into the asymptotic risk function

in (A13), if 0 ≤ τ ≤ 2
( tr(Ai) η′i Miηi

η′i Aiηi
− 2
)

and the condition in (A16) is hold, the asymptotic

risk for the CCE Stein-like combined estimator, for any user specific positive definite choice
matrix W, and for each i = {1, . . . , N}, is

ρ
(

β̃i,W
)
= ρ

(
β̃i(2),W

)
− 1

k − 2

[( tr(Ai) η′
i Miηi

η′
i Aiηi

− 2
)2 ( η′

i Aiηi

η′
i Miηi

)][
e−µi 1F1

( k
2
− 1;

k
2

; µi

)]

− 1
k − 2

[( tr(Ai) η′
i Miηi

η′
i Aiηi

)2
− 4

][
η′

i Aiηi

η′
i Miηi

− tr(Ai)

k

][
e−µi 1F1

( k
2
− 1;

k
2
+ 1; µi

)]
.

(A17)

This shows that the asymptotic risk of the CCE Stein-like combined estimator is
less than the asymptotic risk of the CCE post-break estimator for all values of localizing
parameter δi, even very large values of break sizes. Thus, the CCE Stein-like combined
estimator dominates the CCE post-break estimator.

We note that when W = (Vi(2) − Vi,Full)
−1, the asymptotic risk of the CCE Stein-

like combined estimator presented in (A13) simplifies to the results of Theorem 2. Also,
in this case, the optimal value of the shrinkage parameter becomes τ∗ = k − 2, and the
upper bound in (A14) becomes k > 2. Therefore, the CCE Stein-like combined estimator
dominates the CCE post-break estimator so long as k > 2. This completes the proof of
Theorem 2.

Appendix A.3. Proof of Theorem 3

Under Assumption 8 of a random coefficient model, and the local alternative as-
sumption, β(1) − β(2) = δ1/

√
T, the asymptotic distribution of the CCEMG full-sample

estimator is
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β̃MG,Full =
1
N

N

∑
i=1

β̃i,Full

=
1
N

N

∑
i=1

βi(2) +
1
N

N

∑
i=1

(
X̃′

i X̃i

)−1(
X̃′

i(1)X̃i(1)(βi(1) − βi(2)) + X̃′
i ϵ̃i + X̃′

i(1)Mw(1) F(1)γi

+ X̃′
i(2)Mw(2) F(2)γi

)
.

(A18)

Therefore,

√
N
(

β̃MG,Full − β(2)
)
=

1√
N

N

∑
i=1

νi,β(2)
+

1√
NT

N

∑
i=1

( X̃′
i X̃i

T
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√
T(βi(1) − βi(2))

+
X̃′

i ϵ̃i√
T

+

√
b1

T1
X̃′

i(1)Mw(1) F(1)γi +

√
1 − b1

T − T1
X̃′
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( X̃′
i X̃i
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T1
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− 1√
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∑
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( X̃′
i X̃i
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)
)
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( 1√
N

)
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( 1√
T

)
d−→ N

(
b1cQδ1, VMG,Full
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(A19)

where
√

N
T → c as (N, T) → ∞ in which c is a fixed constant, 1

N ∑N
i=1
( X̃′

i X̃i
T
)−1( X̃′

i(1)X̃i(1)
T1

) p−→
Q, and VMG,Full is the asymptotic variance of the CCEMG full-sample estimator. The vari-
ance estimator for VMG,Full suggested by Pesaran (2006) is given by 1

N−1 ∑N
i=1(β̃i,Full −

β̃MG,Full)(β̃i,Full − β̃MG,Full)
′.

Besides, the order of the third term is derived as
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( 1√

NT

N

∑
i=1

( X̃′
i X̃i

T

)−1 X̃′
i ϵ̃i√
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T

( X̃′
i X̃i

T

)−1
= Op

( 1
T
)
, (A20)

implying that 1√
NT ∑N

i=1

(
X̃′

i X̃i
T

)−1 X̃′
i ϵ̃i√
T

= Op
( 1√

T

)
. Besides, using the results of (A10),

the order of the forth term can be derived as

1√
NT

N

∑
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( X̃′
i X̃i

T

)−1
√

b1
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X̃′
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[
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(√T

N
)
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( 1√
N
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( 1√
N

)
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( 1√
T

)
.

(A21)

The order of the fifth term can be derived similarly.
Furthermore, the asymptotic distribution of the CCEMG post-break estimator is

β̃MG(2) =
1
N

N

∑
i=1

β̃i(2)

= β(2) +
1
N

N

∑
i=1

νi,β(2)
+

1
N

N

∑
i=1

(
X̃′

i(2)X̃i(2)

)−1(
X̃′

i(2) ϵ̃i(2) + X̃′
i(2)Mw(2) F(2)γi

)
.

(A22)

Therefore,
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√
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=
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√
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+
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√
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√
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)
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1√
N

N

∑
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νi,β(2)
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( 1√
T

)
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( 1√
N

)
d−→ N

(
0, Σβ(2)

)
,

(A23)

where the orders of the second and third terms can be derived similar to the above. Using
(A19) and (A23), the joint asymptotic distribution of the CCEMG full-sample estimator and
the CCEMG post-break estimator is derived. This completes the proof of Theorem 3.

Appendix A.4. Proof of Theorem 4

ρ
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β̃MG,W
)
= E
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N
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]
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(
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)
− τ

[2
(
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)
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E(Ż + η̇)′P(Ż + η̇)

]
≤ ρ

(
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)
− τ

[2
(
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)
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η̇′Pη̇ + tr(PV̇)

]
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(A24)

where the last inequality is Jensen’s, ψ(x) ≡ x
x′Px , and thus ∂

∂(x)ψ(x)′ =
( 1

x′Px

)
I − 2Pxx′

(x′Px)2 .
Besides, using Stein’s Lemma, Lemma 2 in Hansen (2016), we obtain

E
[
ψ(Ż + η̇)′GWG′

2Ż
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= E tr
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]
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)(
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]
= E

[ tr
(
A
)
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− 2E

[ tr
(
(Ż + η̇)′B′

1AB1(Ż + η̇)
)(

(Ż + η̇)′P(Ż + η̇)
)2

]
≥ E

[ tr
(
A− 2λmax(A)

)
(Ż + η̇)′P(Ż + η̇)

]
,

(A25)

where A ≡ WG′
2V̇G, B1 = W1/2 G′, B′

1B1 = P, and B′
1AB1 ≤ B′

1B1λmax(A) where
λmax(A) denotes the maximum eigenvalues of A. This completes the proof of Theorem 4.

Notes
1 See also Hansen (2016, 2017) and Mehrabani and Ullah (2020) for the use of the Stein-like estimator in different contexts.
2 In a time series model, only the estimated break fraction, b̂1, can be consistently estimated and not the estimated break point.

In other words, in time series models T̂1 − T1 = Op(1) for large T, see Bai and Perron (1998).
3 See for example Westerlund (2018), and Karabiyik and Westerlund (2021).
4 The countries are: Australia, Austria, Belgium, Canada, Finland, France, Germany, Italy, Japan, Netherlands, Norway, New

Zealand, Spain, Sweden, Switzerland, United Kingdom, USA, and China. The data is available from Mohaddes and Raissi (2018).
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