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Abstract: In Basel III, the credit valuation adjustment (CVA) was given, and it was discussed that a
bank covers mark-to-market losses for expected counterparty risk with a CVA capital charge. The
purpose of this study is threefold. Using the logistic distribution, it is shown how the expected
exposure can be derived for an interest rate swap. Secondly, the risk measure of VaR is contributed
for the CVA under this distribution. Thirdly, generalizations for the CVA VaR and CVA CVaR are
given by considering both the credit spread and the expected positive exposure to follow the logistic
distributions with different parameters. Finally, several simulations are provided to uphold the
theoretical discussions.

Keywords: credit valuation adjustment (CVA); counterparty credit risk; expected exposure; swap;
logistic distribution
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1. Introduction
1.1. Credit Valuation Adjustment

Credit valuation adjustment (CVA) is a significant valuation measure in financial
engineering that determines how much a financial institute requires adapting a derivative
contract value to account for a potential loss of positive exposure when the counterparty
is faced with breakdown or default. Technically speaking, CVA is the expected loss of a
derivative contract because of the counterparty default.

There is no full theoretical CVA definition. This is normally because regulatory CVA
may differ from CVA used for accounting purposes, as well as there being two approaches
in computing the CVA capital, i.e., the basic procedure and the standardized procedure [1].
However, we have a CVA formula by considering a continuous stream of cash flows as
follows [2]:

CVA(u, T) = (1− R)
∫ T

u
B(t, T)EE(t, T)DPD(t, T) dt, (1)

where R is the rate of recovery for the counterparty, B is the risk-free discount factor (i.e.,
B(t, T) represents the time-t value of a risk-free bond with maturity at time T in years), EE
is the expected exposure and DPD is the conditional default probability.

In general, we do not know much about the recovery rate. It will depend on the similar
factors that influence the probability of default by the counterparty; for more, see [3,4].

Now, by denoting h as the counterparty’s hazard rate (default probability) and V
as the expected positive exposure (abbreviated as EPE), and if we assume the involved
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modeling parameters to be constant over time (and a single cash flow), then the CVA in the
continuous-time mode can be given approximately in what follows [5]:

CVA = (1− R)
∫ T

0
h V e−(h+r)tdt,

=
h(1− R)V

(
1− e−T(h+r)

)
h + r

.

(2)

The CVA is essentially based on (i) EPE, (ii) time and (iii) recovery, and partially the
hazard rate (h) and the risk-free interest rate (r). To understand the concept of (1) more,
we express the counterparty credit risk more in the next subsection. CVA is one of the key
pillars of the counterparty credit risk management. In fact, in the regulatory context, the
CVA is defined under Basel III as the risk of loss on the over-the-counter (OTC) derivative
(financing transaction) due to creditworthiness. Note that the probability measure used
here is the pricing measure Q.

Some queries may arise, such as: what causes the fat tail of the exposure? More
precisely, in the context of value investing, investors move their money back and forth
among trend strategies and value strategies, relying on who has been more successful
recently, and, accordingly, fat tails and clustered volatility are produced via temporary
increases in destabilizing trend strategies [6]. For further related discussions, one may refer
to works [7,8] or chapters of the book [9] by top quantitative analysts Piterbarg, Green,
Kjaer, Kenyon and Burgard, who developed the XVA framework over the last decade.

1.2. Counterparty Credit Risk

The concentration of this work is on the credit risk that contains the uncertainty of
expected results because of the previous inputs. Counterparty credit risk evaluates the
replacement price of a derivative contract to be the default of the counterparty at any
time throughout the life term before having the contractual cash flows [10]. Counterparty
credit risk depends on several factors, such as exposures, CVA, recovery, collateral, credit
ratings, stress scenarios, etc. All of them have some influence on the current state of the
economy [11–14].

Some exposure measures are employed by banks in practice. For instance, the EE
profile is mostly employed in pricing counterparty credit risk and in the default risk charges
of the Basel regulatory framework. Banks also compute potential future exposures (PFEs)
that show a maximum amount of exposure at a high level of confidence, viz., α = 99%, at
any forthcoming date.

1.3. CVA Value-at-Risk (VaR) and a Variant

By considering α as the pre-determined confidence level, VaR is expressed as fol-
lows [15]:

VaRα(X) := inf{z ∈ R|FX(z) ≥ α}, (3)

where FX(·) is the cumulative distribution function (CDF) and X is a random variable. To
discuss the features and shortcomings of (3), we recall that there is sometimes a chance of
an adverse market movement that could yield a high loss [16]. The shortcomings of VaR
have been discussed in the seminal paper by Artzner et al. in [17] by pointing out that the
sub-additivity feature does not hold, and thus loses the coherency.

The CVA VaR according to the Basel III document as a regulatory formula is given
by [18] (p. 235):

Basel III CVA VaR = 2.33

√
ηi + ∑

i

3
4

w2
i (Mi EADi −MiBi)2, (4)
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where

ηi =

(
∑

i

1
2

wi(Mi EADi −MiBi)−∑
i

wi MiBi

)2

, (5)

where the risk weight for the counterparty i is shown by wi, which is basically a scalar in
the range 0.7% to 10% relying on the credit rating of the counterparty, the time horizon
is set to 1 year, M stands for the maturity of the exposure/hedge, EAD is the exposure at
default (i.e., EE/EPE) and B denotes the notional of the hedge instrument (such as CDS, etc.)

Another risk measure that we used later in this work is the conditional VaR (a.k.a.,
CVaR), which is a generalization of (3) [19]. The CVaRα(X) is continuous in terms of α. The
CVaR can be given as follows:

CVaRα(X) := E[X|X ≥ VaRα(X)], (6)

where the random variable X is interpreted as a loss variable.

1.4. Motivation

In this work, the logistic distribution was first chosen rather than the well-known
normal distribution, which the CVA VaR (4) was built on. The reason is its fatter tail, which
is more useful with real observations from the market, which do not follow normal or
log-normal distributions [20]. The idea of logistic distribution for obtaining new EE and
CVA VaR and CVA CVaR formulas would be fruitful in the counterparty credit risk.

Some remarks are in order:

• As pointed out in [21], credit spread levels and changes provide signs of the charac-
teristic fat-tailed behavior and, in both cases, recommend that both series are away
from a distribution of the normal. This justifies why we chose the fatter tail logistic
distribution in this work in contrast to the normal distribution.

• The logistic model has also recently been applied in the work [22] in another context
and showed promising results.

• It is pointed out that, in Table 1 of [23], some empirical evidence for the use of a logistic
distribution for modeling the distribution of a risk variable is provided.

• Note that experiencing all of the non-Gaussian distributions in modeling stock data [24]
is not the major aim here since it is not feasible. As a matter of fact, our strategy is to
adopt a fat-tailed distribution, namely, logistic distribution, that is good enough to
accommodate the features of financial data with respect to computing the CVA VaR
and CVA CVaR in higher dimensions.

To incorporate the dependence among the factors existing in a CVA formulation, in
terms of a mathematical point of view, we consider not only the spread rate but also the
EPE to not be constant any more and to follow logistic distributions. However, such a
dependence can be followed by other approaches, such as defining a copula function on
the spread rate and the EPE. For precise definitions of EE, PFE, EPE, etc., readers can refer
to [25] (Chapter 2).

1.5. Problems to Be Solved and Novelty

An interest rate swap’s (IRS’s) effective description is a derivative contract, agreed
between two counterparties, that determines the nature of an exchange of payments
benchmarked against an interest rate index. Accordingly:

• Here, we first focused on IRS CVA and improved the existing EEs formulas given for
IRS CVA using the logistic distribution. The existing relations are based on the normal
distribution. In fact, here, the novelty is that we explored the model distribution for
the exposure based on a proxy for the swap duration and the logistic distribution.

• Next, we employed the logistic distribution to propose a new formulation for CVA
VaR. In fact, the existing CVA VaR formulation is based on the normal distribution and,
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here, we assumed that the CDS spread follows a logistic distribution and obtained a
new formulation that is more consistent with real financial data having fatter tails.

• The final important factor that has been addressed in this piece of work is to assume
that not only the credit spread but also the EPE follow logistic distributions having
different parameters. This novelty of the work extends the computation of CVA VaR
and CVaR in higher dimensions.

To discuss further, an indication of the added value of the current research in the
actual literature is that an extension for the CVA logistic VaR and CVA logistic CVaR
are contributed by considering both the credit spread and the EPE to follow the logistic
distributions with different parameters.

1.6. Organization

The remaining sections are structured as follows. Since one focus of this article is
on IRS CVA, in Section 2, the new EEs for this heavy-tail distribution were constructed.
Laplace distribution has wider tails than the normal distribution, so it is more applicable
with the financial data and furnishes a further understanding of the likelihood of extreme
events; for more details, refer to [26]. Then, Section 3 is devoted to the derivation of new
analytic formulations for the CVA VaR and CVA CVaR under the logistic distribution. Next,
Section 4 discusses the applicability and usefulness of the contributed formulas in practice.
Several comparisons are made, along with numerical simulations. At last, a summary of
the work, along with some comments for forthcoming works, are provided in Section 5.

2. New EE Formulas
2.1. Logistic Distribution

The logistic distribution on the set of real numbers R gives a statistical continuous
distribution under the two constants µ and σ as its mean and scale parameter, respectively.
The PDF of this has a single peak, though its overall curve is obtained via the parameters
of µ and σ.

Now, assume that Y is a stochastic variable and is distributed by Y ∼ Logistic(µ, σ).
The CDF for this distribution could be attained as [26]: F(y) = 1

e−
y−µ

σ +1
, whereas its PDF is

given by: f (y) = e−
y−µ

σ

σ

(
e−

y−µ
σ +1

)2 .

To show the characteristics of this distribution, we show Table 1, which provides
different features of the logistic distribution in comparison to the normal distribution. In
Table 1, we have erfc(z) = 1− 2√

π

∫ z
0 e−t2

dt. Throughout the work, log(·) stands for the
natural logarithm. In order to compare the PDFs of the normal and logistic distributions,
they are plotted in Figure 1. The major difference between the logistic and the normal
distributions lies in the tails and in the behavior of the failure rate function.

Table 1. Features for the two compared continuous distributions.

Name Mean Variance Median Skewness Kurtosis q-Quantile

Normal µ σ2 µ 0 3 µ−
√

2σerfc−1(2q),
0 ≤ q ≤ 1

Logistic µ π2σ2

3 µ 0 21
5

µ− σ log
(

1
q − 1

)
,

0 < q < 1
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Figure 1. The comparison of normal and logistic PDFs for the parameters µ = 0, σ = 1 in left and
µ = 1.5, σ = 0.1, in right.

2.2. PFE

In order to calculate the CVA charge for the IRS, we proceeded as follows. A popular
model for interest rates (IRs), which was constructed by a sole source of market risk, is
the stationary Ornstein–Uhlenbeck (OU) SDE process with long-term mean µ, volatility σ
(non-zero real number), speed of adjustment θ and positive real number x0 as the initial
condition as follows [27] (chapter 7.3.3):

dx(t) = θ(µ− x(t))dt + σdw(t), (7)

where w(t) is a standard Wiener process and x(t) is the OU process. Here, µ and θ are
non-zero real numbers of the same sign.

Now, in order to compute the exposure based on (7), we obtain the model distribution
for the exposure in the form [28]:

(T − t)(x(t)− s), (8)

where s is the deal swap rate and T − t is the proxy for the swap duration.
Thus, we have a transformed distribution (each may have different distributions under

several assumptions) on (8) where x(t) is an OU process, T > t and x > 0. This can be
deduced as

(T − t)(x(t)− s) ∼ Normal[ε1, ε2], (9)

where
ε1 = eθ(−t)(t− T)(µ + (s− µ)eθt − x0),

ε2 =
σ
√

1−e−2θt

θ (T − t)
√

2
.

(10)

Now, the maximum EP under the confidence level α is obtained, i.e., how far can
exposure go under a given level of confidence. Using the inverse CDF, we find the PFE as
follows (T > t:)

PFE = eθ(−t)(t− T)

(
σerfc−1(2α)eθt

√
1− e−2θt

θ
+ µ + (s− µ)eθt − x0

)
. (11)

Here, the exposure as a function of the OU model is normally distributed.
To have a better picture, this is plotted in Figure 2 for various values of α on the time

horizon t ∈ [0, 5]. As a matter of fact, Figure 2 is the profile of a 5Y ATM swap with a 3.5%
spread rate s in (11) with 1.5% swap volatility, as well as µ = 0.04, θ = 0.03, x0 = 0.035.
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Figure 2. PFE profile of the swap for different confidence levels.

2.3. Derivation of New EE Relations

While potential exposure is a good measure to see where the exposure can go, in most
cases, we are interested in the average exposure over the time of transaction. This is exactly
what carries out the EE.

To calculate the EE, we here assume further that x(t) can follow the logistic distribution,
unlike the normal distribution (9). In fact, we consider that the normal distribution can be
approximated by a logistic distribution having fatter tails [29]. It is well known that the logistic
and normal distributions are quite similar, since the respective distributions determined by a
location and a scale parameter are both bell-shaped. Accordingly, we consider

x ∼ Logistic[a,b], (12)

and then take the expectation with respect to logistic distribution (12). Since the exposure
is directional, we compute separate measures from (8) for both the payer and receiver swap,
respectively, as follows:

E[(T − t)Ω1, x ∼ Logistic[a,b]]

=
∫ +∞

−∞
((T − t)Ω1)

e−
x−µ

σ

σ
(

e−
x−µ

σ + 1
)2 dx

= (t− T)
(

s− b log
(

ea/b + es/b
))

,

(13)

where

Ω1 =

{
x− s x > s,
0 otherwise.

Now, we have:

E[(T − t)Ω2, x ∼ Logistic[a,b]]

=
∫ +∞

−∞
((T − t)Ω2)

e−
x−µ

σ

σ
(

e−
x−µ

σ + 1
)2 dx

= (t− T)
(

a− b log
(

ea/b + es/b
))

,

(14)

where

Ω2 =

{
s− x s > x,
0 otherwise.

When computing the CVA, the exposure is non-negative; see, e.g., expression (1).
Finally to obtain the EE explicitly, we first obtain the following mean and volatility parame-
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ters from the OU model (7) (using a similar methodology as in [30] by taking advantage of
Itô lemma and the crucial properties of Itô integral.)

To calculate the mean and variance of the linear SDE (7), we proceed as follows. The
solution of (7) reads:

x(t) = µ + (x0 − µ)e−θt + σ
∫ t

0
e−θ(t−s)dw(s). (15)

Hence, the expectation of x(t) can be written as follows:

E[x(t)] = E
[

µ + (x0 − µ)e−θt + σ
∫ t

0
e−θ(t−s)dw(s)

]
,

= µ + (x0 − µ)e−θt + σE
[∫ t

0
e−θ(t−s)dw(s)

]
,

= µ + (x0 − µ)e−θt.

(16)

Similarly, for the variance, we have

Var[x(t)] = E[x(t)2]−E[x(t)]2,

= E
[(

µ + (x0 − µ)e−θt + σ
∫ t

0
e−θ(t−s)dw(s)

)2
]
− (µ + (x0 − µ)e−θt)2,

= (µ + (x0 − µ)e−θt)2 + 2σ(µ + (x0 − µ)e−θt)2E
[∫ t

0
e−θ(t−s)dw(s)

]
+ σ2E

[(∫ t

0
e−θ(t−s)dw(s)

)2
]
− (µ + (x0 − µ)e−θt)2,

= σ2E
[∫ t

0
e−2θ(t−s)d(s)

]
,

= σ2
∫ t

0
e−2θ(t−s)d(s),

=
σ2

2θ
(1− e−2θt),

(17)

where the Itô isometry has been used for simplifications. Here, we used the assumptions
that µ and θ are constant.

Now, the EE for the payer can be proposed from (13) by substituting a and b from (16)
and (17) as follows:

EEp =
1
2
(t− T)

(
2s− σ

√
2− 2e−2θt

θ
log(ψ)

)
, (18)

where

ψ = e

√2(µ+eθ(−t)(x0−µ))

σ

√
1−e−2θt

θ


+ e

√
2s

σ

√
1−e−2θt

θ . (19)

Similarly, the EE for the receiver can be deduced as follows:

EEr = (t− T)

−σ
√

1−e−2θt

θ log(ψ)
√

2
+ µ + eθ(−t)(x0 − µ)

. (20)

The relations (18) and (20) are further illustrated computationally in Section 4.
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3. Novel Risk Measure Formulas for CVA
3.1. CVA VaR under the Logistic Distribution

Here, it is recalled that the author in [5] proposed the VaR formulation under the
logistic distribution (Y ∼ Logistic(µ, σ)) as follows:

VaRα(Y) = µ− σ log
(

1
α
− 1
)

, (21)

which would be used later in this section.
Let us now choose

h(1− R) = s, (22)

in (2) to yield:

CVA =
sV
(

1− e−T(h+r)
)

h + r
. (23)

The relation (23) shows that the CVA is a product of three factors: (i) risky duration,
(ii) EPE and (iii) CDS spread. Since the duration impact is rather limited, we follow the
Basel logic and conclude that CVA changes due to the counterparty creditworthiness
deterioration [31], i.e., the widening of the credit spread s. This takes us to an elegant
formula that we can derive under the logistic distribution in the following theorem.

Here, s is in the Lp spaces, which are function spaces defined by a natural extension of
the p-norm for finite-dimensional vector spaces.

Theorem 1. Let the credit spread s ∈ Lp be a random variable presenting a continuous distribution
under the Logistic(p, q); then, the CVA VaR measure is provided in the following closed form:

CVA VaR =
VeT(−(h+r))

(
eT(h+r) − 1

)(
p− q log

(
1
α − 1

))
h + r

.

Proof. Having s be distributed by the logistic distribution, we obtain the following trans-
formed distribution:

sV
(

1− e−T(h+r)
)

h + r
∼ Logistic

 pV
(

1− e−T(h+r)
)

h + r
,

qV
(

1− e−T(h+r)
)

h + r

. (24)

Note that, here, p and q are the credit spread mean and its volatility, respectively. Now,
by employing (24) in (3) and (21), we have

CVA VaR = min{z ∈ R | FY(z) ≥ α}, 0 < α < 1,

=
VeT(−(h+r))

(
eT(h+r) − 1

)(
p− q log

(
1
α − 1

))
h + r

, 0 < α < 1.
(25)

The proof is complete.

3.2. Extension to Higher Dependency Based on the Logistic Distribution

We can extend the CVA model (24) further to incorporate an additional factor—say, (i)
EPE—and (ii) bring the dependency pattern into the model.

Let us consider (23) to be influenced under two continuous distributions on the most
important elements of the credit spread and EPE as follows:

ζ =
sV
(

1− e−T(h+r)
)

h + r
, s ∼ Logistic[p1, q1], V ∼ Logistic[p2, q2]. (26)
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Here, we do not assume that the product of two logistically distributed variables is
logistically distributed, since this is not true in general and a mixture distribution must be
obtained. In fact, we consider that both s and V come from the logistic distribution when
they are not constant. In such a case, the CVA VaR and CVA CVaR are best addressed in
the following theorem.

Theorem 2. Having the conditions of Theorem 1, the CVA VaR and CVA CVaR measures employing
the logistic distribution are derived in closed forms as follows:

CVA VaR = −1
3

π log
(

1
α
− 1
)

ϑ, (27)

where

ϑ =

√√√√(
3p2

2q2
1 + q2

2
(
3p2

1 + π2q2
1
))

e−2T(h+r)
(
eT(h+r) − 1

)2

(h + r)2 . (28)

In addition,

CVA CVaR = −
πϑ
(

log
(

1
1−α

)
+ α
(

log(1− α) + log
(

1
α

)))
3(α− 1)

. (29)

Proof. By taking into account that h > 0, T > 0 and r > 0, and since a direct VaR formula
does not exist, we first compute the mean and variance of the transformed distribution (26)
as follows:

E[ζ] =
p1 p2eT(−(h+r))

(
eT(h+r) − 1

)
h + r

. (30)

Var[ζ] =
π2(3p2

2q2
1 + q2

2
(
3p2

1 + π2q2
1
))

e−2T(h+r)
(

eT(h+r) − 1
)2

9(h + r)2 . (31)

Now, by replacing the standard deviation from (31) into the relation (21), we obtain
the CVA VaR under the logistic distribution for the two-dimensional case as comes next
(27). In a similar manner, by employing (6) and the following CVaR formulation proposed
by Hlivka in [5] for the logistic distribution (Y ∼ Logistic(µ, σ)):

CVaRα(Y) =
αµ− σ log

(
1

1−α

)
− ασ log(1− α)− ασ log

(
1
α

)
− µ

α− 1
, (32)

we can construct the CVA CVaR formulation under the bi-logistic distribution as (29). The
proof has now ended.

4. Applications

The aim of this section is to check and uphold the contributed EE formulations and the
CVA risk measures of Sections 2 and 3. The simulations here were performed employing
Mathematica 12.0 [32] on a laptop with Windows 10 Home and a Core i7-9750H CPU
having 16GB of RAM along with SSD memory.

No special data are used in this section and the set of parameters were taken from the
literature, as cited accordingly.

The most famous kind of swaps includes IRS, where one side exchanges a floating
rate loan for a fixed rate loan. The net present value of the fixed cash flows of an IRS is
then named as the fixed leg and the expected net present value of the floating cash flows is
named by the floating leg. If the fixed leg is paid and the floating leg is received, one calls
the agreement a payer IRS, whereas if the floating leg is paid and the fixed leg is received,
one can name it a receiver IRS or receiver swap.
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4.1. EEs for the Payer and Receiver Swap

The computational EEs for the payer and receiver swap are given in Figures 3 and 4
based on (18) and (20). Here, the set of parameters are [28]:

s = 0.035, T = max{t} years, µ = 0.03, θ = 0.02, σ = 0.015. (33)

As we can see, the EE has a much lower quantity if compared to the PFE as expected
for various values of time and the initial conditions.

2 4 6 8
t (year)

0.2

0.3

0.4

0.5

0.6

EE
Payer IRS EE

2 4 6 8
t (year)

0.005

0.010

0.015

0.020

0.025

EE
Receiver IRS EE

Figure 3. EEs for payer and receiver swap for t ∈ [0, 8] and x0 = 0.1.
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Figure 4. EEs for payer and receiver swap for t ∈ [0, 10] and x0 = 0.035.

To theoretically show that CVA L>CVA N, we must investigate that the following
holds true:

VeT(−(h+r))
(

eT(h+r) − 1
)(

p− q log
(

1
α − 1

))
h + r

>
pV
(

eT(h−r) − 1
)

h− r
−
√

2qVerfc−1(2α)∆, (34)

where ∆ = eT(h−r)−1
h−r . Note that ∆ is always positive regardless of the choice of h > r or

r > h. This depends on the choice of the parameters. However, as long as the parameters
are positive and chosen properly, then it holds. To formally pursue this, we might go on
(approximately ) by writing the Taylor expansion of the left and right sides of (34) as follows:

VeT(−(h+r))
(

eT(h+r) − 1
)(

p− q log
(

1
α − 1

))
h + r

= TV
(

p− q log
(

1
α
− 1
))

+ O(T2), (35)

and

pV
(

eT(h−r) − 1
)

h− r
−
√

2qVerfc−1(2α)∆ = pTV −
√

2qVTerfc−1(2α) + O(T2), (36)
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which is the Taylor expansion up to the first order on T, h and r. On the other hand, as long
as p, q, V > 0, α > 1/2, by using (35) and (36), we have erfc−1(2α) < 0 and

− qTV log
(

1
α
− 1
)
> −
√

2qTVerfc−1(2α). (37)

Then, we obtain

log
(

1
α
− 1
)
<
√

2erfc−1(2α). (38)

Note that this gives a condition on the choice of α to have (34). However, as long as
α � 1/2, then it would be valid. From the point of view of the real application of the
CVA L indicator, or other similar indicators, α must be close to 1 and, in almost all cases, it
is considered to be higher than 90% to clearly give a proper sight of the risk involved in
the financial problem. It is also noted that this does not contradict the results in Figure 5
around α = 1/2, since, first of all, (38) is obtained based on the first order Taylor expansion,
which is an approximation procedure, and, second, it reveals that, as long as we get close
to α = 1/2 (although this does not happen in practice), and only theoretically, more data
can be covered by the normal PDF rather than the logistic PDF, which is a confirmation
of Figure 1, and, once again, says that the fatter tail helps us in risk management when
α� 1/2.

CVA Normal Distribution VaR

CVA Logistic Distribution VaR

0.5 0.6 0.7 0.8 0.9 1.0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

α

Figure 5. The CVA VaR under the logistic distribution for α ∈ [0.5, 0.999] compared to CVA VaR
under the normal distribution.

4.2. Results for 1D CVA VaR and Advantages over the Existing Solver

To check the validity of (25), the CVA charges are obtained via (25) and compared to
the values of CVA normal VaR (CVA N) and CVA logistic VaR (CVA L) in Table 2. The
considered parameters here are:

r = 0.02, h = 0.015/0.6 = 0.025, V = 0.012, R = 0.4, p = 0.015, q = 0.012. (39)

Note that the default probability h is equal to the CDS value s over 1− R.
Since most financial data are characterized by leptokurtosis (fat-tails), the usefulness

of the logistic distribution can be confirmed from Table 2. Results are given in bp (basis
points, e.g., one basis point is equal to 1/100th of 1%, or 0.01% or 0.0001) and show that, for
confidence levels of more than 50%, the CVA L gives a better hedge rather than CVA N. The
CVA L values for the 99% are higher than the CVA N measure, which is what we expected.

Remark 1. From Table 2, the CVA VaR values from the normal and logistic distributions at the
99% confidence level may be around three to four times higher than the respective CVA charges. In
addition, from Table 2, the CVA VaR values from the logistic distribution are less than double of the
respective CVA VaR values from the normal distribution.
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Finally, the shape of the CVA logistic VaR is plotted in Figure 5, which is very similar
to the market risk VaR and is compared to CVA L.

Table 2. CVA charges in comparisons to the CVA N and CVA L.

T 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

CVA charge 3.44 3.60 3.77 3.93 4.09 4.25 4.41 4.57 4.73 4.89 5.05

CVA N, α = 80% 6.05 6.35 6.66 6.96 7.27 7.57 7.88 8.187 8.49 8.79 9.10
CVA L, α = 80% 7.26 7.60 7.95 8.29 8.63 8.97 9.31 9.6517 9.98 10.3211 10.65

CVA N, α = 90% 7.32 7.69 8.06 8.43 8.80 9.17 9.54 9.90 10.27 10.64 11.01
CVA L, α = 90% 9.49 9.94 10.39 10.84 11.29 11.73 12.18 12.62 13.05 13.49 13.93

CVA N, α = 95% 8.37 8.80 9.22 9.64 10.06 10.48 10.90 11.33 11.75 12.17 12.60
CVA L, α = 95% 11.55 12.10 12.65 13.19 13.74 14.28 14.82 15.35 15.88 16.42 16.95

CVA N, α = 99% 10.35 10.87 11.39 11.91 12.43 12.95 13.47 13.99 14.52 15.04 15.56
CVA L, α = 99% 16.09 16.86 17.63 18.39 19.14 19.90 20.65 21.39 22.14 22.88 23.62

Now, three more case studies, in order to confirm the superiority of the use of logistic
distribution instead of normal distribution, are given based on

Case A: r = 0.03, h = 0.015/0.6 = 0.025, V = 0.02, p = 0.02, q = 0.01, α = 0.95.

Case B: r = 0.01, h = 0.015/0.6 = 0.025, V = 0.01, p = 0.01, q = 0.02, α = 0.90.

Case C: r = 0.05, h = 0.015/0.6 = 0.025, V = 0.05, p = 0.02, q = 0.02, α = 0.99.

The results are reported in Figures 6–9, re-confirming the superiority.

CVA Logistic Distribution VaR

CVA Logistic Distribution CVaR

1.0 1.5 2.0 2.5 3.0

0.004

0.006

0.008

0.010

T

Figure 6. VaR and CVaR when both the credit spread and the EPE are given by the logistic distribution.
When only T changes in left. When two other parameters p1 and α change in right.
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Figure 7. Comparison of CVA N and CVA L for Case A.
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Figure 8. Comparison of CVA N and CVA L for Case B.
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Figure 9. Comparison of CVA N and CVA L for Case C.

4.3. Results for 2D CVA VaR

The sets of parameters in Figure 6 (left and right) are as follows, respectively:

r = 0.02, h = 0.015/0.6, p1 = 0.015, q1 = 0.012, p2 = 0.015, q2 = 0.012, α = 0.99, (40)

T = 3 years, r = 0.02, h = 0.015/0.6, q1 = 0.012, p2 = 0.015, q2 = 0.012. (41)

Comparisons of (27) and (29) are given in Figure 6, confirming the applicability of the
new formulations for higher dimensions, while the CVaR estimate leads to higher values
than the VaR values.

With respect to the CPU time, all of the discussed methods here needed almost equal
timings to provide the risk values, and the Mathematica snippet code for managing risk
via the logistic distribution with VaR or CVaR can be performed in several seconds only.

5. Conclusions

CVA is usually expressed as the difference among the value of the same position
traded with a given counterparty and the value of a position traded with a default free
counterparty. In an OTC transaction, the value of mark-to-market is not fixed, and thus
the credit exposure changes in response to the factors of the market at each forthcoming
date. The counterparty credit risk is evaluated as an exposure profile (EP) over the rest of
the transaction’s life. Note that, since the exposure is from a bilateral contact, the mark-to-
market of the exposure could become negative or positive. Regardless, if the exposure is
positive, then there would only be counterparty credit risk.

This paper discussed an up-to-date topic of credit risk that constantly evolves, which is
reflected in new or adjusted approaches in consequent Basel documents. In fact, this paper
proposed a logistic distribution for the modeling of credit spread, as well as EPE on the basis
that this is seen in practice to have fatter tails than a normal distribution. In fact, the risk measure
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of VaR was contributed for the CVA under this distribution. Then, generalizations for the CVA
VaR and CVA CVaR were given by considering both the credit spread and the expected positive
exposure to follow the logistic distributions with different parameters. Computational aspects
of the formulas were provided to uphold the theoretical discussions.
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