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Abstract: The positioning of civil aviation aircraft relative to a geographic reference point on Earth
in a Cartesian frame is significant to detect the deviations from the desired path, especially for
high-altitude airports or special airports based on performance-based navigation (PBN). To obtain
these critical deviations during aircraft approach and landing, it is fundamental to estimate the
continuous flight variables and discrete flight modes simultaneously with enough accuracy. With
the coordinate conversion between the North, East, and Down (NED) frame and the geographic
coordinate system based on World Geodetic System 1984 (WGS-84) considered, this study proposed
a non-linear stochastic hybrid estimation algorithm with adaptive square-root unscented particle
filtering (ASR-UPF) to estimate the true path. The probabilities of mode transition, represented by
the normal cumulative density function of continuous states, determine whether to proceed with
mode transitions. In addition, the adaptive update characterized by tracking variable noise and the
importance sampling distributions based on the results of square-root unscented Kalman filtering (SR-
UKF), as a comparative study of continuous system filtering, were used. The experiments illustrated
the ASR-UPF is able to reduce the state estimation error more effectively, and more promptly track
the error caused by incorrect mode estimation with adaptability compared to the SR-UKF. A further
test with real flight data indicates that the proposed method gives the refined estimation of position
and azimuth in NED frame.

Keywords: hybrid estimation; adaptive square-root unscented particle filtering; importance sampling;
adaptive update

1. Introduction

The deviations from the desired path of a civil aviation aircraft are significant for
accident analysis, such as collision with obstacles, which needs positioning of the air-
craft relative to obstacles, especially for high-altitude airports or special airports based
on performance-based navigation (PBN) [1] that are positioned using global positioning
systems (GPSs) with waypoints. Meanwhile, its positioning error is smaller than the pro-
tection area of traditional instrument flight procedure, and there are many tall obstacles
around the airport. Consequently, it is necessary to estimate the position and azimuth in
the Cartesian frame. Unfortunately, the position and azimuth of an aircraft relative to a
geographic reference point on Earth in a Cartesian frame are not recorded in flight data,
which provides support for solving the problem of positioning estimation in a Cartesian
frame. When the aircraft is a highly complex nonlinear dynamic system, the continuous
motion of the aircraft can make transitions between flight modes. Correspondingly, differ-
ent modes can also change the patterns of the aircraft’s continuous motion, that is, variable
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aerodynamic configuration. Meanwhile, the flight data inevitably have uncertain noise
due to uncertain factors such as navigation error, sensor measurement error, and external
disturbances [2], and when integrated with manual operations, this could cause stochastic
transitions between flight modes [3]. Therefore, the model of single-continuous-flight
dynamics cannot match the variable aerodynamic configuration caused by mode transition,
and a hybrid dynamics model should be established for discrete state and continuous
state estimation.

Hybrid dynamics modeling mainly appears in the study of hybrid systems with cou-
pled discrete and continuous states [4]. The earliest hybrid systems modeling formalized
the underlying behavior and manual operations of the system using formal method [5].
However, this method, which has poor universality, uses strict formal language to express
discrete mode transition, which has no description of continuous behavior. The mixed
logical dynamic model (MLDM) contains the logic of continuous motion within discrete
state transition logic, describing the transition of discrete states as a linear inequality con-
taining both discrete and continuous variables via Boolean algebra and determines the
mode transition based on the true or false logical conditions [6,7]. Nevertheless, MLDM
characterized by deterministic probabilities of discrete state transition cannot reflect the un-
certainty of flight mode transition. The generalized fuzzy hidden Markov model (GFHMM),
extending HMM to the fuzzy domain, obtains the mode transition of automatic flight sys-
tems by fuzzy inference with two parameters, transition fuzzy density, and emission
fuzzy density, which can be obtained through parameter statistical analysis or clustering
algorithms [8,9]. However, the GFHMM does not take into account the mode transition
caused by manual operations, and it is essentially a method for continuous time series
analysis and prediction.

To demonstrate the stochastic mode transition, interacting multiple model (IMM) and
constrained IMM take into account the probability of constant mode transition [10–13],
which is limited to stochastic hybrid systems with discrete mode transitions that are
independent of the continuous state variation. The state-dependent transition hybrid
estimation (SDTHE) algorithm explicitly calculates the mode transition probabilities that
depend on the continuous states [14]. Compared with IMM, SDTHE is more suitable for
state estimation for general stochastic hybrid systems. Scholars have used the SDTHE
algorithm to infer the intentions of the automatic flight system and compare them with the
pilot’s operational intentions to identify abnormal human–machine interactions [15]. By
constraining the continuous state, the constrained SDTHE algorithm was developed for the
estimation of unmanned aerial vehicle trajectory with turning constraints [16].

In cooperation with state estimation algorithms, this system can carry out state estima-
tion based on the stochastic hybrid dynamic model with coupled discrete and continuous
states. The extended Kalman filter (EKF), unscented Kalman filter (UKF), and cubature
Kalman filter (CKF) based on KF have limited improvement of estimation accuracy for
nonlinear systems [17–19], while particle filter could effectively solve this problem using se-
quential Monte Carlo sampling with the appropriate number of particles [20,21]. However,
the importance of sampling distribution commonly uses a particle filter, which is generally
a prior distribution, instead of using the posterior probability distribution corrected by
measurement data, which would cause issues of low efficiency and sensitivity to singular
points and would not effectively utilize measurement data [22]. Meanwhile, taking the
posterior probability distribution generated by the square root unscented Kalman filter
(SR-UKF) [23] as the importance sampling distribution not only utilizes new measurement
data but also maintains computational stability in the form of the square root of covariance.
In addition, due to the uncertainty of noise during filtering, adaptive methods need to be
adopted to update the noise, which could improve the estimation accuracy of flight data
further [24].

Considering that the aircraft is a highly nonlinear system, whose modes are numerous
and complex, there is generally a problem of dimension explosion. Even though some
solutions for simplifying state equations and measurement equations via aircraft mode
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abstraction have been put forward [14,25], it would induce oversimplification if only the
motion of the center of mass in a Cartesian frame were considered. In other words, calcu-
lating the coordinates of an aircraft in the Cartesian frame directly instead of converting
coordinates between geographic and Cartesian frame would lead to inaccurate position
calculations, which further cause excessive estimation error.

To estimate the position and azimuth of civil aviation aircraft with coupled modes
and continuous states is fundamental to flight safety analysis and accident investigation.
Focusing on the hybrid estimation of a nonlinear stochastic hybrid system, this study
contributes to developing a synthetic filtering system characterized by the adaptive square-
root unscented particle filtering (ASR-UPF) algorithm and considering the coordinate
transformation via the track projection between a Cartesian frame and a geographic frame
based on the World Geodetic System 1984 (WGS-84) to ensure high accuracy of the hybrid
model [26]. In a simulation study and experiments on real flight data, the stochastic
nonlinear hybrid estimation with ASR-UPF is tested and discussed deeply in this study.

This paper is organized as follows. In Section 2, the methodology of synthetic filtering
system integrated with ASR-UPF and track projection is described, which is employed in
hybrid system modeling and its estimation algorithm. In Section 3, the proposed algorithm
is demonstrated with two examples of simulation tests and experiments on real flight data.
The discussion and conclusions are presented in Section 4 and Section 5, respectively.

2. Methodology

A synthetic filtering system integrated with ASR-UPF and track projection is devel-
oped to estimate the relative position and azimuth of an aircraft in a Cartesian frame
or local inertial frame, whose orientation is North, East, and Down (xn, yn, zn) with the
defined origin.

2.1. Adaptive Square-Root Unscented Particle Filtering

For continuous states, the state equation at time k − 1 and the measurement equation
at time k are defined as 

xq
k = f q

(
xq

k−1

)
+ωωω

q
k−1

yk = hq
(

xq
k

)
+ rq

k

(1)

where q ∈ M is the mode and M is the set consisting of Nm modes. ωωω
q
k−1, rq

k represent
mutually independent Gaussian white noise at time k − 1 and k, respectively.

At time k = 0, we define the initial mode as q0, of which the probability is α+0,q0
= 1.

The distribution of the initial continuous state corresponds to N
(

x̂+0,q0
, Qq0

0

)
, from which

sample N particles x̂
+,np
0,q0

, np = 1, 2, 3, · · · , N, and Qq0
0 is the initial system noise covariance

matrix obtained from the statistical analysis of historical flight data. The weights and
square root of the covariance matrices of each particle are obtained as

w̃
q0,np
0 =

1
N

S
q0,np
0 =

√
Qq0

0

(2)

For the filter of other modes, we define the probabilities, the mean, and the square
root of the covariance matrices of the continuous states as

α+0,q = 0

x̂+0,q = 0

Sq
0 = 0

q ∈ M, q ̸= q0

(3)
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Thus, the sampled particles and their weights of other modes are
x̂
+,np
0,q = 0

S
q ,np
0 = 0

w̃
q ,np
0 =

1
N

(4)

At time k − 1, the posterior distribution of each particle in each filter is

N
(

x̂
+,np
k−1,qk−1

,
(

S
qk−1,np
k−1

)T
S

qk−1,np
k−1

)
. The posterior probability of each discrete mode is

α+k−1,qk−1
, and the probability of mode transitions is γ

qk−1qk
k .

As the algorithm basis of ASR-UPF, the SR-UKF is described in the Appendix A1. To
improve estimation accuracy, the adaptive filtering scheme is proposed, in which the two
noise covariance matrices Q

qk ,np
k and R

qk ,np
k of particle np in mode qk (or the qkth filter) are

able to be updated according to the error statistics. Then, the measurement noise covariance
matrix is adjusted based on the a priori estimation in Equation (4) as

R
qk ,np
k = (1 − dk)R

qk−1,np
k−1 + dk[ỹ

qk0,np
k

(
ỹ

qk0,np
k

)T
−

2n

∑
row=0

W
qk0,np(c)
row (ŷ

qk0,np(row)−
k − ŷ

qk0,np−
k )(ŷ

qk0,np(row)−
k − ŷ

qk0,np−
k )

T
]

(5)

where the weights dk ∈ [0, 1] determine the window length in adaptive filtering. With
equal weights, the estimation will gradually become accurate if the noise characteristics
remain unchanged. However, the weights with exponential fading are more appropriate to
deal with the variation in the noise characteristics:

dk = (1 − b)/(1 − bk+1) (6)

where b ∈ (0, 1) is the forgetting factor. Therefore, the square root of the measurement
noise covariance matrix is derived as√

R
qk ,np
k

T√
R

qk ,np
k =

[√
(1 − dk)(

√
R

qk−1,np
k−1 )

T √
dkỹ

qk0,np
k

]
(√

(1 − dk)
√

R
qk−1,np
k−1

)T

√
dkỹ

qk0,np
k


−

2n

∑
row=1

√
dkW

qk0,np(c)
row (ŷ

qk0,np(row)−
k − ŷ

qk0,np−
k )

[√
dkW

qk0,np(c)
row (ŷ

qk0,np(row)−
k − ŷ

qk0,np−
k )

]T

− sgn(W
qk0,np(c)
0 )

(√
dk

∣∣∣Wqk0,np(c)
0

∣∣∣)2

(ŷ
qk0,np(0)−
k − ŷ

qk0,np−
k )(ŷ

qk0,np(0)−
k − ŷ

qk0,np−
k )

T

(7)

In computer implementation, the QR decomposition is carried out to obtain R
qk ,np
k ,

and the Cholesky factor of the rank-1 update is carried out twice as

√
R

qk ,np
k = qr

{[√
(1 − dk)

√
R

qk−1,np
k−1 ,

√
dk

(
ỹ

qk0,np
k

)T
]T
}

√
R

qk ,np
k = cholupdate(

√
R

qk ,np
k ,

√
dkW

qk0,np(c)
1:2n

(
ŷ

qk0,np(1:2n)−
k − ŷ

qk0,np−
k

)
,′ −′)√

R
qk ,np
k = cholupdate(

√
R

qk ,np
k ,

√
dk

∣∣∣Wqk0,np(c)
0

∣∣∣(ŷ
qk0,np(0)−
k − ŷ

qk0,np−
k

)
,′ −(sgn(W

qk0,np(c)
0 ))′)√

R
qk ,np
k = diag(diag(

√
R

qk ,np
k ))

(8)

where diag represents the diagonal matrix. After the adaptive update of R
qk ,np
k , the mea-

surement update is performed based on traditional SR-UKF, as shown in Equation (A5).
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To complete the adaptation operation, the process noise covariance matrix Q
qk ,np
k , up-

dated based on the a priori estimation in Equation (A3) and a posteriori estimation in
Equation (A6), is adjusted as follows:

Q
qk ,np
k = (1 − dk)Q

qk−1,np
k−1

+ dk

((
x̂

qk0,np+

k − x̂
qk0,np−
k

)(
x̂

qk0,np+

k − x̂
qk0,np−
k

)T
− U

qk ,np
k

(
U

qk ,np
k

)T
) (9)

After the QR decomposition and Cholesky factor of rank-1 update,

√
Q

qk ,np
k

T√
Q

qk ,np
k =

 √
(1 − dk)

√
Q

qk−1,np
k−1

√
dk(x̂

qk0,np+

k − x̂
qk0,np−
k )

T

T √
(1 − dk)

√
Q

qk−1,np
k−1

(
√

dk(x̂
qk0,np+

k − x̂
qk0,np−
k ))

T


−
√

dkU
qk ,np
k (

√
dkU

qk ,np
k )

T

(10)

In computer implementation, the square root of the process noise covariance matrix is
derived by

√
Q

qk ,np
k = qr

{[√
(1 − dk)

√
Q

qk−1,np
k−1 , (

√
dk(x̂

qk0,np+

k − x̂
qk0,np−
k ))

T
]T
}

√
Q

qk ,np
k = cholupdate(

√
Q

qk ,np
k ,

√
dkU

qk ,np
k ,′ −′)√

Q
qk ,np
k = diag(diag(

√
Q

qk ,np
k ))

(11)

Define N
(

x̂
qk0,np+

k , S
qk0,np
k

(
S

qk0,np
k

)T
)

according to Equation (A6) as the importance

sampling distribution, from which we obtain x̂
+,np
k,qk

particles and calculate the weight of
each particle. Then, the weight of each particle is updated and normalized as follows:

w
qk ,np
k = w̃

qk−1,np
k−1

N

(
yk; x̂

+,np
k,qk

,
√

R
qk ,np
k

(√
R

qk ,np
k

)T
)

N
(

x̂
+,np
k,qk

; x̂
qk0,np+

k , S
qk0,np
k

(
S

qk0,np
k

)T
)

∗ N

(
x̂
+,np
k,qk

; x̂
+,np
k−1,qk−1

,
√

Q
qk−1,np
k−1

(√
Q

qk−1,np
k−1

)T
)

w̃
qk ,np
k =

w
qk ,np
k

∑N
np=1 w

qk ,np
k

(12)

We determine whether to perform resampling based on the number of valid particles
and calculate the number of valid particles as follows [27]:

N̂e f f =
1

∑N
np=1

(
w

qk ,np
k

)2 (13)

If N̂e f f < Nthreshold, where Nthreshold represents the threshold of particle number, we
perform random resampling and make w̃

qk ,np
k = 1

N . The algorithm pseudocode is shown in
Algorithm 1.
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Algorithm 1: Adaptive Square-Root Unscented Particle Filter

At time k = 0: Sample N particles from the prior distribution p(x0)
for k = 1, 2, 3, . . . do

Importance sampling: Sample N particles from the distribution

N
(

x̂
qk0,np+

k , S
qk0,np
k

(
S

qk0,np
k

)T
)

by the SR-UKF

Resampling: Update the weights with Equation (12) and determine whether to
perform random resampling based on Equation (13)

Adaptive update: Update
√

Q
qk ,np
k and

√
R

qk ,np
k using Equations (11) and (8),

respectively
Output: Update the estimation with Equation (20)

end

2.2. Stochastic Hybrid Estimation with ASR-UPF

As shown in Figure 1. For discrete states, the set of conditions for mode transition is

DSt(qk−1, qk) =
{
[xk−1, qk−1, ζζζ]T |(Lqk−1qk [x

T
k−1 ζζζT ]

T ≤ 0|qk−1)
}

(14)

where Lqk−1qk
is a constant matrix, and is ζζζ the logic judgment variable of mode transition,

which refers to the combination of continuous flight parameters that affect mode transition
and could be obtained from historical flight data through data statistics. The posterior
probability of mode qk−1 is given as follows:

α+k−1,qk−1
= p(qk−1|Yk−1) (15)

where Yk−1 = {y1, y2, · · · , yk−1} represents the time series of measurements. qk−1 repre-
sents the mode at time k − 1.

Figure 1. Structure of the nonlinear SHE algorithm.
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Thus, the conditional posterior probability of a continuous state at time k − 1 is
N
(

µµµqk−1qk
, Σ

qk−1qk
k−1

)
. We define conditional mode transition probability as [15]:

πSt
qk−1qk

= p(qk|qk−1, xk−1) = p([xk−1, qk−1, ζζζ]T ∈ DSt(qk−1, qk))

= aqk−1qk
+ bqk−1qk

Φ
(

Lqk−1qk
xk−1 − ζζζqk−1qk

, ΣΣΣqk−1qk
k−1

) (16)

where Φ(·) represents the normal cumulative density function, and ζζζqk−1qk
is the judgment

variable for mode transition logic, and its distribution can be obtained by statistical analysis
of flight data (e.g., we obtain the continuous flight parameters related to mode transition of
a certain aircraft model, and obtain the distribution of these parameters in a parametric
test). Σ

qk−1qk
k−1 is the constant matrix of ζζζqk−1qk

. aqk−1qk
, bqk−1qk

are scalar constants such that

πSt
qk−1qk

≥ 0 for all qk−1, qk ∈ M, and ∑Nm
qk=1 πSt

qk−1qk
= 1.

Then, the probability of mode transition is derived as follows:γ
qk−1qk
k = p(qk|qk−1, Yk−1) = aqk−1qk

+ bqk−1qk
Φ
(

Lqk−1qk
x̂+k−1,qk−1

−µµµqk−1qk
; Σ̃

qk−1qk
k−1

)
Σ̃

qk−1qk
k−1 = Σ

qk−1qk
k−1 + Lqk−1qk

Pqk−1
k−1 Lqk−1qk

(17)

where µµµqk−1qk
is the mean of ıqk−1qk and Pqk−1

k−1 is the covariance matrix of x̂+k−1,qk−1
, which

can be obtained as follows:

x̂+k−1,qk−1
=

N

∑
np=1

w̃
qk−1,np
k−1 x̂

+,np
k−1,qk−1

Σ̃
qk−1qk
k−1 = Σ

qk−1qk
k−1 + Lqk−1qk

(
Sqk−1

k−1

)T
Sqk−1

k−1,L
T
qk−1qk

Pqk−1
k−1 =

N

∑
np=1

w̃
qk−1,np
k−1

(
x̂
+,np
k−1,qk−1

− x̂+k−1,qk−1

)(
x̂
+,np
k−1,qk−1

− x̂+k−1,qk−1

)T

+
N

∑
np=1

w̃
qk−1,np
k−1

(
S

qk−1,np
k−1

)T
S

qk−1,np
k−1

Sqk−1
k−1 = qr


 N

∑
np=1

√
w̃

qk−1,np
k−1

(
x̂
+,np
k−1,qk−1

− x̂+k−1,qk−1

)
,

N

∑
np=1

√
w̃

qk−1,np
k−1

(
S

qk−1,np
k−1

)T


(18)

Initial value of each filter can be obtained as follows:

x̂
qk0,np
k−1 =

nm

∑
qk−1=1

x̂
+,np
k−1,qk−1

ᾱ
qkqk−1
k−1

P
qk0,np
k−1 =

nm

∑
qk−1=1

((
S

qk−1,np
k−1

)T
S

qk−1,np
k−1 +

(
x̂
+,np
k−1,qk−1

− x̂
qk0,np
k−1

)(
x̂
+,np
k−1,qk−1

− x̂
qk0,np
k−1

)T
)

ᾱ
qkqk−1
k−1

S
qk0,np
k−1 = qr

√ᾱ
qkqk−1
k−1

[
nm

∑
qk−1=1

ST
k−1,�|qk−1

,
nm

∑
qk−1=1

(
x̂+k−1,�|qk−1

− x̂qk0
k−1

)]T


ᾱ
qkqk−1
k−1 = p(qk−1|qk, Yk−1) =

γ
qk−1qk
k−1 α+k−1,qk−1

nm
∑

qk−1=1
γ

qk−1qk
k−1 α+k−1,qk−1

(19)
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Further, we obtain the filtering values for each mode using the ASR-UPF filter based
on Equation (19):

x̂qk+
k = ∑N

np=1 w̃
qk ,np
k x̂

+,np
k,qk

Pqk
k = ∑N

np=1 w̃
qk ,np
k

((
x̂qk+

k − x̂
+,np
k,qk

)(
x̂qk+

k − x̂
+,np
k,qk

)T
+ S

qk0,np
k

(
S

qk0,np
k

)T
) (20)

Meanwhile, the residual and its covariance matrix can be obtained as follows:
ỹqk0

k = ∑N
np=1 w̃

qk ,np
k

(
yk − ŷ

qk0,np−
k

)
Pqk

y,k = ∑N
np=1 w̃

qk ,np
k S

qk ,np
y,k

(
S

qk ,np
y,k

)T (21)

The mode prior probability is derived as follows:

α−k,qk
= p(qk|Yk) =

nm

∑
qk−1=1

γ
qk−1,qk
k−1 α+k−1,qk−1

(22)

We define likelihood function of the qkth
filter as follows:

Λk,qk
= p(yk|qk, Yk−1) = N

(
ỹqk0

k ; 0, Pqk
y,k

)
(23)

After that, the posterior probability of mode qk and the mode at time k can be derived
as follows: 

α+k,qk
=

p(yk|qk, Yk−1)p(qk|Yk−1)
nm
∑

qk=1
p(yk|qk, Yk−1)p(qk|Yk−1)

=
Λk,qk

α−k,qk
nn
∑

qk=1
Λk,qk

α−k,qk

qk = arg max
qk

α+k,qk

(24)

Thus, the posterior probability of continuous state and its covariance can be obtained
as follows: 

x̂+k = ∑nn
j=1 α+k,qk

x̂qk+
k

Pk = ∑nm
qk=1 α+k,qk

((
x̂qk+

k − x̂+k
)(

x̂qk+
k − x̂+k

)T
+ Pqk

k

) (25)

2.3. Track Projection

Taking the flight of an aircraft from the initial approach fix (IAF) to the final approach
fix (FAF) as an example, we define the aircraft as having a heading-hold (HH) mode and a
turning (TN) mode in terms of lateral, and ot has constant height (CH) mode and descent
(DT) mode terms longitudinally. Thus, there are four modes defined in this study, containing
m1 = (HH, CH), m2 = (TN, CH), m3 = (HH, DT), and m4 = (TN, DT). The set of modes
can be described as M = {m1, m2, m3, m4}.

For simplification, the spherical terrestrial reference was used to calculate the position
in a Cartesian frame instead of an ellipsoidal one. Choosing x = (xn, yn, zn, ηn)

T as the
state vector, according to laws of kinematics, we can easily obtain

(
xk

n, yk
n, zk

n

)
by given(

xk−1
n , yk−1

n , zk−1
n

)
(

xk
n, yk

n, zk
n

)T
=
(

xk−1
n , yk−1

n , zk−1
n

)T
+ C

(
ẋk−1

n , ẏk−1
n , żk−1

n , ẍk−1
n , ÿk−1

n , z̈k−1
n

)T
(26)

where C is a matrix that varies with the modes, which will be discussed in Section 3 in
detail. It is believed that the projection only changes the azimuth rather than the length of
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the arc between two points. Thus, the azimuth ηk
n by given

(
xk−1

n , yk−1
n , zk−1

n

)
and ηk−1

n can
be obtained as follows:{

ηk
n = ηk−1

n + ∆ηk−1
n

∆ηk−1
n = arccos((cos L1 − cos L2 cos L3)/(sin L2 sin L3) )

(27)

where the second equation is the cosine law with respect to sides of a spherical triangle [28],
while L1, L2, and L3 represent the length of the three sides, which can be calculated as
shown in Figure 2. ∆ηk−1

n is the angle corresponding to side L1.

Figure 2. Great Circle projection.

Then, the state equation can be built as follows:

xk = f (xk−1, uk−1) + wk−1 (28)

where the input matrix uk−1 =
(

ẋk−1
n , ẏk−1

n , żk−1
n , ẍk−1

n , ÿk−1
n , z̈k−1

n

)T
.

According to Great Circle projection shown in Figure 2. If the latitudes and longitudes
of points A and B are given as (ϕA, λA) and (ϕB, λB), respectively. The azimuth η from A
to B can be obtained as follows:

cos(∠AOB) = cos(
π

2
− ϕB) cos(

π

2
− ϕA) + sin(

π

2
− ϕB) sin(

π

2
− ϕA) cos(λB − λA)

η = arcsin(
sin(π

2 − ϕB)× sin(λB − λA)

sin(∠AOB)
)

(29)

where ∠AOB represents the angle between OA and OB. Thus, The Cartesian coordinates
of point B relative to point A can be obtained as follows:

xBtoA = L2 cos(
π

2
− η)

yBtoA = L2 sin(
π

2
− η)

(30)

where L2 represents the great circle distance between A and B, which can be calculated as
L2 = Rc.

We define the reference point, which is the origin in Cartesian frame, as point A; thus,
the coordinate of any point B relative to point A according to Equations (29) and (30) can
be described as

(xBtoA, yBtoA, η)T = h(ϕB, λB) (31)

As mentioned above, we can obtain the latitude and longitude of point B by giving
the latitude and longitude of point A, the azimuth η, and the great circle distance L2. In a
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short period of time Ts, it is believed that the flight distance in a Cartesian frame could be
approximately equal to L1. That means that

L1 =

((
Ts ẋk−1

n +
1
2

ẍk−1
n Ts

2
)2

+

(
Tsẏk−1

n +
1
2

ÿk−1
n Ts

2
)2
) 1

2

(32)

Consequently, the measurement input can be defined as y = (ς, γ, h)T while for all
modes, the measurement equations are all the same as

yk = h−1(xk) + rk (33)

3. Results and Discussion
3.1. Scenario and Parameter Settings

We take the instrument approach procedure, the base turn-a-specific pattern of reversal
procedure, of a certain aircraft on a certain runway with elevation 3567.5 m and magnetic
variation 0.3◦ W as an example. As shown in Figure 3, during the approach, the aircraft
would first hold the bearing 107◦ from the IAF at 7200 m and descend by 1400 m, and then
turn to intercept the inbound track at 274◦ while descending by 150 m. Finally, it descends
to 5350 m and then holds the altitude with the constant bearing until the FAF.

For the leg from point IAF to point WPT1, the aircraft descends at a constant speed.
After descending with variant speed of the three-axis NED frame for the leg from WPT1
to WPT2, it then descends at an even speed until the point at nearly 5350 m, where it
finally keeps a level flight until the FAF. Thus, we obtain the matrix C of different modes in
Equation (26). 

C1 =

Ts 0 0 0 0 0
0 Ts 0 0 0 0
0 0 0 0 0 0

 f or m1

∅ f or m2

C3 =

Ts 0 0 0 0 0
0 Ts 0 0 0 0
0 0 Ts 0 0 0

 f or m3

C4 =

Ts 0 0 Ts
2/2 0 0

0 Ts 0 0 Ts
2/2 0

0 0 Ts 0 0 Ts
2/2

 f or m4

(34)

where Ts = 0.1 s.
We collect data of the altitude H and azimuth η at points WPT1, WPT2, and the point

where the aircraft has just been performing a level flight, that is, where the mode transition
occurs. It is assumed that these data are independent of each other and follow a normal
distribution. Statistical analysis is conducted on these data separately to obtain the means
µH and µη , as well as the standard deviations σH and ση . The results are shown in Table 1
in the International System of Units (SI).

Table 1. Means and variances of parameters.

Parameters
WPT1 WPT2 Level Flight

µH/µη σH/ση µH/µη σH/ση µH σH

H(m) 2241.767 3.046 2086.072 2.536 1786.758 1.653
η(◦) 108.127 1.862 274.845 1.387 - -

According to the approach procedure, the series of modes is m3 → m4 → m3 → m1,
so the probability of mode transition is built as shown in Table 1 for simplification. It
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could indeed be simplified like this with only the path from IAF to FAF considered. The
probability of the mode transition γqk−1qk is determined by aqk−1qk

, bqk−1qk
, Lqk−1qk

, µµµqk−1qk
,

Σ
qk−1qk
k−1 , x̂qk−1

k−1 and Pqk−1
k−1 . Meanwhile, x̂qk−1

k−1 and Pqk−1
k−1 can be obtained from the results by

ASR-UPF, and here, aqk−1qk
= 0 and bqk−1qk

= 1 were used because of their designability [15].
The variable µµµqk−1qk

and its variance Σ
qk−1qk
k−1 are obtained from Table 1.

We only consider the mode transitions in Table 2. For the transition from m3 to

m4, the azimuth η and altitude H would decrease, and we define L34 =

[
0 0 1 0
0 0 0 −1

]
,

µµµ34 = (−2239.767,−108.127)T and Σ34 =

[
3.0462 0

0 1.8622

]
. Thus, L34x̂k−1,�|i − µµµ34 ≥ 0

when the mode transition happens. For the same mode transition from m4 to m3, we

define L43 =

[
0 0 1 0
0 0 0 −1

]
, µµµ43 = (−2084.072,−274.845)T and Σ43 =

[
2.5362 0

0 1.3872

]
.

For the transition from m3 to m1, it is sufficient to consider the altitude only with
L31 =

[
0 0 1 0

]
, µµµ31 = (−1783.758) and Σ31 =

[
1.6532

]
.

Figure 3. Base turn chart.

Table 2. The probabilities of mode transition.

Modes m1 m2 m3 m4

m1 1 0 0 0
m2 0 0 0 0
m3 γ31 0 1 − γ34 − γ31 γ34

m4 0 0 γ43 1 − γ43
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3.2. Estimation Results

The following tests were conducted to verify the performance of the nonlinear stochas-
tic hybrid estimation of the synthetic filtering system. It is undesirable to test the algorithm
by comparing the estimation results with recorded flight data directly because the mea-
surements from in-flight data are not accurate in terms of noise and some unexpected
disturbances and cannot be regarded as the true value, and there is even a lack of records
fir some data. Instead, a flight dynamics model (FDM) of B737-800 with motion models,
aerodynamic models, engine models, and control system models, etc., was used to provide
standard flight variables for comparison.

Based on the approach procedure mentioned above, the estimation results of ASR-UPF
with 100, 300 and 500 particles and the SR-UKF were compared to each other to illustrate
the estimation accuracy. The two noise covariance matrices in the FDM can be set freely
because of the robustness in the adaptive scheme [29]. While or fast convergence, the
proper values were set with Q0 = diag(1, 1, 1, 0.005) and R0 = diag(0.005, 0.005, 1). The
forgetting factor in ASR-UPF was set by b = 0.9. Figure 4 shows the estimation error of
the position and azimuth by SR-UKF (green line) and the ASR-UPF with 100 (black line),
300 (cyan line), and 500 particles (red line). Both estimation errors were almost the same
initially. However, the estimation error of ASR-UPF started convergence at about 3.9 s,
3.0 s, and 2.8 s corresponding to ASR-UPF with 100, 300, and 500 particles, respectively,
while the error of the SR-UKS starts convergence at about 6.8s and subsequently ramps up
in the filtering process. In addition, the xn, yn, zn (or H) and η estimation errors of both
algorithms increased significantly at about 399 s and 560 s because there is a delay in mode
transition estimation. And the estimation error of zn by both algorithms increased at about
628 s due to the mode transition from m3 to m1 with a deceleration descent process. In
addition, the estimation errors of ASR-UPF with 300 and 500 particles are close.

Figure 4. Error comparison of position and azimuth accuracy.

The comparison results of mode estimation with the various algorithms are shown
in Figures 5–7. Obviously, in Figure 5, there is a bit of delay in mode transitions by both
algorithms, while the mode probability variation of ASR-UPF in Figure 6 is more stable
than that of SR-UKF in Figure 7, which oscillates slightly. Since the performance of ASR-
UPF with 300 and 500 particles is close, we just consider ASR-UPF with 300 particles here.
The results of ASR-UPF display a better performance in mode estimation regardless of
the number of particles and show more accurate mode estimation and more stable mode
transitions as well. We also conducted another 50 simulation experiments, and the average
number of mode transition error and the root mean square error (RMSE) of the position
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and azimuth for the respective algorithm are given in Table 3. This shows that the RMSE of
ASR-UPF is much smaller than that of SR-UKF, as well as the mode transition error, while
the RMSEs by ASR-UPF with 300 particles and 500 particles are close.

Table 3. RMSE of 50 simulations by SR-UKF and ASRUPF.

Algorithm
RMSE

xn (m) yn (m) zn (m) η (°)

SR-UKF 43.586 29.594 63.860 4.862
ASR-UPF with 100 particles 20.658 21.395 25.674 4.206
ASR-UPF with 300 particles 14.377 12.593 20.805 3.551
ASR-UPF with 500 particles 14.476 12.203 19.231 3.704

Figure 5. Comparison of the accuracy of mode transitions.

Figure 6. Mode probability estimation by ASR-UPF with 300 particles.
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Figure 7. Mode probability estimation by SR-UKF.

3.3. Results of ASR-UPF Based on Real Flight Data

The synthetic filtering system and ASR-UPF were applied to real flight-data-based
nonlinear hybrid estimation. There is a problem to be addressed before the estimation based
on real flight data. The system update and measurement update may not be performed
simultaneously because the sampling rates of related variables are probably different.
Under normal circumstances, the system update and measurement update are carried out
simultaneously. When there are no measurements, only the system update is executed by
unequal interval filtering [30].

Still taking the approach procedure in Figure 3 as an example, the measurements and
estimated results according to the flight data are shown in Figure 8. Results indicate that
the trend of the estimated height approximates that of the recorded flight data, though
there were deviations between the estimated zn and the recorded values. The horizontal
coordinates in the NED frame and azimuth without magnetic variation of the aircraft
relative to VOR, not the measured in-flight data, could be estimated by the synthetic
filtering system as shown in Figure 8a,b. According to the test, the convergence of ASR-
UPF was slower than the simulation results by approximately 11s, but the subsequent error
slightly increased, as shown in Figure 8c.

Figure 8. Estimation with respect to real flight data.
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4. Discussion

To improve the estimation accuracy, this study provides a hybrid estimation of posi-
tioning, in a Cartesian frame, of an aircraft based on flight data with different modes or
patterns of the aircraft’s continuous motion considered. The mode estimation, characterized
by state-dependent transitions, ensures the accurate modeling for the continuous system.
Meanwhile, the ASR-UPF introducing the SR-UKF to generate the importance sampling
distribution fully utilizes measurements and guarantees the convergence while maintaining
the computational stability of the filter. Otherwise, the adaptive update by tracking noise
for reducing errors caused by modeling and measuring improves the robustness to the
stochastic noise and enables aircraft positioning with better accuracy.

Though the proposed algorithm is validated based on real flight data, the estimation
accuracy needs to be improved further. Also, the resolution and accuracy of inertial
measurements, used as the control variable, depend on different flight-data-acquisition
systems. Therefore, the estimation performance based on the inertial measurements of
a specific aircraft needs to be explored in depth. In addition, this study only considered
the transition between two modes because of the specific approach procedure, although
there were four modes that were artificially defined. More complex circumstances with
transitions between more than two modes, like changing the flight schedule due to some
unexpected events (such as encountering windshear), should be studied in depth.

5. Conclusions

This study proposes a nonlinear stochastic hybrid filtering system integrated with
the Great Circle projection and adaptive square root unscented particle filter. Compared
with other research, more accurate state and measurement equations are provided through
the projection from longitudes and latitudes in the WGS-84 frame to coordinates in the
NED frame, although existing errors are caused by using a spherical reference system
for coordinate conversion. The ASR-UPF is recommended for use within position and
azimuth estimation applications based on flight data. Since the inertial measurements are
insusceptible to external disturbance, without loss of generality, the proposed algorithm
could be applied for the refinement of other variables that are not recorded in flight data as
well. As a data-driven method, it is a suitable candidate for discrete and continuous state
estimation of civil aviation aircraft in specific scenarios.
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GPS Global Positioning System
NED North, East, and Down
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SR-UKF Square-root unscented Kalman filter
MLDM Mixed logical dynamic model
GFHMM Generalized fuzzy hidden Markov model
IMM Interacting multiple model
SDTHE State-dependent transition hybrid estimation
EKF Extended Kalman filter
UKF Unscented Kalman filter
CKF Cubature Kalman filter

Appendix A

Appendix A.1

The fundamental square root unscented Kalman filtering algorithm, from which
the ASR-UPF is derived, is described as follows. The SR-UKF is initialized according to
Equation (19).

At each time step tk−1, a group of 2n + 1 sigma points are selected as
Ø

qk0(0)+,np
k−1 = x̂

qk0,np
k−1

Ø
qk0(row)+,np
k−1 = x̂

qk0,np
k−1 +

√
n + λS

qk0,np ,row
k−1 , row = 1, ..., n

Ø
qk0(n+row)+,np
k−1 = x̂

qk0,np
k−1 −

√
n + λS

qk0,np ,row
k−1 , row = 1, ..., n

(A1)

where S
qk0,np ,row
k−1 represents the rowth-column of square root matrix S

qk0,np
k−1 . A group of

weights related to each sigma point is set by

W
qk0,np(m)
0 =

λ

n + λ

W
qk0,np(c)
0 =

λ

n + λ
+ 1 − p2

g + ph

W
qk0,np(m)
row = W

qk0,np(c)
row =

1
2(n + λ)

row = 1, 2, . . . . . . , 2n

(A2)

where W
qk0,np(m)
row and W

qk0,np(c)
row represent the weights related to the mean and covariance

of x̂ each. The constant pa ∈ [0.0001, 1] determines the spread of the sigma points around
x̂. The constant pb, used to incorporate prior knowledge of the distribution of x̂, is set
as pb = 2 for Gaussian distribution. λ = n(p2

a − 1) is the scaling parameter. The update
process of SR-UKF is described by

x̂
qk0,np(row)−
k = f (Ø

qk0(row),np+

k−1 ) x̂
qk0,np−
k =

2n
∑

row=0
W

qk0,np(m)
row x̂

qk0,np(row)−
k

S
qk0,np−
k = qr

{[
2n
∑

row=0

√
W

qk0,np(c)
row (x̂

qk0,np(row)−
k − x̂

qk0,np−
k )

T
,
√

Q
qk−1,np
k−1

]T
}

S
qk0,np−
k = cholupdate(S

qk0,np−
k

√∣∣∣Wqk0,np(c)
0

∣∣∣(x̂qk0,np(row)−
k − x̂

qk0,np−
k )

T
,′ sgn(W

qk0,np(c)
0 )′)

(A3)

where cholupdate represents the Cholesky factor update and sgn represents the sign of

W
qk0,np(c)
0 . As the square root of the error covariance matrix, S

qk0,np−
k is computed by QR

decomposition and Cholesky factor update successively. Note that if S is the original
Cholesky factor of P = AAT , then the Cholesky factor of the rank-1 update (or downdate)
P ± mmT is denoted as S = cholupdate(S, m,′ ±′). If m is a matrix with M columns, the
result is M consecutive updates of the Cholesky factor by using the M columns of m.
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The next step is to carry out the measurement update. Another group of 2n + 1 sigma
points is selected according to the priori estimation x̂

qk0,np−
k as

Ø
qk0,np(0)−

k = x̂
qk0,np−
k

Ø
qk0,np(row)−
k = x̂

qk0,np−
k +

√
n + λS

qk0,np(row)−
k , row = 1, . . . , n

Ø
qk0,np(n+row)−
k = x̂

qk0,np−
k −

√
n + λS

qk0,np(row)−
k , row = 1, . . . , n

(A4)

The priori estimation of measurements is
ŷ

qk0,np(row)−
k = h(Ø

qk0,np(row)−
k )

ŷ
qk0,np−
k =

2n

∑
row=0

W
qk0,np(m)
row ŷ

qk0,np(row)−
k

(A5)

The measurement update is performed as

S
qk ,np
y,k = qr

{[
2n
∑

row=0

√
W

qk0,np(c)
row

(
ŷ

qk0,np(row)−
k − ŷ

qk0,np−
k

) √
R

qk ,np
k

]}
S

qk ,np
y,k = cholupdate(S

qk ,np
y,k ,

√∣∣∣Wqk0,np(c)
0

∣∣∣(ŷqk0,np(0)−
k − ŷ

qk0,np−
k ),′ sgn(W

qk0,np(c)
0 )′)

P
qk ,np
xy,k =

2n
∑

row=0
W

qk0,np(c)
row (x̂

qk0,np(row)−
k − x̂

qk0,np−
k )(ŷ

qk0,np(row)−
k − ŷ

qk0,np−
k )

T

K
qk ,np
k = P

qk ,np
xy,k S

qk ,np
y,k

(
(S

qk ,np
y,k )

T)−1

x̂
qk0,np+

k = x̂
qk0,np−
k + K

qk ,np
k (yk − ŷ

qk0,np−
k )

U
qk ,np
k = K

qk ,np
k S

qk ,np
y,k

S
qk0,np
k = cholupdate(S

qk0,np−
k , U

qk ,np
k ,′ −′)

(A6)

where the square root of the measurement noise covariance matrix S
qk ,np
y,k is obtained by

QR decomposition and Cholesky factor of rank-1 as well. P
qk ,np
xy,k is the cross-covariance

between x̂
qk0,np−
k and ŷ

qk0,np−
k . K

qk ,np
k is the filtering gain. With the above operations, the

square root of error covariance matrix S
qk0,np
k is obtained.
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