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Abstract: This study introduces a decision support framework that integrates aircraft trajectory
optimization and arrival scheduling to facilitate efficient management of descent operations for
arriving aircraft within terminal maneuvering areas. The framework comprises three modules
designed to tackle specific challenges in the descent process. The first module formulates and
solves a trajectory optimization problem, generating a range of candidate descent trajectories for
each arriving aircraft. The options for descent operations include step-down descent operation,
Continuous Descent Operation (CDO), and CDO with a lateral path stretching strategy. The second
module addresses the assignment of conflict-free trajectories to aircraft, determining precise arrival
times at each waypoint. This is achieved by solving an aircraft arrival scheduling problem. To
overcome computational complexities, a novel variable neighborhood search algorithm is proposed
as the solution approach. This algorithm utilizes three neighborhood structures within an extended
relaxing and solving framework, and incorporates a tabu search algorithm to enhance the efficiency
of the search process in the solution space. The third module focuses on comparing the total cost
incurred from flight delays and fuel consumption across the three descent operations, enabling the
selection of the most suitable operation for the descent process. The decision support framework is
evaluated using real air traffic data from Guangzhou Baiyun International Airport. Experimental
results demonstrate that the framework effectively supports air traffic controllers by scheduling more
cost-efficient descent operations for arrival aircraft.

Keywords: decision support framework; descent operations; aircraft arrival scheduling; trajectory
optimization; variable neighborhood search

1. Introduction

Air transport demand has been growing rapidly in recent decades. Despite the
significant impact of the COVID-19 outbreak on air transportation, high levels of air
traffic are still projected in the near future [1,2]. It is estimated that the demand will
surge by 50% within the next 17 years, accompanied by a corresponding increase in
delay frequencies estimated to be 15 times greater than the current levels [3]. Short-term
infrastructure development for capacity expansion is often limited by financial, geopolitical,
and ecological factors. Therefore, optimizing the efficient use of existing infrastructure and
managing air traffic within airport Terminal Maneuvering Areas (TMAs) play a significant
role in mitigating airport congestion. Additionally, fuel efficiency is a top priority for
airlines as fuel consumption costs constitute a major expense for them [4]. Furthermore, the
environmental and health impacts of air traffic have prompted increased scrutiny from both
the government and the public, primarily due to concerns related to noise and emissions.
Consequently, aviation authorities continuously set ambitious targets to address various
aspects of Air Traffic Management (ATM), including increasing airport capacity, minimizing
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aircraft delays, and reducing the environmental impact of air traffic while adhering to ATM
safety regulations [5,6].

However, it is worth noting that some of these targets may conflict with each other
when put into practice. One such example is the objective of minimizing aircraft delays,
which may require increasing aircraft speed and cruising altitude to avoid flight conflicts
in congested air segments. Unfortunately, this can result in higher fuel consumption and
increased emissions. Furthermore, Air Traffic Controllers (ATCs) currently have limited
support from automated systems, which hinders their ability to make well-informed
decisions [7]. At present, ATCs primarily rely on their experience and tactical instructions,
such as heading vectors, speed adjustments, and path stretching, to ensure safe separation
between aircraft and maximize the throughput within the TMA. This situation is primarily
attributed to the lack of granularity and efficiency in aircraft trajectory management and
scheduling techniques.

Trajectory Based Operations (TBO) is an advanced concept in ATM that has been
extensively explored by initiatives such as SESAR [8] and NextGen [9]. The primary
objective of TBO is to transition the current air traffic control system into a collaborative one
that enables precise coordination of aircraft operations and achieves higher accuracy in all
dimensions. By efficiently negotiating trajectories within TBO, both airborne and ground
equipment can be synchronized, allowing for the establishment of a descent plan with
prescribed landing times before an aircraft enters the TMA. This approach ensures equitable
and advantageous trajectories for aircraft. The management of aircraft landings within the
TMA using TBO involves several stages. Firstly, the Flight Management System (FMS) on
board the aircraft calculates a set of trajectories based on its descent operation, including
the travel time for each air segment on the assigned landing route. This information is
then transmitted to the ground system. Subsequently, the ground system sequences the
aircraft and examines for any potential conflicts between trajectories. Finally, ATCs plan
the descent operation, taking into account the appropriate decision criteria to ensure a
satisfactory outcome.

Within the framework of TBO, the Continuous Descent Operation (CDO) has gained
recognition as a vital operational technique. This procedure involves guiding arrival aircraft
through an optimized profile descent using low engine thrust settings and a low drag
configuration. Unlike the conventional Step-down Descent Operation (SDO), CDO aircraft
descend continuously from the Top of Descent (TOD), aiming to avoid level segments. This
approach leads to reduced fuel consumption and pollutant emissions [5]. Nevertheless,
managing the separation between consecutive aircraft during the CDO process can pose
challenges for ATCs as they need to closely monitor aircraft trajectories and increase
separation buffers to avoid flight conflicts. As a result, the capacity of both airspace and
runways in the TMA can be negatively affected, particularly during peak hours [10]. In our
previous work [11], we developed a small proof of concept to demonstrate the successful
implementation of a tactical lateral path stretching strategy in conjunction with the CDO
for arrival aircraft in high-density traffic. This approach, termed ps-CDO (CDO with a
lateral path stretching strategy), provides alternative lateral paths to each arrival aircraft,
offering greater flexibility in avoiding conflicts within the TMA. By providing multiple
options for the lateral path of each aircraft during the CDO phase, considering different
arrival times, an arrival aircraft scheduling problem can be formulated and systematically
resolved. This enables effective sequencing of the aircraft and prevents potential conflicts.

In this paper, we present a decision support framework that builds upon our previous
work on collaborative aircraft trajectory optimization and arrival scheduling. The primary
objective of this framework is to assist ATCs in effectively managing descent operations for
arrival traffic within the TMA, while concurrently optimizing the utilization of the TMA’s
capacity. Our proposed framework consists of three synthesis modules: descent trajectory
generation, aircraft arrival scheduling, and optimal trajectory selection. These modules
specifically focus on three distinct descent operations: the SDO, the CDO, and the ps-CDO.
To elaborate, the first module formulates and solves an Aircraft Trajectory Optimization
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Problem (ATOP), which generates descent trajectories for each arriving aircraft considering
all three descent operations. These descent trajectories define the time windows for each air
segment across all available descent routes. Based on the generated descent trajectories, the
second module assigns each aircraft a conflict-free trajectory along with the corresponding
descent route, resulting in the determination of precise arrival times at each waypoint. This
process involves solving a trajectory-based Aircraft Arrival Scheduling Problem (AASP)
formulated as a Mixed Integer Programming (MIP). To find solutions, we employ a Variable
Neighborhood Search (VNS) algorithm. Lastly, the third module determines the optimal
descent operation selection among the three options by considering both total delay and
total fuel consumption costs. This selection process aims to strike a balance between
minimizing overall delays and reducing fuel consumption.

1.1. Literature Review

The aviation industry has developed several decision support tools to assist ATCs
in managing arriving flows in the TMA, such as the Center-TRACON Automation Sys-
tems [12] and the Arrival Manager systems [13]. These systems primarily offer landing
aircraft with arrival time decisions and runway assignments while aiding the ATCs in
guiding aircraft to fly along specific waypoints along the established air route. These
aforementioned decision support tools, however, have difficulty providing more complex
trajectory management solutions, which may result in an increase in the ATCs’ workload.
Developments in communication, navigation, and surveillance technologies have con-
tributed to increasing trajectory accuracy, leading to expectations for a more advanced
decision support tool based on trajectories. The tool attempts to sequence and merge arrival
flow by performing time and energy management operations on descending trajectories.

The efficient management of aircraft descent trajectories is crucial for reducing fuel con-
sumption, gas emissions, and noise during aircraft operations. Although effective trajectory
management during aircraft descent is successful in airports with orderly and steady traffic,
it is challenging in heavy congestion traffic situations. Recent studies have focused mainly
on trajectory optimization technologies to address the challenges of managing aircraft
descent trajectories in congested traffic situations. Itoh et al. [14] and Callantine et al. [15]
investigate the application of flight-deck interval management for aircraft descent trajec-
tories in a TMA. Turgut et al. [16] introduce a fixed flight path angle descent (FFPAD)
technology to help management aircraft descent trajectories in a congested traffic envi-
ronment. The feasibility of managing the arrival aircraft trajectories in a busy TMA with
FFPAD is fully investigated in [17]. Sun et al. [18] use the four-dimensional waypoints
technology to achieve a conflict-free trajectory in high-density airspace, and evaluate the
feasibility of operations with a leader-follower example. Nonetheless, the aforementioned
methods are only practical for particular operational equipment and aircraft and limited in
terms of broader practical applications.

On the other hand, an effective trajectory management solution based on the TBO
concept involves sequencing and merging arrival traffic by assigning required times of
arrival (RTAs) at one or several fixes along a predetermined route. Pawelek et al. [19]
propose a two-step approach to implement the full CDOs with RTA in a TMA. First, they
formulated and solved a trajectory optimization problem to generate a set of candidate
CDO trajectories with times of arrival at a specific metering fix for arrival aircraft. Next,
they built an aircraft scheduling model to optimally assign RTAs to the arriving traffic,
ensuring safe time separation. As a result, aircrew can fly optimal descent trajectories
using the FMS while meeting the required times of arrival. However, the feasibility of this
approach was only evaluated under a low air traffic environment. Sáez et al. [10] develop
a four-dimensional trajectory negotiation and synchronization process to complete the
CDO procedure with a path stretching strategy known as the tromboning paradigm in
dense TMAs with the same approach. They take into account assigning optimal routes of
the trombone and RTAs to the arriving traffic simultaneously. Nevertheless, the aircraft
scheduling model used by [10,19] was established with only a certain metering fix, which
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did not include all descent waypoints in the TMA. In addition, Samà et al. [20] propose
an integrated approach for aircraft trajectory optimization and scheduling for both arrival
and departure aircraft, and their method involves having arrival aircraft descend using the
SDO and determining optimal trajectories and sequencing for all aircraft simultaneously to
demonstrate its benefits. Yet they fail to account for the scenario where an aircraft could
have multiple descent routes, nor do they apply the CDO procedure.

The classical aircraft arrival scheduling problem aims to allocate a runway to each air-
craft for landing and schedule a corresponding landing time for each. The classical aircraft
arrival scheduling problem is commonly referred to as the Runway Scheduling Problem
(RSP). The RSP is typically formulated and solved as a job-shop scheduling model [21].
Bennell et al. [22] conducted an extensive literature review of the RSP, while a more recent
comprehensive survey of relevant studies was made by [23]. There are a number of algo-
rithms that have been developed to solve the RSP since it has been proven to be a typical
NP-hard problem [24]. The particular nature of the RSP prompts researchers to compute
high-quality solutions with low computational time. Most of the research thus favors
heuristic and meta-heuristic algorithms. The commonly used meta-heuristic algorithms
are the genetic algorithm [25–27], the simulated annealing [28,29], and the ant colony opti-
mization [30,31]. Additionally, the Variable Neighborhood Descent (VND), which belongs
to the family of VNS, has received much attention as well. Salehipour et al. (2009) [32]
develop VND to address the RSP, wherein four neighborhood structures were designed to
improve the incumbent solutions. Salehipour et al. (2013) [33] consider the same problem
as [32] and use VND in a hybrid algorithm by applying the simulated annealing framework.
Furthermore, VND was also used in [34,35] to address the RSP. Recently, Salehipour and
Ahmadian [36] propose a novel hybrid optimization approach to tackle the RSP. This ap-
proach can be decomposed into two steps. Firstly, an initial sequence is generated using the
target landing time first rule. Then, the sequence is improved by a local search algorithm.
With the sequence fixed, the runway scheduling problem is formed as a linear program,
and the landing time is obtained by solving the linear program with the solver CPLEX. Ah-
madian and Salehipour [37] extend this research by introducing a novel framework called
“Relax-and-Solve” (R&S) as the sequence local search. They called it “Relax-and-Solve”
because it improves the aircraft sequence at the runway by iteratively destructing (relaxing)
a sub-sequence of the current sequence and reconstructing (solving) a feasible sequence
using optimization techniques. In this paper, we incorporate the R&S framework into our
VNS algorithm to address the AASP.

In a more realistic context, Bianco et al. [38] take into account the restrictions of various
TMA resources for aircraft arrival scheduling, such as holding circles and air segments in
addition to runways. Specifically, this model is formulated as a no-wait job shop scheduling
problem, where the runways and air segments are interpreted as the machines, and the
aircraft to be scheduled are the jobs. The separation time between each pair of aircraft
corresponds to the sequence-dependent set-up time, and the earliest and latest landing
time are interpreted as the release date and due date, respectively. Solving the resulting
model is expected to yield the start time of each aircraft at every resource along its descent
route, such that the aircraft have conflict-free descent trajectories satisfying all restrictions.
Based on this effort, D’Ariano et al. [39] formulate an aircraft scheduling problem with
fixed routes, which is represented by an alternative graph. Refs. [40–43] extend the
work by including more assumptions and objectives to improve the level of accuracy
in modeling the aircraft scheduling problem with fixed routes. Our previous work [11]
covers similar ground. Samà et al. (2014) [44] propose a new formulation that considers
alternative routes for each aircraft. In order to solve the aircraft scheduling problem with
alternative routes, Samà et al. (2017) [45] present a VNS algorithm. They employ five
distinct neighborhood structures by capturing the characteristic of the objective function to
improve the search for executing the routes for each aircraft. The AGLIBRARY solver, a
state-of-the-art optimization solver designed to deal with complex routing and scheduling
problems, is then used to solve the problem with the searched routes. Our approach differs
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from [45] in both modeling and solution approaches. Specifically, our AASP formulation
aims to minimize a linear combination of the total delay and the total difference between
the scheduled landing time and the minimum fuel-burning landing time. This contrasts
with their study, which primarily focuses on minimizing the maximum delay, with the VNS
implementation adhering to this objective as well. In addition, our approach encompasses
three descent operations, modeled with different equations of motion for the trajectory
optimization, whereas [45] considers only the step-down descent procedure. The algorithm
proposed by [45] is not applicable in our framework due to the different models used,
and we thus develop a new VNS algorithm that employs an extended R&S framework to
establish neighborhood structures during the search for improved routes for each aircraft.

1.2. Our Contributions

This paper introduces a novel decision support framework for managing aircraft
descent operations in the TMA and makes several contributions to the existing literature:

(1) We develop a comprehensive decision support framework that can assist ATCs
in determining the optimal descent operations and arrival schedules for approaching
aircraft in TMAs. To the best of our knowledge, this is the first approach that integrates the
aircraft trajectory optimization and arrival scheduling and incorporates various options for
selecting descent operations, including SDO, CDO, and ps-CDO. By extensively comparing
three different descent operations and their impacts on flight delays and fuel consumption
in various traffic flows, our proposed tool can provide its users with an important reference
for selecting the most suitable operations for arrival aircraft.

(2) We propose a novel VNS algorithm that employs three neighborhood structures
to enhance the efficiency and quality of solutions for solving the AASP. This algorithm
leverages an extended R&S framework to establish the neighborhood structures, and
incorporates a Tabu Search (TS) algorithm to efficiently search the solution space.

(3) We implement extensive experiments using real traffic data from Guangzhou
Baiyun International Airport (GBIA), considering both arrival and departure traffic flows.
The computational results demonstrate the effectiveness and efficiency of our proposed
decision support framework and our proposed solution approach.

1.3. Organization of This Paper

The remainder of this paper is organized as follows: Section 2 provides an overview of
the decision support framework’s architecture and describes the mathematical models used
in the framework. Section 3 discusses the solution methodologies employed for addressing
the problem. The numerical experiments conducted and the corresponding results are
presented in Section 4. Finally, Section 5 offers a conclusion summarizing the findings of
this study and suggests potential directions for future research.

2. Decision Support Framework

In this section, we present our proposed decision support framework, starting with
the introduction of the concept of operations proposed in this work (Section 2.1). We then
provide a detailed description of the mathematical models proposed for the three modules
within the decision support framework (Sections 2.2–2.4).

2.1. Concept of Operations

In Figure 1, we provide a simplified scenario that serves as an illustration of the
problem addressed in this paper. The scenario considers a time-limited decision horizon
where multiple aircraft seek to enter an extended-TMA (E-TMA) from different directions
through various entry points. The ATCs are responsible for scheduling the descent process
for each aircraft.
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Figure 1. A simplified scenario for our studied problem.

For each approach, there are predefined descent routes available, and the scheduling
process aims to assign a suitable descent route to each aircraft along with a scheduled
arrival time at each waypoint. This ensures that every aircraft follows a conflict-free descent
trajectory through the different air segments and eventually lands on a runway. The traffic
flows may converge at various metering waypoints, where the aircraft trajectories merge
until they ultimately reach the runways.

Well before the TOD point, while still in the cruise phase, the ATC requires the aircraft
to compute its travel time window for each air segment. The travel time window is
determined by calculating the difference between the earliest and latest possible times for
flying through the air segments, corresponding to the earliest and latest descent trajectories.
The FMS is responsible for calculating these trajectories, taking into account various factors
such as aircraft performance, flight envelope, and weather conditions. The width of the
travel time window can be influenced by the choice of descent operation employed by
the aircraft. In this paper, we consider three descent operations: the SDO, the CDO, and
the ps-CDO.

Figure 2a illustrates the vertical profiles of the earliest and latest trajectories for the
three descent operations. It also presents the travel time window for each descent operation
on an air segment. It can be observed that the SDO offers a higher degree of operational
flexibility, resulting in a wider time window. However, this flexibility comes at the cost of
increased fuel consumption. On the other hand, the ps-CDO extends the width of the CDO
time window through a lateral path stretching strategy, which may also lead to increased
fuel consumption. The CDO is the most restrictive descent operation, with the narrowest
time window. However, it is also the most fuel-efficient descent operation.
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(a)

 

(b)

Figure 2. A schematic diagram of the earliest and latest trajectories for three descent operations:
(a) Vertical profile of descent trajectories. (b) Travel time window in an air segment.

After entering the E-TMA during the cruising phase, the aircraft engages in a tra-
jectory and scheduled time negotiation process with the ATCs. In order to facilitate this
synchronization process, we propose a decision support framework, which is illustrated in
Figure 3. The framework consists of three modules, outlined as follows:

 

Figure 3. An overview of the proposed decision support framework.



Aerospace 2024, 11, 405 8 of 30

• Module I: Descent trajectories generation.
This module is responsible for generating descent trajectories for arriving aircraft,
considering predefined descent operations such as the SDO, the CDO, and the ps-
CDO. These trajectories encompass the earliest and latest descent trajectories, as well as
the minimum fuel-burning descent trajectory. The travel time window is determined
based on the earliest and latest descent trajectories, while the minimum fuel-burning
landing time is associated with the minimum fuel-burning descent trajectory. To
achieve this, an ATOP is formulated and solved, taking into account factors such as
aircraft performance, flight envelope, and weather conditions (refer to Section 2.2). It
is important to note that multiple descent routes are considered for each aircraft, and
the descent trajectories differ for each route. In practice, these trajectories would be
generated using advanced functionality in the FMS for each aircraft.

• Module II: Aircraft arrival scheduling.
In the second module, based on the computed descent trajectories from the previous
module, a descent route with a conflict-free trajectory is assigned to each aircraft
operating under one of the three descent operations. This assignment process ensures
a safe separation between aircraft during their descent procedure and determines
the exact arrival time at each waypoint. The objective of this model is to minimize a
linear combination of the total delay and the total difference between the minimum
fuel-burning landing time and the scheduled landing time. The preferences for the
total delay and the total difference are typically provided by the decision makers, in
this case, the ATCs in our studied system. The AASP is formulated as a MIP (see
Section 2.3) and a VNS algorithm is developed (see Section 3.2) to solve the problem.

• Module III: Optimal trajectory selection.
This module is initiated by the decision makers (i.e., the ATCs) who choose the optimal
descent operation for every arrival aircraft within the decision time horizon. We
define a cost function as a linear combination of the total delay cost and total fuel
consumption cost to determine the priority among the three descent operations (see
Section 2.4). In this model, the total delay and the required landing time for all arriving
aircraft can be calculated by solving the AASP in Module II. Additionally, the ATOP
in Module I can be utilized to compute the minimum fuel-burning descent trajectory
that satisfies the required landing time, from which the resulting fuel consumption
can be determined. Consequently, the approaching aircraft will follow the optimal
descent operation with the minimum fuel-burning descent trajectories that meet the
required landing time. Notably, in the AASP, if decision makers increase the weight of
the total delay indicator in the objective function to achieve a smaller total delay, it will
inevitably lead to an increase in the total difference between the minimum fuel-burning
landing time and the scheduled landing time. This increased difference signifies a
greater deviation from the minimum fuel-burning descent trajectory, thereby leading
to higher fuel consumption for each aircraft. Conversely, decreasing the weight of
the total delay indicator will have the opposite effect. This approach allows for the
selection of the most suitable descent operation based on the cost function and the
specific requirements of each aircraft.

Without loss of generosity, we make the following assumptions to expedite the discus-
sion of our proposed framework: (1) All waypoints are predefined in the descent procedure
for each arriving aircraft. (2) There are no operational failures during descent, such as
missed approaches, emergency landings, or engine failures, and operating time is not taken
into account. (3) The aircraft maintains its original cruise speed until it reaches the TOD.
(4) Only one aircraft is allowed to land or take-off on each runway at a time.

2.2. Descent Trajectories Generation

This section presents the methodology employed to generate aircraft descent trajecto-
ries as they approach their destination. The descent trajectories consist of two segments:
the cruise segment from an entry waypoint to the TOD, and the descent segment from the
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TOD to the runway. The descent segment is further divided into multiple phases, which
correspond to different changes in aircraft dynamics. To optimize the aircraft’s vertical
profile, including altitude and speed, while maintaining a fixed lateral route and distance,
we formulate the problem as a multi-phase optimal control problem. This formulation
takes into consideration altitude and speed constraints, as well as aircraft performance
bounds. In this study, we utilize a point mass model [46] to describe the aircraft’s equations
of motion. The trajectory of each arriving aircraft along a pre-designed descent route
is planned such that the aircraft follows the point mass equations in each air segment
p ∈P = {1, 2, · · · , |P |} and satisfies boundary conditions between any two consecutive
air segments. The ATOP mathematical formulation is presented below.

(ATOP) : min J (1a)

s.t. V̇(p)
T =

T(p) − D(p)(VT , h, β)

m
− gγ(p) ∀p ∈P (1b)

ṡ(p) = V(p)
T cos γ(p) + W(p)

s (h) ∀p ∈P (1c)

ḣ(p) = V(p)
T sin γ(p) ∀p ∈P (1d)

ḣ(p)
min ≤

dh
dt
≤ ḣ(p)

max ∀p ∈P (1e)

T(p)
min ≤ T(p) ≤ T(p)

max ∀p ∈P (1f)

0 ≤ β(p) ≤ β
(p)
max ∀p ∈P (1g)

γ
(p)
min ≤ γ(p) ≤ 0 ∀p ∈P (1h)

V(p)
CAS,min ≤ V(p)

CAS ≤ V(p)
CAS,max ∀p ∈P (1i)

M(p)
min ≤ M(p) ≤ M(p)

max ∀p ∈P (1j)

[VT , h]⊺(t(1)0 ) = [VT0, h0]
⊺ (1k)

[VT , s, h]⊺(t(|P |)f ) = [VT f , s f , h f ]
⊺ (1l)

[VT , s, h]⊺(t(p−1)
f ) = [VT , s, h]⊺(t(p)

0 ) ∀p ∈P \ {1} (1m)

For each air segment p, the variables have the following definitions: V(p)
T is the true

airspeed; s(p) is the along-track distance from the runway; h(p) is the altitude; γ(p) is the
aerodynamic flight path angle; T(p) and D(p) represent the thrust and the aerodynamic
drag, respectively; β(p) is the speed-brakes deflection; W(p)

s (h) is the longitudinal wind;
V(p)

CAS and M(p) are the calibrated airspeed and Mach number, respectively; t(p)
0 and t(p)

f
denote the initial and final time, respectively. The parameters g and m are the aircraft
gravity acceleration and mass, respectively.

Constraints (1b)–(1d) represent the point-mass dynamics of an aircraft in the vertical
plane, where [VT, s, h]⊺ is the state vector and [T, β, γ]⊺ is the control vector. Constraints (1e)–(1j)
specify the value range requirements of dh

dt , T, β, γ, VCAS and M to ensure flight envelope
protection and passenger comfort, where ḣmin and ḣmax are the minimum and maximum
descent rate; Tmin and Tmax are the idle and maximum thrust; βmax is the maximum
speed-brakes deflection; γmin is the minimum descent gradient; VCAS,min and VCAS,max are
the minimum and maximum calibrated airspeed; Mmin and Mmax are the minimum and
maximum Mach number. Constraints (1k) and (1l) represent the boundary condition at the
TOD and the runway. Constraint (1m) is the link constraint.

Module I calculates the earliest and latest descent trajectories, as well as the mini-
mum fuel-burning descent trajectory, for each arrival aircraft. Each trajectory serving its
specific objectives:
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Earliest descent trajectory, which is to minimize the flight time,

(ATOPE) : min Jtime =
s(t(1)0 )− smax

Vcr︸ ︷︷ ︸
cruise segment flight time

+ t(|P |)f︸ ︷︷ ︸
descent segment flight time

(2a)

s.t. (1b)–(1m) (2b)

where s(t(1)0 ) is an along-track distance at TOD; smax is the along-track distance of entry
waypoint; Vcr is the cruise speed.

Latest descent trajectory, which is to maximize the flight time:

(ATOPL) : max Jtime (3a)

s.t. (1b)–(1m) (3b)

Minimum fuel-burning descent trajectory, which is to minimize the fuel consumption:

(ATOPF) : min J f uel =
fcr(s(t

(1)
0 )− smax)

Vcr︸ ︷︷ ︸
cruise segment fuel consumption

+ ∑
p∈P

∫ t(p)
f

t(p)
0

fidle(VT , h)dt︸ ︷︷ ︸
descent segment fuel consumption

(4a)

s.t. (1b)–(1m) (4b)

where fcr and fidle are the cruise fuel flow rate and idle fuel flow rate in the descent,
respectively.

The ATOP may encounter different operational constraints for each aircraft in each air
segment depending on the chosen descent operation. The parameters related to aircraft
performance, which are utilized in both the point mass model and the fuel burn function,
are derived from the Base of Aircraft Data (BADA) [47]. It is important to note that the
additional thrust and speed-brakes are only permitted for the SDO. For the CDO and
the ps-CDO, the point-mass model is reduced to a so-called γ− command model, which
assumes continuous vertical equilibrium through the descent process. Specifically, in order
to obtain an environmentally friendly CDO trajectory, the idle thrust is imposed and the
use of speed brakes is not allowed throughout the descent. As a result, the flight path angle
(γ) is the only control variable in this dynamical system to manage the energy of the aircraft
and achieve different travel time through the descent air segments.

We solve the (ATOPE) formulation to obtain the earliest travel time for each aircraft
in each air segment p, which is t(p)

f − t(p)
0 . Similarly, solving the (ATOPL) formulation

provides us with the aircraft’s latest travel time in each air segment p. The minimum
fuel-burning landing time (which is t(|P |)f ) for each aircraft is determined by solving the
(ATOPF) formulation. These times are then utilized in Module II.

2.3. Aircraft Arrival Scheduling

In this section, we formulate and solve the AASP to assign a conflict-free trajectory
with a descent route to each aircraft. This scheduling process aims to determine the
precise arrival time of each aircraft at every waypoint, ensuring compliance with safety
separation requirements. The AASP takes into account various inputs, including the travel
time window for each air segment and the minimum fuel-burning landing time (both
obtained from the ATOP). Additionally, estimated earliest and latest arrival times for
aircraft entering the TMA and the estimated target landing time are considered. It is worth
mentioning that the estimated target landing time remains consistent regardless of the
chosen descent operation.

The AASP is formulated using a directed graph G = (V , A ) with a set of waypoints
V and a set of arcs A . For each aircraft i ∈ F , a descent air route can be chosen in a set
of alternative descent air routes Ri, where F is the set of all arrival aircraft. Specifically,
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a descent air route ri for aircraft i contains a set of waypoints (oi, · · · , k, l, · · · , di) ∈ V
ri

i .
The origin oi and the destination di represent the entry waypoint and the runway, respec-
tively. Each arc (k, l) ∈ A

ri
i indicates the air segment between two adjacent waypoints

in the directed graph. Therefore, the set of waypoints that can be used by aircraft i is
Vi =

⋃
ri∈Ri

V
ri

i . Similarly, the set of arcs that can be used by aircraft i is Ai =
⋃

ri∈Ri
A

ri
i .

In this connection, Vi ⊂ V , Ai ⊂ A in the digraph G .
We introduce two sets of binary decision variables to respectively model the descent

air route selection and the sequential relationship between aircraft at shared waypoints.
The variable yri

i represents the selection of descent air route ri for aircraft i. The variable
ziju indicates the sequential relationship between aircraft i and j as they traverse the same

waypoint u ∈ V
ri

i ∩ V
rj

j . This is equal to 1 if aircraft i arrives at waypoint u before aircraft j
and 0 otherwise. We use the continuous variable tri

ik to represent the arrival time at waypoint
k for aircraft i following descent air route ri.

The objective of the AASP is to minimize a linear combination of the total delay and
the total difference between the scheduled landing time and the minimum fuel-burning
landing time. The sets, parameters, and decision variables used in the formulation of the
AASP are summarized in Table 1. The AASP is formulated as follows:

(AASP) : min λ ∑
i∈F

αi + (1− λ) ∑
i∈F

µi (5a)

s.t. ∑
ri∈Ri

yri
i = 1 ∀i ∈ F (5b)

tri
ik ≤ Byri

i ∀i ∈ F , ∀k ∈ V
ri

i , ∀ri ∈ Ri (5c)

Γearly
ioi

yri
i ≤ tri

ioi
≤ Γlate

ioi
yri

i ∀i ∈ F , ∀ri ∈ Ri (5d)

Θri
ik_ily

ri
i ≤ tri

il − tri
ik ≤ Θri

ik_ily
ri
i

∀i ∈ F , ∀(k, l) ∈ A
ri

i , ∀ri ∈ Ri (5e)

t
rj
ju ≥ tri

iu + Siju − B(3− ziju − yri
i − y

rj
j )

∀i, j ∈ F , i < j, ∀u ∈ V
ri

i ∩ V
rj

j , ∀ri ∈ Ri, ∀rj ∈ Rj (5f)

tri
iu ≥ t

rj
ju + Sjiu − B(2 + ziju − yri

i − y
rj
j )

∀i, j ∈ F , i < j, ∀u ∈ V
ri

i ∩ V
rj

j , ∀ri ∈ Ri, ∀rj ∈ Rj (5g)

ziju − zijv ≥∑
ri∈Ri

(u,v)∈A
ri

i

yri
i + ∑

rj∈Rj

(u,v)∈A
rj

j

y
rj
j − 2

∀i, j ∈ F , i < j, ∀(u, v) ∈ A
ri

i ∩A
rj

j (5h)

zijv − ziju ≥∑
ri∈Ri

(u,v)∈A
ri

i

yri
i + ∑

rj∈Rj

(u,v)∈A
rj

j

y
rj
j − 2

∀i, j ∈ F , i < j, ∀(u, v) ∈ A
ri

i ∩A
rj

j (5i)

αi ≥ tri
idi
− Γidi

∀i ∈ F , ∀ri ∈ Ri (5j)

αi ≥ 0 ∀i ∈ F (5k)

µi ≥ tri
idi
− Γfuel

idi
∀i ∈ F , ∀ri ∈ Ri (5l)

µi ≥ Γfuel
idi
− tri

idi
∀i ∈ F , ∀ri ∈ Ri (5m)

tri
ik ≥ 0 ∀i ∈ F , ∀k ∈ V

ri
i , ∀ri ∈ Ri (5n)

ziju ∈ {0, 1} ∀i, j ∈ F , i < j, ∀u ∈ V
ri

i ∩ V
rj

j (5o)

yri
i ∈ {0, 1} ∀i ∈ F , ∀ri ∈ Ri (5p)
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where λ ∈ [0, 1] is a weight parameter that allows for the adjustment of the relative
importance of total delay and total difference of landing times. The variable αi denotes the
delay of aircraft i with respect to its reference landing time Γidi

. The variable µi denotes the
absolute value of the difference |tri

idi
− Γfuel

idi
|.

Table 1. Sets, parameters, and variables in the AASP.

Sets with indices Explanation

F A set of aircraft (index i, j).
Ri A set of alternative descent air routes for aircraft i (index ri).
V A vertex set of waypoints in the TMA (index oi, · · · , k, l, · · · , di), where Vi ∈ V .
A An air segment set of descent air route in the TMA, where Ai ∈ A .
G A directed graph G = (V , A ).

Parameters Explanation

i, j Aircraft ID.
ri Descent air route for aircraft i.
k, l, u, v Transit waypoint.
oi The entry waypoint for aircraft i.
di The runway for aircraft i.
Γearly

ioi
, Γlate

ioi
Estimated earliest (latest) arrival time for aircraft i enter the TMA.

Γearly
idi

, Γtarget
idi

, Γlate
idi

Estimated earliest (target, latest) landing time at the runway di for aircraft i.

Γidi The reference landing time at the runway di for aircraft i, where Γidi
= max{Γearly

idi
, Γtarget

idi
}.

Γfuel
idi

The landing time at the runway di with the minimum fuel consumption for aircraft i.
Θri

ik_il , Θri
ik_il The minimum (maximum) travel time in air segment (k, l) for aircraft i.

Siju
The minimum time-based separation for a preceding aircraft i and another trailing aircraft j
in a same waypoint u.

B Large artificial variable.

Decision variables Explanation

yri
i 1, if aircraft i uses descent air route ri ∈ Ri; 0, otherwise.

ziju 1, if aircraft i flies through the same waypoint u before aircraft j; 0, otherwise.
tri
ik The arrival time of waypoint k by descent air route ri for aircraft i, where tri

ik ≥ 0.
αi The delay of aircraft i to its reference landing time, where δi = max{0, tri

idi
− Γidi

}.
µi The absolute value of the difference |tri

idi
− Γfuel

idi
|.

Constraint (5b) ensures that exactly one descent air route can be chosen for each
aircraft. Constraint (5c) enforces that tri

ik is a non-zero value when the descent air route
ri is selected, where B is a sufficiently large number such as the sum of the maximum
travel time of all aircraft flying through all arcs. Constraint (5d) restricts that each air-
craft i to enter the TMA between the estimated earliest arrival time Γearly

ioi
and the lat-

est arrival time Γlate
ioi

. Constraint (5e) allows the travel time in each air segment (k, l) to

take any value within the range
[
Θri

ik_il , Θri
ik_il

]
. These lower and upper bounds are ob-

tained by solving the aforementioned (ATOPE) and (ATOPL) formulations, respectively.
Constraints (5f) and (5g) represent separation constraints, ensuring that if aircraft j fol-
lows aircraft i at the same waypoint u ∈ V

ri
i ∩ V

rj
j , the arrival time at waypoint u of

aircraft j must be greater than or equal to the arrival time of aircraft i plus the minimum
time-based separation Siju. Constraints (5h) and (5i) ensure that there is no overtake be-
tween aircraft i and j traveling through the common air segment (u, v) ∈ Ai ∩Aj, where

∑ri∈Ri ,(u,v)∈A
ri

i
yri

i = 1 (∑
rj∈Rj ,(u,v)∈A

rj
j

y
rj
j = 1) if aircraft i (j) uses arc (u, v), 0, otherwise.

Constraints (5j) and (5k) define that the delay of aircraft i equals to max{0, tri
idi
− Γidi

}, where

Γidi
= max{Γearly

idi
, Γtarget

idi
}. Γearly

idi
and Γtarget

idi
are the earliest landing time and target landing

time at the runway di of aircraft i, respectively, where Γearly
idi

= Γearly
ioi

+ ∑(k,l)∈A
ri

i
Θri

ik_il .
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Constraints (5l) and (5m) define the absolute value of difference between tri
idi

and Γfuel
idi

. The

minimum fuel-burning landing time Γfuel
idi

is obtained by solving the (ATOPF) formulation.
Constraints (5n)–(5p) specify the domains of the decision variables.

Note that the (AASP) can also be employed to allocate a feasible ascent route and the
start time at each waypoint for every departing aircraft within a specified decision horizon
in a TMA. In this context, each take-off aircraft follows an ascent trajectory, flying from the
runway towards its assigned exit point. In the problem formulation, the origin oi refers to
the runway, while the destination di represents the exit waypoint.

2.4. Optimal Trajectory Selection

This module helps the ATCs select the optimal descent operation for each approach-
ing aircraft. A cost function is established to prioritize the descent operations, which is
formulated as the sum of the cost of total delay and the cost of total fuel consumption, as
shown below:

Ω = cdelayΩdelay + c f uelΩ f uel (6)

where cdelay and c f uel are the unit delay cost (¤/s) and unit fuel cost (¤/kg), respectively.
Ωdelay denotes the total delay experienced by all aircraft during a given decision time hori-
zon, which is computed by solving the (AASP). Ω f uel denotes the total fuel consumption
of all aircraft within the decision time horizon. To calculate the fuel consumption of each
aircraft, an ATOP is formulated with a fixed required time of arrival at the runway. The
objective of the ATOP is to minimize fuel consumption, and the formulation is as follows:

(ATOPF′) : min J f uel (7a)

s.t. (1b)–(1m) (7b)

t(|P |)f = tRTA (7c)

where tRTA is the required time of arrival at the runway, which is obtained by solving
the (AASP).

3. Solution Methods

The central component of our decision support framework consists of the proposed
ATOP and AASP models. The ATOP is formulated as a Non-Linear Programming (NLP)
optimization problem with interior point constraints, which can be solved numerically
using two primary methods: direct and indirect [20,48]. In this study, a pseudospectral
method [49] is employed as a direct method for solving the ATOP. On the other hand, the
AASP is formulated as a MIP problem. While it can be solved using commercial solvers
such as Gurobi, the high number and complexity of decision variables and constraints
for a busy TMA can result in extremely long computational times. To address this issue,
we have developed a VNS algorithm specifically tailored for solving the AASP. The VNS
algorithm provides efficient solutions within a reasonable time frame, allowing for real-
time decision-making. In practice, air traffic flow management in a TMA operates in a
dynamic and evolving environment. To accommodate this dynamism, we adopt a rolling
horizon approach to solve the dynamic cases of our decision support framework. This
approach allows for continuous adaptation and optimization of trajectories and schedules
based on updated information and changing conditions, ensuring effective and timely
decision-making.
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3.1. Pseudospectral Method

The pseudospectral method discretizes the time interval (time grid) and approximates
the state and control variables in an optimal control problem. By converting the original
infinite-dimensional problem into a finite-dimensional nonlinear optimization problem, it
can be solved using standard NLP solvers like SNOPT [50]. In the pseudospectral method,
the state and control inputs are approximated as piecewise polynomials, and collocation
points are chosen using a quadrature rule over each time step. This approach offers high
accuracy and efficiency, and for a large number of collocation points, it can yield an exact
optimal solution [49].

For solving the ATOP in our study, we employ the GPOPS 5.0 package [51], which is
a Matlab-based (R2021a) software specifically designed for solving multi-phase optimal
control problems using the pseudospectral method. The SNOPT solver is integrated in the
GPOPS as the underlying NLP solver, which is known for its robustness and efficiency in
handling NLP problems. By utilizing GPOPS with the SNOPT solver, we can effectively
solve the ATOP and obtain optimal trajectory solutions for aircraft descent operations in
our decision support framework.

3.2. VNS Algorithm

The AASP consists of three main operations: routing, sequencing, and scheduling.
Routing involves selecting the descent route for each aircraft, sequencing determines the
arrival order of aircraft at each waypoint, and scheduling involves determining the arrival
time for each aircraft at each waypoint. When a feasible sequence is given, which includes
the selected descent route for each aircraft and the execution order of the aircraft at each
waypoint, the optimal schedule for that sequence can be obtained in a polynomial time.
This paper proposes a VNS algorithm that starts with an initial sequence and iteratively
explores different neighborhood structures to search for improved sequences. Note that
given a feasible sequence, obtaining an optimal schedule for each aircraft can be achieved
using available algorithms or commercial solvers such as Gurobi.

The VNS algorithm follows a three-phase process: shaking, local search, and move.
It starts with an initial sequence Π and its corresponding objective value z(Π). The
algorithm alternates between these phases to iteratively improve the sequence. In the
shaking phase, the algorithm generates a neighbor sequence Π′ by applying one of the
available neighborhood structures Nq, for q = 1, 2, · · · , qmax, or a fixed structure N1.
This neighbor sequence Π′ is evaluated by calculating its objective value z(Π′). Next, in
the local search phase, the algorithm manipulates the neighbor sequence Π′ using the
available neighborhood structures to further improve it. If an improved sequence Π′′ with
a lower objective value (z(Π′′) < z(Π)) is obtained, it replaces the current best sequence,
and the local search continues. If no improvement is achieved, the algorithm returns
to the shaking phase. This process continues until the stopping criterion is met. The
algorithm terminates based on two criteria: the maximum number of iterations (itermax)
and the maximum number of iterations without improvement (noimprovingmax). Once the
algorithm terminates, the improved sequence Π with its objective value z(Π) is reported
as the final solution. Algorithm 1 provides an overview of the VNS algorithm, while
Algorithm 2 summarizes the steps involved in the local search phases. The generation
of initial solutions and the definition of neighborhood structures are discussed in the
following sections.
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Algorithm 1 The variable neighborhood search (VNS) algorithm for AASP

Input: Integers itermax, noimprovingmax and qmax. A set of neighbourhood structures Nq
for q = 1, 2, · · · , qmax. An initial sequence Π and its corresponding objective value
z(Π).

1: iter ← 1
2: ξ ← 0
3: while iter ≤ itermax and ξ < noimprovingmax do
4: /∗ Shaking: ∗/
5: Π′, z(Π′)←N1(Π)
6: /∗ Local search: ∗/
7: Π′′, z(Π′′)← LS(Π′, q) /∗ See Algorithm 2 ∗/
8: /∗Move or not: ∗/
9: if z(Π′′) < z(Π) then

10: Π← Π′′

11: z(Π)← z(Π′′)
12: ξ ← 0
13: else
14: ξ ← ξ + 1
15: iter ← iter + 1
16: end if
17: end while
Output: An improved sequence Π and its objective value z(Π).

Algorithm 2 The local search procedure LS(Π′, q) in VNS

1: TL← ∅
2: q← 1
3: while q ≤ qamx do
4: ccq ← Randomly select one from all positions of Π′.
5: if ccq not in TL then
6: temp, z(temp)← Nq(Π′, ccq, crq)
7: if z(temp) < z(Π′) then
8: Π′ ← temp
9: z(Π′)← z(temp)

10: q← 1
11: TabuMemoryFilter(TL)
12: else
13: q← q + 1
14: TL← TabuMemoryUpdate(TL, TLmax, ccq, Π′)
15: end if
16: end if
17: end while

3.2.1. Initial Solution Generation Method

The AASP exhibits a pattern where the order of aircraft at each waypoint corresponds
to the order of aircraft landing on the runway based on their scheduled landing times. This
alignment is a result of designing descent routes to converge aircraft arrivals towards the
runway (see in Figure 1) and the prohibition of overtaking in any air segment (see con-
straints (5i) and (5j)). Therefore, we can represent the sequence Π =

(
πr1

1 , πr2
2 , · · · , π

r|F |
|F |

)
for the AASP, where the order list {1, 2, · · · , |F |} denotes the execution order of the aircraft
at each waypoint, and the set {r1, r2, · · · , r|F |} represents the descent route allocations.

To generate an initial solution for the AASP, we propose an algorithm outlined in
Algorithm 3. The algorithm starts by sorting all aircraft at each waypoint in non-decreasing
order based on their estimated earliest landing time Γearly

idi
. This sorting ensures that the

aircraft are initially arranged in a feasible order at each waypoint. We then formulate the
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problem (AASPI), which fixes the aircraft order at each waypoint, and use the Gurobi
9.5.0 solver to solve it. The default parameters of Gurobi are used except for the time limit,
which may be adjusted as needed. The initial sequence Π is obtained by sorting all aircraft
in non-decreasing order of their scheduled time at the runway. This sequence, along with
its objective value z(Π), is used to initialize the local search.

Algorithm 3 The algorithm for generating the initial solution

1: Sort the aircraft at each waypoint in non-decreasing order of Γ(i) = Γearly
idi

.
2: Solve the problem (AASPI) utilizing a commercial solver like Gurobi.
3: Obtain the initial sequence Π and its objective value z(Π).

// The problem(AASPI) is formulated as follows:

(AASPI) : min (5a) (8a)

s.t. t
rj
ju ≥ tri

iu + Siju − B(2− yri
i − y

rj
j )

∀i, j ∈ F , Γ(i) < Γ(j), ∀u ∈ V
ri

i ∩ V
rj

j (8b)

(5b)–(5e), (5j)–(5n), (5p) (8c)

It is worth noting that we conducted preliminary experiments to determine the optimal
rule for sorting aircraft at each waypoint. We tested three sorting rules based on estimated
target landing time (Γtarget

idi
), earliest estimated landing time (Γearly

idi
), and latest estimated

landing time (Γlate
idi

). Our findings suggest that sorting the aircraft by the earliest estimated
landing time yields the best solution.

3.2.2. Improvement Algorithm

Once a feasible initial sequence Π has been obtained for the AASP, the VNS algorithm
attempts to improve it by iteratively exploring its neighborhood structures for a designated
number of iterations. Our VNS algorithm employs three unique neighborhood structures
denoted as N1, N2, and N3.

The neighborhood structure N1 is derived from the R&S framework that allows for
the exploration of improved solutions by relaxing routing and sequencing constraints for a
selected sub-sequence of aircraft. This neighborhood structure differs significantly from
traditional approaches. The process of the neighborhood structure N1 is illustrated in
Figure 4. Given an initial sequence Π, the relaxing neighborhood selects a sub-sequence ΠR

from Π based on two parameters: a randomly selected center cc1 and a radius cr1. Every
sub-sequence ΠR is relaxed through relaxing the routing and sequencing constraints of the
aircraft in the sub-sequence, therefore letting the aircraft change their descent route and
order in the sequence. The remaining aircraft in the sequence, denoted as ΠNR = Π \ΠR,
are not subject to changes in routing or sequencing. We then reduce the (AASP) with
a given ΠR and ΠNR to problem (AASPR) (see Appendix A) and solve it using a com-
mercial solver (e.g., the Gurobi). In the (AASPR) formulation, the descent routes and
the execution orders at each waypoint for all aircraft in the sequence ΠNR are kept un-
changed (see constraints (A1c)–(A1e)). However, for the aircraft in the sequence ΠR, the
routing and sequencing constraints are relaxed, allowing for potential adjustments (see
constraints (A1f)–(A1i)). As a result, solving the (AASPR) would involve re-routing, re-
sequencing, and re-scheduling for the aircraft in ΠR, while only re-scheduling would occur
for the aircraft in ΠNR. The sequence is updated if an improved solution is found, and the
search continues.

Note that, while optimization solvers often require significant time to find the optimal
route, sequence, and schedule for large instances, they display high efficiency in small-sized
instances. Therefore, by relaxing the routing and sequencing constraints for a select few
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aircraft, one can leverage the solver’s capabilities and achieve an optimal or nearly optimal
solution for the relaxed aircraft.

 

Figure 4. The process for the neighborhood structure N1.

Figure 5 shows an example of the N1 for 10 aircraft (labeled a to j) with 3 descent
routes (1 to 3). The disjunctive arcs, represented by dashed orange lines, indicate that these
aircraft are subject to possible re-routing, re-sequencing, and re-scheduling operations. On
the other hand, the remaining aircraft in the sequence follow conjunctive arcs represented
by solid black lines. These aircraft are only subject to re-scheduling operations, meaning
their routing and sequencing remain unchanged.

 

Figure 5. An example of the relaxing neighborhood.

The neighborhood structure N2 involves sequentially swapping the location of a
randomly selected center cc2 with the positions within a radius cr2 for a given sequence Π.
By applying the swap operation to the current sequence Π, a new sequence Π′ is generated.
To evaluate its quality, the AASP problem is reformulated using Π′ and converted into a
problem denoted as (AASPS) (see Appendix B). This reformulation captures the changes
in the sequence and enables efficient solving using a commercial solver such as Gurobi,
with the time limit parameter set appropriately. During the exploration process, only swaps
that result in an improved solution are accepted and retained. An example of the swap
operation in neighborhood structure N2 is illustrated in Figure 6.

 

Figure 6. An example of a swap operation in neighborhood structure N2.
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The neighborhood structure N3 involves changing the current descent route for each
aircraft within a sub-sequence ΠC to a randomly selected alternative descent route, if one
exists. The sub-sequence ΠC is randomly selected from a given sequence Π using a center
cc3 and a radius cr3. A new sequence Π′ is generated by applying the change operation to
the current sequence Π within this neighborhood. Then, we obtain a solution from solving
the (AASPS) with the fixed sequence Π′. Only the change operations that improve the
current solution are accepted. Figure 7 shows an example of a change operation within
neighborhood structure N3.

 

Figure 7. An example of a change operation within neighborhood structure N3.

Within the local search phase, a TS [52] approach is used to avoid being trapped in local
optima and revisiting the same solution, as described in Algorithm 2. The TS efficiently
employs a memory structure to move away from previous solutions. To facilitate this
process, we introduce two operations: the tabu memory filter and the tabu memory update.
The former operation eliminates all of the tabu moves from the current neighborhood (no
aspiration criteria is used), while the latter operation updates the list of tabu moves during
the search. The tabu list (TL) utilized in the local search phase has a maximum of TLmax
moves, with each implemented move storing two pieces of key information: the current
sequence and the value of the central parameter. It is important to note that in some cases,
the application of neighborhood structures N2 and N3 may result in infeasible solutions for
problem (AASPS). When this occurs, these operations are skipped, and the VNS algorithm
proceeds to the next process.

We also note that the VNS algorithm only uses the neighborhood structure N1 in
its shaking phase. The parameters cc1 and cr1 within N1 demonstrate variable values
between the shaking and local search phases. In the shaking phase, we employ N1 to
infuse diversification into our search, thereby facilitating an exploration of novel sectors
within the solution space. In the local search, however, we deploy N1 to intensify the search
process, thereby capitalizing on the incumbent solution to realize superior outcomes.

3.3. Rolling Horizon Approach

The rolling horizon approach is a dynamic strategy implemented in our decision
support framework to handle real-time changes in the air traffic flow management. As
illustrated in Figure 8, it involves breaking down the overall decision-making process
into smaller decision time windows, each with a duration of Wdecision. At the start of
each time window, the decision support framework is executed to determine the optimal
descent operation for each aircraft within the given time window based on the available
information at that time. After completing the decision-making process for the current
decision time window, the rolling horizon approach moves to the next time window with a
time difference of Rroll . The rolling horizon approach iterates through the decision-making
procedure for each subsequent decision time window until the end of the overall traffic
decision. This iterative process ensures that the decision support framework remains
responsive to the evolving traffic conditions and provides up-to-date recommendations for
the optimal descent operations of the arriving aircraft.
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Figure 8. The rolling horizon approach.

In the rolling horizon approach, each decision time window consists of two groups of
aircraft: ongoing aircraft from the previous window and new aircraft arriving in the current
window. The ongoing aircraft’s descent processes continue from the previous window,
while their descent routes and arrival times serve as constraints for the new aircraft. The
decision support framework considers these constraints to optimize the descent operations
for both groups, ensuring safe separation between them. This approach allows for efficient
and safe management of the entire set of aircraft within each decision time window.

4. Experimental Results

This section presents the numerical experiments conducted to evaluate the perfor-
mance of the proposed decision support framework and the VNS algorithm. We imple-
mented the pseudospectral technique to solve the ATOP problem using the Matlab R2021a
programming language, and implemented the VNS algorithm to solve the AASP problem
using the Python 3.9 programming language. The problems (AASP), (AASPI), (AASPR),
and (AASPS) are solved using the commercial solver Gurobi 9.5.0 [53] with default param-
eters, except for the time limit. All experiments are performed on a PC with an Intel(R)
Core(TM) i7-10710U CPU@1.10GHz ARM 16G under the Windows 10 operating system.

4.1. Test Instances and Parameters Setting
4.1.1. Traffic Instances in Gbia

GBIA is the largest transport hub in China and serves as the primary hub for China
Southern Airlines. According to the published Aeronautical Information Publication (AIP),
Figure 9a displays the designed north orientation arrival routs utilized to approach the
hub by incoming aircraft. Figure 9b highlights the path stretching routes for the ps-CDO
procedure. We consider an E-TMA with a radius of 220 NM around the GBIA. The GBIA
features three parallel runways expressly designed for arriving and departing procedures:
runway 01/19, runway 02L/20R, and runway 02R/20L, all of which are shown in Figure 9c.
Among them, Runway 01/19 is operational for both arrivals and departures, runway
02R/20L is exclusively reserved for arrivals, and runway 02L/20R is solely used for
departures. This study assumes that the independent instrument approaches between
runway 01/19 and runway 02R/20L, and the segregated parallel approaches and/or
departures between runway 02R/20L and runway 02L/20R.

In our study, we conducted simulations using actual aircraft routing and schedul-
ing data from GBIA TMA for a full day in November 2019. The test data set consists
of 1290 aircraft, with 653 arrivals and 637 departures, including three types of aircraft:
267 Airbus A332 (heavy), 452 Airbus A320 (medium), and 571 Boeing B738 (medium). For
all arrival aircraft, we assume a north orientation approach. To analyze different air traffic
scenarios, we divided the day into three distinct time periods: low-density, normal-density,
and high-density. Figure 10 illustrates the hourly movements during the simulated day,
with the three highlighted periods representing the identified air traffic situations. We
created six separate test instances based on these time periods. The instances labeled A1,
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A2, and A3 considered only arrival traffic, while the instances labeled AD1, AD2, and AD3
included both arrival and departure traffic.

Our study focuses on analyzing the effects of arrival traffic exclusively within the
E-TMA phase while disregarding enroute fluctuations. We set the arrival time at the entry
waypoint identical to the estimated target arrival time for every arriving aircraft. For
departure traffic, a designated runway is assigned for takeoff within a given time window.
We set the departure window at 900 s, and assume the minimum fuel-burning take-off time
is equal to the estimated target take-off time. The take-off air segments from runway exit
for the departure aircraft is not considered in this paper. Therefore, the runways are the
only potential points of conflict between the arrival and departure traffic.

 

(a)
 

(b)

(c)

Figure 9. GBIA E-TMA configurations: (a) E-TMA of GBIA. (b) Path stretching design. (c) Parallel
runway operation pattern.
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Figure 10. Hourly movements at GBIA.

4.1.2. Parameters Setting

In our numerical experiments, we computed the descent trajectories for every arriving
aircraft, starting from the last part of the cruise prior to the TOD and ending at the runway.
The aircraft maintain a cruise altitude of 35,000 feet until the TOD, where they enter the
descending phase. The runway altitude is set to 50 feet. We refer to [11,48] for more details
on altitude and speed constraints at each air segment in the ATOP for our three analyzed
descent operations, including the SDO, the CDO, and the ps-CDO. The altitude-dependent
wind profile Ws (h) used in our ATOP is taken from the meteorological terminal aviation
routine weather report of the GBIA. The remaining performance parameters of the aircraft,
consisting of the aerodynamic data, the fuel flow data, and the geometric data, are available
in BADA.

In the AASP, the minimum time-based separation between two consecutive aircraft
in the airspace is calculated by incorporating their angles and speeds. The calculation
algorithm is based on the work of [2]. The minimum time-based separation matrices for
operations on the same runway or close parallel runways are provided in Table 2 [54] and
Table 3 [55], respectively. Aircraft involved in arrivals and departures are symbolized by
“A” and “D”, whereas aircraft weight categories are represented by “H”, “M”, and “L” for
heavy, medium, and light aircraft, respectively. For example, “AH” denotes the arrival of a
heavy aircraft.

Table 4 lists a summary of the parameter values used in the VNS algorithm. We
classify all test instances in Table 4 into three classes based on the number of aircraft: up to
30 aircraft, 30 to 70 aircraft, and more than 70 aircraft. We solve all test instances within
each group using these parameter values.

Table 5 displays the delay cost per unit cdelay, which is calculated based on [56] full
tactical costs but excludes the fuel cost incurred by the delay. The fuel cost per unit c f uel is
set to 0.8 ¤/kg, in line with the base scenario in [56].

Table 2. The minimum time-based separation matrix for operations on the same runway (unit: s).

Preceding AH AM AL DH DM DL

AH 96 157 196 75 75 75
AM 60 69 131 75 75 75
AL 60 69 82 75 75 75
DH 60 60 60 90 120 120
DM 60 60 60 60 60 60
DL 60 60 60 60 60 60
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Table 3. The minimum time-based separation matrix for operations on the close parallel runways
(unit: s).

Preceding
Trailing

AH AM AL DH DM DL

AH - - - 68 68 80
AM - - - 62 62 80
AL - - - 48 55 80
DH 54 58 80 - - -
DM 54 58 80 - - -
DL 54 58 80 - - -

Note: Symbol “-” indicates that no valid operation combination is possible.

Table 4. Values of the parameters for the VNS algorithm.

Parameters
Number of Aircraft

|F | ≤ 30 30 < |F | ≤ 70 |F | > 70

itermax 3 5 max{5, [ |F |40 ]}
noimprovingmax 2 2 max{3, [ |F |25 ]}

cr1 (shaking) 2 4 min{[ |F |20 ], 6}
cr1 (local search) 4 6 min{[ |F |15 ], 10}

cr2 2 2 max{3, [ |F |35 ]}
cr3 2 2 max{3, [ |F |35 ]}

timelimitinitial (s) 1 1 10
timelimitLS (s) 1 1 3

TLmax 10 15 max{15, [ |F |10 ]}
Note: timelimtinitial and timelimtLS refer to the time limits set for the Gurobi solver during the initial solution
generation phase and the local search phase, respectively.

Table 5. Values of the unit delay cost (¤/s).

Delay (s)
Arrivals Departures

A332 A320 B738 A332 A320 B738

(0, 300] 1.25 0.67 0.67 0.91 0.4 0.4
(300, 900] 1.64 0.89 0.91 1.29 0.63 0.64

4.2. Framework Decision Solutions

In this section, we investigate the performances of our proposed framework with
respect to three descent operations (i.e., SDO, CDO, and ps-CDO). We arbitrarily select the
results with respect to λ = 0.5. Table 6 displays the computational results for instances
A1–AD3. In Table 6, the rows are organized in blocks of six rows for the three descent oper-
ations, including the values of the total cost, the total delay cost, the total fuel consumption
cost, the total delay, the total difference, and the total fuel consumption.

Based on the analysis of total cost, the results show that different descent optimization
methods yield optimal solutions depending on the specific scenarios and traffic densities.
For instances A1 and AD1, which represent low traffic density scenarios, the CDO approach
is found to be the optimal choice. For instances A2 and A3, which represent normal and
high traffic density scenarios considering only arrival traffic, the ps-CDO approach proves
to be the optimal choice. In scenarios that involve both arrivals and departures, such as
instances AD2 and AD3, the SDO approach is identified as the best choice.

Note that the implementation of CDO in instances A2, A3, AD2, and AD3, which
represent scenarios with dense traffic, is found to be infeasible. In such cases, ensuring
safety while implementing CDO becomes challenging due to the need for extra separation
buffers. As a result, arrival aircraft are unable to follow the CDO trajectories in these
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scenarios. With the path stretching approach, on the other hand, each aircraft approaching
based on the ps-CDO is provided with various options for its lateral path with respect
to different arrival times. An AASP can thus be solved to properly sequence the aircraft
in order to avoid aircraft conflicts. However, the inclusion of path stretching within the
ps-CDO leads to increased travel distances for aircraft during descent, resulting in higher
fuel consumption and reduced travel time efficiency.

Table 6. The computational results on instances A1–AD3.

Indicators A1 A2 A3 AD1 AD2 AD3

SDO

Total cost (¤) 12,842.31 58,119.74 75,851.6 12,979.91 (12,882.92) 63,028.02 (61,399.59) 80,465.05 (77,989.02)
Total delay cost (¤) 547.89 11,018.2 12,392.15 678.67 (600.07) 15,839.66 (14,522.25) 17,510.85 (15,508.58)
Total fuel consumption cost (¤) 12,294.42 47,101.54 63,459.45 12,301.24 (12,282.85) 47,188.36 (46,877.34) 62,954.2 (62,480.44)
Total delay (s) 655 11,984 13,480 807 (687) 18,200 (15,915) 19,991 (16945)
Total difference (s) 1222 13,655 20,651 1356 (1236) 14,875 (12,590) 21,044 (17,998)
Total fuel consumption (kg) 15,368.03 58,876.92 79,324.31 15,376.55 (15,353.57) 58,985.45 (58,596.68) 78,692.75 (78,100.55)

CDO

Total cost (¤) 11,483.37 - - 11,589.12 (11,485.14) - -
Total delay cost (¤) 1554.65 - - 1618.84 (1534.64) - -
Total fuel consumption cost (¤) 9928.72 - - 9970.28 (9950.5) - -
Total delay (s) 1833 - - 1996 (1862) - -
Total difference (s) 969 - - 1174 (1040) - -
Total fuel consumption (kg) 12,410.89 - - 12,462.85 (12,438.13) - -

ps-CDO

Total cost (¤) 11,675.87 56,729 74,834.28 11,902.97 (11,799) 63,362.42 (61,272.22) 81256.84 (78,649.21)
Total delay cost (¤) 1444.2 15,652.89 20047.09 1657.49 (1573.29) 22,109.76 (20,401.98) 26,463.63 (24,355.8)
Total fuel consumption cost (¤) 10,231.67 41,076.11 54,787.19 10,245.48 (10,225.71) 41,252.66 (40,870.24) 54,793.21 (54,293.41)
Total delay (s) 1798 16,566 21,115 2013 (1879) 23,138 (20,242) 28545 (25485)
Total difference (s) 1109 10,078 14,264 1248 (1114) 12,284 (9388) 15,866 (12,806)
Total fuel consumption (kg) 12,789.59 51,345.14 68,483.99 12,806.86 (12,782.14) 51,565.82 (51,087.79) 68,491.51 (67,866.76)

Note: Symbol “-” indicates that the aircraft scheduling problem obtains no feasible solution. A number within
each parenthesis indicates the value for the arrival aircraft.

While the SDO approach performs well in terms of reducing total delay compared to
the CDO and ps-CDO approaches, it leads to increased fuel consumption for arrival aircraft.
On the other hand, the CDO-based approach demonstrates a fuel consumption reduction
of approximately 15% compared to the SDO approach. As traffic flows increase and
TMA capacity remains constant, total delay and its associated costs significantly increase.
However, the increase in total fuel consumption and associated costs is negligible. The
SDO approach, which reduces total delay, is thus more advantageous in terms of total cost
and recommended for instances AD2 and AD3, which involve both arrival and departure
traffic and higher traffic flows.

These findings highlight the trade-offs and considerations associated with different
descent optimization approaches in terms of safety, fuel consumption, travel time efficiency,
and delay reduction, particularly in scenarios with dense traffic. The choice of the optimal
approach depends on the specific operational requirements and priorities in each scenario.

4.3. Sensitivity Analysis on Weight Parameter

In this section, we compare the performance of the SDO against the ps-CDO with
varying values of the weight parameter λ within our framework. We increase the weight
parameter λ from 0 to 1 with a step size of 0.1. Figure 11 illustrates the effect of altering
the weight parameter λ on the total delay and fuel consumption of the SDO (solid lines)
and the ps-CDO (dashed lines) for instances A1-AD3. The corresponding cost results of the
SDO and the ps-CDO are presented in Figure 12, including the total cost, the total delay
cost, and the total fuel consumption cost.

As the weight parameter λ increases, the importance of total delay in the AASP model
increases, resulting in solutions with smaller total delay for both the SDO and the ps-CDO
approaches. However, total fuel consumption and its associated costs gradually increase.
The ps-CDO approach outperforms the SDO in terms of total fuel consumption and its
associated cost, while the SDO performs better in terms of total delay and its associated
costs, regardless of the value of λ.
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Figure 11. Effect on the total delay and fuel consumption for the SDO (solid lines) and the ps-CDO
(dashed lines) to weight parameter λ.
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Figure 12. Costs results for the SDO (solid lines) and the ps-CDO (dashed lines) to weight parameter λ.

In terms of total cost, during low or normal traffic scenarios (instances A1, A2, A3,
and AD1), the ps-CDO consistently yields better total cost results compared to the SDO.
However, during high traffic scenarios (instances AD2 and AD3), the SDO generates
smaller total cost compared to the ps-CDO when λ = 0.5 or 0.6 in AD2 and λ ≥ 0.5 in
AD3, respectively. This detailed trade-off information can assist ATCs in determining the
optimal compromise between different performance indices using our framework.

4.4. Effectiveness of the VNS Algorithm

In this section, we evaluate the effectiveness of our proposed VNS algorithm for the
AASP model. Here, we arbitrarily set λ = 0.5 and provide the findings in Table 7, in which
we compare the VNS algorithm against the Gurobi solver with a time limit of 1800 s. The
first three rows of the table list the outcomes of the Gurobi for the SDO, including the
best objective function value, CPU time, and optimality gap at the time limit. Rows 4–6
present the results of our VNS algorithm for the same instance with the SDO run ten times,
including the best objective function value, the average objective function value, and the
average CPU time. Rows 7–12 provide the statistics for the ps-CDO. The number within
each parenthesis indicates the frequency of obtaining the best solution among the 10 runs
of the VNS algorithm.
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Table 7. The computational results for the AASP on instances A1–AD3.

Index A1 A2 A3 AD1 AD2 AD3

SDO

Gurobi
Obj. (s) 938.5 12,819.5 17,065.5 1081.5 16,706.5 20,590.5
CPU time (s) 0.16 1800.1 1800.18 0.14 1800.21 1800.23
Gap (%) 0 0.11 0.08 0 12.61 5.44

Our VNS
Obj. (best) (s) 938.5 (10) 12,819.5 (10) 17,065.5 (10) 1081.5 (10) 16,537.5 (2) 20,517.5 (5)
Obj. (avg.) (s) 938.5 12,819.5 17,065.5 1081.5 16,667.1 20,554
CPU time (avg.) (s) 0.34 24.83 29.42 0.56 106.4 121.55

ps-CDO

Gurobi
Obj. (s) 1453.5 13,322 17,689.5 1630.5 17,713 22,205.5
CPU time (s) 0.11 1800.07 1800.12 0.12 1800.11 1800.23
Gap (%) 0 1.56 1.11 0 15.74 10.16

Our VNS
Obj. (best) (s) 1453.5 (10) 13,322 (10) 17,689.5 (10) 1630.5 (10) 17,711 (8) 22,205.5 (10)
Obj. (avg.) (s) 1453.5 13,322 17,689.5 1630.5 17,711.4 22,205.5
CPU time (avg.) (s) 0.32 26.6 33.54 0.41 93.01 124.22

Note: A number within each parenthesis indicates the frequency of obtaining the best solution among the 10 runs
of the VNS algorithm.

Our VNS algorithm performed significantly better than the Gurobi solver in terms of
solution quality. In all instances, our algorithm produced solutions that were either equal to
or better than the best solutions obtained by Gurobi. Notably, the average solution quality
achieved by our VNS algorithm was comparable to the best solutions generated by Gurobi.

The VNS algorithm can produce near-optimal solutions for all instances within a few
seconds, whereas the Gurobi algorithm fails to provide better solutions within the specified
time limit for all instances except A1 and AD1. Furthermore, the reliability of our VNS
algorithm is evident as it consistently delivers the best solutions after multiple runs, while
maintaining reasonably short CPU times. As the number of aircraft increases, resulting in
more variables and constraints, the iteration times naturally increase. However, the CPU
time of our VNS algorithm does not increase proportionately, showcasing its efficiency in
solving the AASP problem.

4.5. Decision Solutions for Daily Operations

In this section, we employ the rolling horizon approach to explore the decision so-
lutions of our decision support framework over a full day. The complete day instances
can be found in Section 4.1.1 (see Figure 10). We consider two cases: (i) arrival traffic only,
and (ii) both arrival and departure traffic. The rolling horizon method is employed with
parameter settings of Wdecision = 2 h and Rroll = 1 h. The results are analyzed based on a
weight parameter of λ = 0.5. Figure 13a shows the optimal descent operation solutions
for arriving aircraft hourly throughout the day in case (i), while the outcomes for (ii) are
presented in Figure 13b.

The effectiveness of the CDO procedure for arriving aircraft is most prominent during
periods of low traffic density, specifically between 02:00 to 09:00 in both case (i) and case (ii).
However, its practicality diminishes during the remaining periods of the day, as it fails
to satisfy the minimum time-based separation requirement in the TMA. Implementing
the CDO during these times would render the AASP problem infeasible. Regarding the
ps-CDO, in case (i), it is the optimal choice for arriving aircraft between 09:00–14:00 and
15:00–24:00. For case (ii), it remains optimal during periods of normal traffic density, namely
09:00–12:00, 13:00–14:00, 15:00–18:00, and 21:00–22:00. However, during high traffic density
periods, following the ps-CDO would lead to significantly increased delay costs, making
it less favorable in terms of total cost. Thus, it is advisable to utilize the SDO procedure
during high traffic density periods, as it minimizes the total cost. It should be noted that the
ps-CDO cannot be utilized from 00:00–01:00, as it cannot provide conflict-free trajectories
for arriving aircraft during this time.
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Figure 13. Optimal descent operation solutions for arriving aircraft hourly throughout the day:
(a) Case (i): arrival traffic only. (b) Case (ii): both arrival and departure traffic.

5. Conclusions

In this paper, we present an innovative collaborative decision support framework for
future trajectory-based operations that integrates aircraft trajectory optimization, arrival
scheduling, optimal trajectory selection, and their interactive processes within a single
framework. First, the framework is capable of computing the aircraft descent trajectories
by performing three distinct descent operations (SDO, CDO, and ps-CDO). Second, based
on the descent trajectories, the framework allocates a conflict-free trajectory to each aircraft
while minimizing the total delay and total fuel consumption. Finally, the framework selects
the best descent operation out of the three considering minimizing the total cost of total
delay and total fuel consumption. We evaluate the performance of our framework for
traffic handling in the GBIA TMA, considering both arrival and departure traffic. The
computational results demonstrate that our framework can support the ATCs in efficiently
managing the descent operations in the TMA. Additionally, our VNS algorithm featuring
three novel neighborhood structures proves to be efficient for solving the AASP. Therefore,
we propose that this framework will serve as a technical enabler for future air traffic
flow management.

One avenue for future research is to extend our decision support framework to include
the point merge system [57] and vectoring maneuvers [58]. Our proposed framework heav-
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ily relies on accurate trajectory planning, yet uncertainties such as weather [59], navigation
accuracy, and pilot operations may undermine its performance and pose potential safety
risks. Addressing these uncertainties in future research would be valuable for enabling us
to develop a more robust decision support framework for realistic scenarios.
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The following abbreviations are used in this manuscript:

TMAs Terminal Maneuvering Areas
ATM Air Traffic Management
ATCs Air Traffic Controllers
TBO Trajectory Based Operations
FMS Flight Management System
SDO Step-down Descent Operation
CDO Continuous Descent Operation
TOD Top of Descent
ATOP Aircraft Trajectory Optimization Problem
AASP Aircraft Arrival Scheduling Problem
VNS Variable Neighborhood Search
VND Variable Neighborhood Descent
FFPAD Fixed Flight Path Angle Descent
RTAs Required Times of Arrival
RSP Runway Scheduling Problem
R&S Relax-and-Solve
TS Tabu Search
GBIA Guangzhou Baiyun International Airport
E-TMA extended-TMA

Appendix A. (AASPR) Model Formulation

Let F ΠNR
pre , F ΠR

and F ΠNR
suc denote the aircraft set of the preceding part in ΠNR, the

aircraft set in ΠR and the aircraft set of the succeeding part in ΠNR, respectively. If ΠNR

contains the beginning (or end) of the Π, the F ΠNR
pre ∈ ∅ (or F ΠNR

suc ∈ ∅). The problem
(AASPR) is formulated as follows:

(AASPR): min (5a) (A1a)

s.t. (5b)–(5e), (5j)–(5p) (A1b)

t
rj
ju ≥ tri

iu + Siju

∀i, j ∈ F ΠNR

pre ∪F ΠNR

suc , i < j, ∀u ∈ V
ri

i ∩ V
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i − y
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j )

∀i ∈ F ΠNR

pre , j ∈ F ΠR
, ∀u ∈ V

ri
i ∩ V
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j , ∀rj ∈ Rj (A1d)
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t
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iu + Siju − B(2− yri
i − y

rj
j )

∀i ∈ F ΠR
, j ∈ F ΠNR

suc , ∀u ∈ V
ri

i ∩ V
rj

j , ∀ri ∈ Ri (A1e)

t
rj
ju ≥ tri

iu + Siju − B(3− ziju − yri
i − y

rj
j )

∀i, j ∈ F ΠR
, i < j, ∀u ∈ V

ri
i ∩ V

rj
j , ∀ri ∈ Ri, ∀rj ∈ Rj (A1f)

tri
iu ≥ t

rj
ju + Sjiu − B(2 + ziju − yri

i − y
rj
j )

∀i, j ∈ F ΠR
, i < j, ∀u ∈ V

ri
i ∩ V

rj
j , ∀ri ∈ Ri, ∀rj ∈ Rj (A1g)
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j
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∀i, j ∈ F ΠR
, i < j, ∀(u, v) ∈ A

ri
i ∩A
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j (A1h)
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ri∈Ri

(u,v)∈A
ri

i

yri
i + ∑
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(u,v)∈A
rj

j

y
rj
j − 2

∀i, j ∈ F ΠR
, i < j, ∀(u, v) ∈ A

ri
i ∩A

rj
j (A1i)

yri
i = 1 ∀i ∈ F ΠNR

pre ∪F ΠNR

suc (A1j)

Appendix B. (AASPS) Model Formulation

The problem (AASPS) is formulated as follows:

(AASPS) : min (5a) (A2a)

s.t. Γearly
ioi
≤ tri

ioi
≤ Γlate

ioi
∀i ∈ F (A2b)

Θri
ik_il ≤ tri

il − tri
ik ≤ Θri

ik_il ∀i ∈ F , ∀(k, l) ∈ A
ri

i (A2c)

t
rj
ju ≥ tri

iu + Siju ∀i, j ∈ F , i < j, ∀u ∈ V
ri

i ∩ V
rj

j (A2d)

αi ≥ tri
idi
− Γidi

∀i ∈ F (A2e)

αi ≥ 0 ∀i ∈ F (A2f)

µi ≥ tri
idi
− Γfuel

idi
∀i ∈ F (A2g)

µi ≥ Γfuel
idi
− tri

idi
∀i ∈ F (A2h)

tri
ik ≥ 0 ∀i ∈ F , ∀k ∈ V

ri
i (A2i)
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