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Abstract: Systems composed of piecewise smooth differential (PSD) mappings have quantitatively
been searched for answers to a substantial issue of limit cycle (LC) bifurcations. In this paper, LC
numbers (LCNs) of a PSD system (PSDS) consisting of four regions are dealt with. A Melnikov
mapping whose order is one is implicitly obtained by finding its originators when the system is
perturbed under any nth degree of real polynomials. Then, the approach employing the Picard–Fuchs
mapping is utilized to attain a higher boundary of bifurcation LCNs of systems composed of PSD
functions with a global center. The method we used could be implemented to examine the problems
related to the LC of other PSDS.

Keywords: Melnikov function; limit cycles (LCs); Picard–Fuchs (PF) equation; piecewise smooth
differential system (PSDS)
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1. Background and Literature

Planar Differential System (PDS) theory quantitatively searches for limit cycle numbers
(LCNs) and their distributions. There exists a close association with the renowned 16th
problem proposed by Hilbert [1]: given any polynomial differential system (PDS), what
are the highest LCNs and their distributions? To tackle the issue, several approaches
have been proposed, such as the approach based on the Melnikov function [2–7], the
averaging method [8–11], the Picard–Fuchs (PF) equation method [12,13], the Chebyshev
criterion [14–18], and the method to compute the Lyapunov constants [19–22].

The PF equation arises in the context of algebraic geometry and complex analysis, par-
ticularly when studying families of algebraic varieties or complex manifolds. In bifurcating
LC analysis, the PF equation can be used to describe the behavior of LCs as parameters
vary in a dynamical system. It helps in understanding how the properties of LCs change as
system parameters are perturbed. In the study of LCs, the PF equation typically involves
a complex parameter, and it describes how certain periods or integrals associated with
the LCs vary with respect to this parameter. The solutions to the PF equation provide
information about the monodromy of the LCs, which can be essential for understanding
their stability and bifurcation behavior. In summary, the PF equation plays a role in the
analysis of LCs by describing how certain complex integrals or periods associated with the
cycles change as system parameters vary, shedding light on their bifurcation behavior.

To discuss further, Tian et al. studied LC bifurcations in systems composed of piecewise
smooth second-order integrable mappings with invariant curves by utilizing the Melnikov
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mapping (MM) whose order is 1, deriving a lesser boundary for LCNs bifurcated based
on the annulus period [2]. Gasull et al. considered mappings similar to the perturbed
pendulum upon a cylinder under the perturbation of trigonometric polynomials and
provided the higher boundaries pertinent to how many their related Melnikov mapping
whose order is 1 generates zeros by covering areas related to oscillation and rotation [3].
Xiong and Han dealt with the issue of bifurcated LCs in the same nth-degree systems by
utilizing a perturbation system composed of piecewise third-order polynomial mappings
that has a generic heteroclinic hoop having a saddle point characterized by nilpotency and
cusp and employed the expansion together with its coefficients of the first-order Melnikov
mapping to attain at least 3n− 1 LC, [6].

Llibre et al. developed a theory called averaging related to orders of both first and
second to investigate the periodical results of systems composed of discontinuous piecewise
differential functions consisting of arbitrary numbers of systems and dimensions whose
differentiability conditions are at minimum [11]. In [12], Horozov and Iliev derived features
of the systems called the PF that are fulfilled by the four fundamental integral expressions
to explicit a higher boundary regarding how many zeros the integral called Abelian of near-
Hamiltonians contains. Yang offered the PF approach to the research of LC bifurcations for
differential equations characterized by non-smoothness having two exchanging lines [23].
Grau et al. presented a benchmark that gives a simple sufficient requirement to obtain a
class of Abelian integrals to attain Chebyshev’s attribution [15]. The equivalence of the first
two approaches was proven by [22].

Assume that the near-integrable differential system has the subsequent representation{
ν̇ = p(ν, β) + ε f (ν, β),
β̇ = q(ν, β) + εg(ν, β),

(1)

where in 0 < |ε| � 1, p, q, f , g ∈ C∞. For ε = 0, an initial integral and its integration
factor were characterized by H(ν, β) and µ(ν, β) in Equation (1), respectively. Assume
that Equation (1)|ε=0 covers Lξ that includes periodical orbits represented by a class that
encloses (ν = 0 and β = 0) is covered. We also have H(ν, β) = ξ delineating Lξ and

M̃(ξ) =
∮
Lξ

µ(ν, β)[g(ν, β)dν− f (ν, β)dβ], (2)

was expressed as a Melnikov mapping whose order is 1 for (1), which has a substantial
influence regarding the study of the bifurcations of LCs. For instance, if (2) is assumed to
have a secluded 0 denoted by ξ0. Equation (1) contains a LC close to L(ξ0).

In the simulations of real-world phenomena having discontinuity such as biology [24],
oscillations characterized by non-linearity [25], and mechanics coping with impacts and
frictions [26,27], investigating LCNs and their relevant locations has been concentrated
on lately. The issue could be evaluated as the elongation of the tiny Hilbert’s sixteenth
question of the cases with discontinuity. An approach based on the Melnikov function was
suggested to deal with systems composed of planar piecewise smooth Hamiltonian map-
pings consisting of two areas [28]. Deriving a mathematical representation for the Melnikov
mapping whose order is 1 has a key function in the examination of LC bifurcations. This
topic has been renewed very recently in some works such as [29,30]. Employing the theory
called averaging based on the first order, the authors of [31] investigated LC bifurcations
by using the steady isochronous epicenter whose orbits are periodical regarding

ν̇ = −β + ν2β, β̇ = ν + νβ2,

once perturbations of the LC bifurcations are applied to the systems composed of the
entire second and third-order discontinuous polynomial differential functions having four
regions.
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The generic representation of a system composed of the piecewise smooth almost-
integrable differentiable functions in the ν− β extents having two regions split by a β-axis
was given by

(ν̇, β̇) =

{
(p+(ν, β) + ε f+(ν, β), q+(ν, β) + εg+(ν, β)), ν ≥ 0,
(p−(ν, β) + ε f−(ν, β), q−(ν, β) + εg−(ν, β)), ν < 0,

(3)

where p±(ν, β), q±(ν, β), f±(ν, β), g±(ν, β) ∈ C∞. For ε = 0, an initial integration H+(ν, β)
(resp. H−(ν, β)) for ν ≥ 0, (resp. ν < 0) and the integration quantity µ+(ν, β) (resp.
µ−(ν, β)) for ν ≥ 0 (resp. ν < 0) are contained by (3)|ε=0 that is assumed to have a
collection of periodical orbits

Lξ = Lξ
+
⋃

Lξ
−,

enclosing (ν = 0, β = 0). Figure 1 depicts that Lξ
+ (resp. Lξ

−) was delineated by

H+(ν, β) = ξ (resp. H−(ν, β) =
−
ξ ). The Melnikov mapping whose order is 1 for (3) is

expressed by

M̄(ξ) =
H+

β (E)H−β (F)

H−β (E)H+
β (F)

∮
L+

ξ

u+
[
g+dν− f+dβ

]
+

H+
β (E)

H−β (E)

∮
L−ξ

u−
[
g−dν− f+dβ

]
. (4)

The Relation (3) contains a LC close to Lξ0 iff M̄(ξ) in (4) including the secluded 0 in ξ
close to ξ0, see [31,32].

Figure 1. A state sketch of Equation (3)|ε=0. For the sake of simplicity in its understanding we
considered ν = x and β = y.

Considering the subsequent system in the plane having four regions{
ν̇ = p1(ν, β) + ε f 1(ν, β),
β̇ = q1(ν, β) + εg1(ν, β),

ν > 0, β > 0, (5)

{
ν̇ = p2(ν, β) + ε f 2(ν, β),
β̇ = q2(ν, β) + εg2(ν, β),

ν > 0, β < 0, (6){
ν̇ = p3(ν, β) + ε f 3(ν, β),
β̇ = q3(ν, β) + εg3(ν, β),

ν < 0, β < 0, (7){
ν̇ = p4(ν, β) + ε f 4(ν, β),
β̇ = q4(ν, β) + εg4(ν, β),

ν < 0, β > 0, (8)
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or {
ν̇ = P(ν, β) + ε f (ν, β),
β̇ = Q(ν, β) + εg(ν, β),

(9)

where 0 < |ε| � 1, pι(ν, β), qι(ν, β), f ι(ν, β), gι(ν, β) ∈ C∞, ι = 1, 2, 3, 4. We also have

P(ν, β) =


p1(ν, β), ν > 0, β > 0,
p2(ν, β), ν > 0, β < 0,
p3(ν, β), ν < 0, β < 0,
p4(ν, β), ν < 0, β > 0,

Q(ν, β) =


q1(ν, β), ν > 0, β > 0,
q2(ν, β), ν > 0, β < 0,
q3(ν, β), ν < 0, β < 0,
q4(ν, β), ν < 0, β > 0,

f (ν, β) =


f 1(ν, β), ν > 0, β > 0,
f 2(ν, β), ν > 0, β < 0,
f 3(ν, β), ν < 0, β < 0,
f 4(ν, β), ν < 0, β > 0,

g(ν, β) =


g1(ν, β), ν > 0, β > 0,
g2(ν, β), ν > 0, β < 0,
g3(ν, β), ν < 0, β < 0,
g4(ν, β), ν < 0, β > 0.

The Relation (5)|ε=0, (6)|ε=0, (6)|ε=0, and (8)|ε=0 include first integrals and integra-
tion factors that correspond to H1(ν, β) and µ1(ν, β), H2(ν, β) and µ2(ν, β), H3(ν, β) and
µ3(ν, β), H4(ν, β) and µ4(ν, β), respectively. Note that

∂H1(ν, β)

∂β
= µ1(ν, β)p1(ν, β),

∂H1(ν, β)

∂ν
= −µ1(ν, β)q1(ν, β),

∂H2(ν, β)

∂β
= µ2(ν, β)p2(ν, β),

∂H2(ν, β)

∂ν
= −µ2(ν, β)q2(ν, β),

∂H3(ν, β)

∂β
= µ3(ν, β)p3(ν, β),

∂H3(ν, β)

∂ν
= −µ3(ν, β)q3(ν, β),

∂H4(ν, β)

∂β
= µ4(ν, β)p4(ν, β),

∂H2(ν, β)

∂ν
= −µ4(ν, β)q4(ν, β).

To discuss further, multiplying (5) by µ1(ν, β), and dt1 = µ1(ν, β)dt. Then, subscript
one will be omitted subsequently. One obtains{

ν̇ = H1
β(ν, β) + εµ1(ν, β) f 1(ν, β),

β̇ = −H1
β(ν, β) + εµ1(ν, β)g1(ν, β),

ν > 0, β > 0, (10)
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{
ν̇ = H2

β(ν, β) + εµ2(ν, β) f 2(ν, β),
β̇ = −H2

β(ν, β) + εµ2(ν, β)g2(ν, β),
ν > 0, β < 0, (11)

{
ν̇ = H3

β(ν, β) + εµ3(ν, β) f 3(ν, β),
β̇ = −H3

β(ν, β) + εµ3(ν, β)g3(ν, β),
ν < 0, β < 0, (12)

and {
ν̇ = H4

β(ν, β) + εµ4(ν, β) f 4(ν, β),
β̇ = −H4

β(ν, β) + εµ4(ν, β)g4(ν, β),
ν < 0, β > 0. (13)

To make Equation (9)|ε=0 contain a collection of orbits that are periodically close to
(0, 0), an interval, ∑ = (ν, β), and D = (d(ξ), 0), C = (0, c(ξ)), B = (b(ξ), 0), A = (0, a(ξ)),
exist for all ξ ∈ Σ is assumed,

H4(D) = H4(A), H3(C) = H3(D), H2(B) = H2(C), H1(A) = H1(B) = ξ,

when c(ξ)a(ξ) < 0 and d(ξ)b(ξ) < 0. Considering (5)|ε=0 having L1
ξ , an arc in the form

of an orbit, starts with A and ends at B delineated by H1(ν, β) = ξ, ξ ∈ Σ, ν > 0, β > 0;
(6)|ε=0 having L2

ξ , an arc in the form of an orbit, starts with B and ends at C delineated by
H2(ν, β) = H2(B), ν > 0, β < 0; (7)|ε=0 having an orbital arc L3

ξ starts with C and ends at
D delineated by H3(ν, β) = H3(C), ν < 0, β < 0, and Equation (8)|ε=0 includes L4

ξ , an arc
in the form of an orbit, begins with D and finishes at A delineated by H4(ν, β) = H4(D),
ν < 0, β > 0. Hence,

Lξ = L4
ξ

⋃
L3

ξ

⋃
L2

ξ

⋃
L1

ξ ,

is an orbit (periodic) of (9)|ε=0 enclosing (ν = 0, β = 0) for ξ ∈ Σ.
Therefore,

{
Lξ , ξ ∈ Σ

}
denotes a collection of periodic orbits of (9)|ε=0 satisfying

lim
ξ→0

Lξ = O,

where O and each Lξ denote the origin and piecewise smooth. Figure 2 depicts that Lξ

including an orientation in a clockwise manner is supposed. An interesting and important
problem was to examine LCNs that was bifurcated based on

{
Lξ , ξ ∈ Σ

}
.

Figure 2. The shut trajectory of Equation (9)|ε=0. For the sake of simplicity in its understanding we
considered ν = x and β = y.
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The remainder of this paper is unfolded as comes next. Section 2 provides a discussion
and the main aim of this article in the form of a theorem. Toward this goal and to prove the
theorem theoretically, Section 3 discusses that M(ξ), a Melnikov mapping whose order is
1, and the PF mappings are expressed and fulfilled by the originators of M(ξ). This work
follows the discussions given recently in [33–35]. In terms of novelty, here by considering
some piecewise smooth Liênard mappings with a small enough |ε|, a higher boundary
for the LCNs bifurcated based on the annulus period is given for different values of n.
The proof of the main result and the related discussions are furnished in Section 4. Finally,
some concluding comments are brought forward in Section 5.

2. Primary Outcomes

The Melnikov mapping (MM) is a mathematical technique used in the study of bifur-
cating LCs in dynamical systems. It is named after mathematician V. K. Melnikov, who
developed the method [36]. The MM is particularly useful for analyzing the stability of
LCs in systems described by ordinary differential equations. When a dynamical system
undergoes a bifurcation, such as a saddle-node or Hopf bifurcation, LCs can emerge or
disappear. The MM is used to understand the conditions under which these LCs are born
or annihilated.

The key idea behind the MM is to calculate the transverse intersections between the
unstable and stable manifolds of the saddle equilibrium point (or the periodic orbit created
by a Hopf bifurcation). These transverse intersections, called “Melnikov integrals”, are
computed along a certain direction in phase space. If these integrals are nonzero, they
indicate that the unstable and stable manifolds intersect transversely, implying the potential
existence of a LC in the vicinity. By analyzing the Melnikov integrals and their behavior as
system parameters change, researchers can determine whether LCs are created or destroyed
during a bifurcation. This information is crucial for understanding the bifurcation dynamics
and the stability of LCs in dynamical systems.

From [37,38], M(ξ), which is a MM whose order is 1 for (9), is attained as follows.

Proposition 1. Assumed that the parts represented by (I) and (II) hold, a MM whose order is 1 for
Equation (9) were expressed by

M(ξ) =
H1

β(A)H2
ν(B)H3

β(C)H4
ν(D)

H4
β(A)H1

ν(B)H2
β(C)H3

ν(D)

∫
ÃB

µ1
[

g1dν− f 1dβ
]

+
H1

β(A)H3
β(C)H4

ν(D)

H4
β(A)H2

β(C)H3
ν(D)

∫
B̃C

µ2
[

g2dν− f 2dβ
]

+
H1

β(A)H4
ν(D)

H4
β(A)H3

ν(D)

∫
C̃D

µ3
[

g3dν− f 3dβ
]

+
H1

β(A)

H4
β(A)

∫
D̃A

µ4
[

g4dν− f 4dβ
]
, ξ ∈ Σ.

(14)

Additionally, when M(ξ0) = 0 and M′(ξ0) 6= 0 for some ξ0 ∈ Σ. Equation (9) contains a
unique LC close to Lξ0 for all |ε| small enough.
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In this work, by employing the first-order MM (14), the LCNs for the subsequent
systems that are characterized by piecewise smooth Liénard mappings are examined.

(
ν̇
β̇

)
=



(
β

−ν− ν3 + εg1(ν, β)β

)
, ν > 0, β > 0,(

β
−ν− ν3 + εg2(ν, β)β

)
, ν > 0, β < 0,(

β
−ν− ν3 + εg3(ν, β)β

)
, ν < 0, β < 0,(

β

−ν− ν3 + εg4(ν, β)β

)
, ν < 0, β > 0,

(15)

where gk(ν) =
n
∑

ι=0
ak

ι νι, k = 1, 2, 3, 4. The Equation (15)|ε=0 leads to

H(ν, β) =
1
2

β2 +
1
2

ν2 +
1
4

ν4 = ξ, ξ ∈ (0,+∞). (16)

Figure 3 depicts that (0, 0) was called the epicenter, implementing Equation (14) and
the PF mapping, a higher boundary for the LCNs bifurcating based on the around of the
annulus period for Equation (15)|ε=0’s origin.

Figure 3. The state sketch of Equation (15)|ε=0.

The following theorem is the major contribution of this article.

Theorem 1. Considering (15) with a small enough |ε| and using (14), a higher boundary for the
LCNs bifurcated based on the annulus period for (16) |ε=0’s origin equals 8 +

[ n
4
]
+ 5
[

n−1
4

]
+

2
[ n−2

4
]
, when n ≥ 2; and 2 if n = 1; and 0 when n = 0.

3. M(ξ) Represented Algebraically through Mathematical Analysis

For ξ ∈ (0,+∞), we have

Iι,κ(ξ) =
∫
L1

ξ

νιβιdν, ι, κ ∈ N.
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Based on Proposition 1, a MM whose order is 1 for Equation (15) is obtained as follows

M(ξ) =
∫
L1

ξ

βg1(ν)dν +
∫
L2

ξ

βg2(ν)dν +
∫
L3

ξ

βg3(ν)dν +
∫
L4

ξ

βg4(ν)dν

=
n

∑
ι=0

a1
ι

∫
L1

ξ

νιβdν + a2
ι

∫
L2

ξ

νιβdν + a3
ι

∫
L3

ξ

νιβdν + a4
ι

∫
L4

ξ

νιβdν

,

(17)

where
L1

ξ = {(ν, β)|H(ν, β) = ξ, ξ ∈ (0,+∞), ν > 0, β > 0},

L2
ξ = {(ν, β)|H(ν, β) = ξ, ξ ∈ (0,+∞), ν > 0, β < 0},

L3
ξ = {(ν, β)|H(ν, β) = ξ, ξ ∈ (0,+∞), ν < 0, β < 0},

L4
ξ = {(ν, β)|H(ν, β) = ξ, ξ ∈ (0,+∞), ν < 0, β > 0}.

One also can write now

Iι,3(ξ) = Iι,4(ξ) = (−1)ι Iι,1(ξ), Iι,2(ξ) = Iι,1(ξ).

By conducting direct computations. Thus, Equation (17) could be rewritten as

M(ξ) =
n

∑
ι=0

[
a1

ι + a2
ι + (−1)ιa3

ι + (−1)ιa4
ι

]
Iι,1(ξ) :=

n

∑
ι=0

aι Iι,1(ξ). (18)

M(ξ) having zeroes, where ξ ∈ (0,+∞), needs to be predicted. To this end, the deriva-
tion of the algebraic representation of M(ξ) in Equation (18) is conducted.

Lemma 1. For ξ ∈ (0,+∞), we have{
I2l,1 = σ̃(ξ)I0,1(ξ) + ς̃(ξ)I2,1(ξ), l ≥ 2, n = 2l,

I2l+1,1 = γ̃(ξ)I1,1(ξ), l ≥ 1, n = 2l + 1,
(19)

where σ̃(ξ), ς̃(ξ) and γ̃(ξ) represent ξ-th degree polynomials having

degς̃(ξ) ≤
[

n− 2
4

]
, degσ̃(ξ) ≤

[n
4

]
, degγ̃(ξ) ≤

[
n− 1

4

]
.

Proof. Differentiating Equation (16) regarding ν, one obtains

β
∂β

∂ν
+ ν + ν3 = 0. (20)

Multiplication of Equation (20) by νι−3βκdν, integrating over L1
ξ , one has

∫
L1

ξ

νι−3βκ+1dβ +
∫
L1

ξ

νι−2βκdν +
∫
L1

ξ

νιβκdν = 0.
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Assume that Lξ = {(ν, β) : H(ν, β) = ξ} bisects positive ν and β-axes at the set of
points denoted by A and B, respectively. Figure 3 depicts that Ω is supposed to be the
interior of L1

ξ

⋃−→
BO

⋃−→
OA. One gets for ι ≥ 4, the following

∫
L1

ξ

νι−3βκ+1dβ =
∮

L1
ξ

⋃−→
BO

⋃−→
OA

νι−3βκ+1dβ−
∫
−→
BO

νι−3βκ+1dβ−
∫
−→
OA

νι−3βκ+1dβ

=
∮

L1
ξ

⋃−→
BO

⋃−→
OA

νι−3βκ+1dβ = −(ι− 3)
∫∫

Ω

ν(ι−4)βκ+1dνdβ

= − ι− 3
κ + 2

∮
L1

ξ

⋃−→
BO

⋃−→
OA

νι−4βκ+2dν = − ι− 3
κ + 2

∫
L1

ξ

νι−4βκ+2dν.

Hence,

Iι,κ =
ι− 3
κ + 2

Iι−4,κ+2 − Iι−2,κ . (21)

Multiplication of Equation (16) by νιβκ−2dν and integrating over L1
ξ leads to

Iι,κ = 2ξ Iι,κ−2 − Iι+2,κ−2 −
1
2

Iι+4,κ−2. (22)

Equations (21) and (22) are finally reduced to

Iι,κ =
2

ι + 2κ + 1
[2(ι− 3)ξ Iι−4,κ − (ι + κ − 1)Iι−2,κ ]. (23)

The first equality in (19) is proven with no loss of generality. Given (23), one has

I6,1 =
4
3

ξ I2,1 −
4
3

I4,1, I4,1 =
4
7

ξ I0,1 −
8
7

I2,1. (24)

The first equality in (19) is now proven via induction over l. So, (24) implied that it
held for l = 2, 3. Suppose that equivalence held for l ≤ k− 1, (k ≥ 4). By using (23) one
has for l = k the following

I2k,1 = 2(3 + 2k)−1[−2kI2k−2,1 + 2(2k− 3)ξ I2k−4,1]. (25)

Using the induction hypothesis, one obtains the initial equivalence in (19). Now we
have

I2k,κ(ξ) = σ(−2+2k)(ξ)I0,1 + ς(−2+2k)(ξ)I2,1 + ξ
[
σ(2k−4)(ξ)I0,1 + ς(2k−4)(ξ)I2,1

]
:= σ(2k)(ξ)I0,1 + ς(2k)(ξ)I2,1,

where σ(−2+2ks)(ξ) and ς(−2+2ks)(ξ) denote polynomials in ξ-th degree satisfying

degσ(−2+2ks)(ξ) ≤
[

k− s
2

]
, deg ς(−2+2ks)(ξ) ≤

[
−1− s + k

2

]
, s = 1, 2.

Thus, degσ(2k)(ξ) ≤
[

k
2

]
, deg ς(k)(ξ) ≤

[
k−1

2

]
. This finishes the proof.

Employing Lemma 1, one can attain the subsequent proposition directly.
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Proposition 2. For ξ ∈ (0,+∞),

M(ξ) =


σ(ξ)I0,1(ξ) + ς(ξ)I2,1(ξ) + γ(ξ)I1,1(ξ), n ≥ 2,

a0 I0,1(ξ) + a1 I1,1(ξ), n = 1,
a0 I0,1(ξ), n = 0,

(26)

where in a0 and a1 denote fixed values and σ(ξ), ς(ξ) and γ(ξ) denote ξ-th degree polynomials
having

degσ(ξ) ≤
[n

4

]
, degς(ξ) ≤

[
n− 2

4

]
, degγ(ξ) ≤

[
−1 + n

4

]
.

Proof. When n ≥ 3 then the conclusion is derived directly by using Lemma 1. If n = 2,
based on Equation (18) we obtain

M(ξ) = a2 I2,1 + a1 I1,1 + a0 I0,1,

is attained, where the subscript ι, aι, taking 0, 1, 2 was a fixed value implying the conclusion
be held. One can prove the conclusions for n = 1, 2 similarly. The proof is finished.

Lemma 2. Let (I0,1, I2,1)
T and I1,1 satisfy the subsequent PF mappings(

I0,1
I2,1

)
=

( 4
3 ξ − 1

3
− 4

15 ξ 4
5 ξ − 4

21

)(
I
′
0,1

I
′
2,1

)
, (27)

and

I1,1 =

(
ξ +

1
4

)
I
′
1,1, (28)

respectively.

Proof. From (16) one gets ∂β
∂ν = 1

β , which implies

I
′
ι,κ = κ

∫
L1

ξ

νιβκ−2dν. (29)

Thus,

Iι,κ =
1

κ + 2
I
′
ι,κ+2. (30)

Multiplication of both sides of Equation (29) by ξ leads to

ξ I
′
ι,κ =

κ

2(κ + 2)
I
′
ι,κ+2 +

1
2

I
′
ι+2,κ +

1
4

I
′
ι+4,κ . (31)

Alternatively, for κ ≥ 1

Iι,κ =
∫
L1

ξ

νιβκdν =
∮

L1
ξ

⋃−→
BO

⋃−→
OA

νιβκdν−
∫
−→
BO

νιβκdν−
∫
−→
OA

νιβκdν =
∮

L1
ξ

⋃−→
BO

⋃−→
OA

νιβκdν =

− κ

ι + 1

∫
L1

ξ

νι+1βκ−1dβ =
κ

ι + 1

∫
L1

ξ

νι+1βκ−1 ν + ν3

β
dν =

1
ι + 1

(
I
′
ι+2,κ + I

′
ι+4,κ

) . (32)

is attained. By (30)–(32), for κ ≥ 1

Iι,κ =
1

ι + 2κ + 1

(
4hI

′
ι,κ − I

′
ι+2,κ

)
, (33)
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is attained. It is implied that

I0,1 =
4
3

ξ I
′
0,1 −

1
3

I
′
2,1, I1,1 = ξ I

′
1,1 −

1
4

I
′
3,1, I2,1 =

4
5

ξ I
′
2,1 −

1
5

I
′
4,1. (34)

Moreover, I′0,1(ξ) 6= 0 for ξ ∈ (0,+∞). Afterward, ω(ξ) fulfills the subsequent Riccati
mapping

G(ξ)ω′(ξ) = −1
4

ω2(ξ) + 2
(

ξ − 2
7

)
ω(ξ) + ξ, (35)

where G(ξ) = 7−1(−9 + 28ξ)ξ. Now by considering (27), we have

G(ξ)

(
I
′′
0,1

I
′′
2,1

)
=

(
−ξ + 4

7
1
4

ξ ξ

)(
I
′
0,1

I
′
2,1

)
. (36)

where G(ξ) = 7−1(28ξ − 9)ξ. Based on (36), Relation (35) is attained, which finishes
the proof.

4. Establishing Theorem 1

Assume that #{ϕ(ξ) = 0, ξ ∈ (λ1, λ2)} denotes isolated zero numbers of ϕ(ξ) on

(λ1, λ2) reckoning with the multiplicity. From (28), I1,1(ξ) = c
(

ξ + 1
4

)
is attained, where c

denotes a real fixed value. Thus,

M(ξ) = σ(ξ)I0,1(ξ) + ς(ξ)I2,1(ξ) + c
(

ξ +
1
4

)
γ(ξ).

If n ≥ 2, then based on Equations (26) and (27)

M′(ξ) = P[ n
4 ]
(ξ)I

′
0,1(ξ) + P[ n−2

4 ](ξ)I
′
2,1(ξ) + P[ n−1

4 ](ξ),

is attained, where Pk(ξ) represents a ξ-th degree polynomial having at most k. Note that
Equation (36) and some computations lead to ξ ∈ (0,+∞) and ξ 6= 9

28

M([ n−1
4 ]+2)(ξ) =

1

G([ n−1
4 ]+1)(ξ)

[
Φ[ n

4 ]+[
n−1

4 ]+1(ξ)I
′
0,1(ξ) + Ψ[ n−1

4 ]+[ n−2
4 ]+1(ξ)I

′
2,1(ξ)

]
.

where Φ[ n
4 ]+[

n−1
4 ]+1(ξ) (resp. Ψ[ n−1

4 ]+[ n−2
4 ]+1(ξ)) represents an ξ-th degree polynomial

with at most
[ n

4
]
+
[

n−1
4

]
+ 1 (resp.

[
n−1

4

]
+
[ n−2

4
]
+ 1). Thus, for ξ ∈ (0,+∞) and ξ 6= 9

28 ,

M([ n−1
4 ]+2)(ξ) =

I
′
0,1(ξ)

G([ n−1
4 ]+1)(ξ)

[
Φ[ n

4 ]+[
n−1

4 ]+1(ξ) + Ψ[ n−1
4 ]+[ n−2

4 ]+1(ξ)ω(ξ)
]
.

Hence, for ξ ∈ (0,+∞) the following relation

#
{

M([ n−1
4 ]+2)(ξ) = 0

}
= #

{
Φ[ n

4 ]+[
n−1

4 ]+1(ξ) + Ψ[ n−1
4 ]+[ n−2

4 ]+1(ξ)ω(ξ) = 0
}
+

[
n− 1

4

]
+ 1. (37)

is attained. Subsequently, the number of zeros of Φ[ n
4 ]+[

n−1
4 ]+1(ξ) + Ψ[ n−1

4 ]+[ n−2
4 ]+1(ξ)ω(ξ)

on (0,+∞) will be estimated.
Let χ(ξ) = Φ[ n

4 ]+[
n−1

4 ]+1(ξ) + Ψ[ n−1
4 ]+[ n−2

4 ]+1(ξ)ω(ξ). Based on Equation (35), the
following relation is obtained:

G(ξ)Ψ[ n−1
4 ]+[ n−2

4 ]+1(ξ)χ
′(ξ) = −1

4
χ2(ξ) + P[ n−1

4 ]+[ n−2
4 ]+2(ξ) χ(ξ) + P[ n

4 ]+2[ n−1
4 ]+[ n−2

4 ]+3(ξ).
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Now, considering Lemma 2 and a similar reasoning as in [38] for ξ ∈ (0,+∞), we
obtain

#{χ(ξ) = 0} ≤ #
{

Ψ[ n−1
4 ]+[ n−2

4 ]+1(ξ) = 0
}
+ #
{

P[ n
4 ]+2[ n−1

4 ]+[ n−2
4 ]+3(ξ) = 0

}
+ 1 ≤

[n
4

]
+ 3
[

n− 1
4

]
+ 2
[

n− 2
4

]
+ 5.

(38)

Hence, from (37) and (38), for ξ ∈ (0,+∞), the following relation:

#{M(ξ) = 0} ≤
[n

4

]
+ 5
[

n− 1
4

]
+ 2
[

n− 2
4

]
+ 8,

is attained. If n = 1, then from (18), we attain

M(ξ) = a0 I0,1(ξ) + a1 I1,1(ξ) = a0 I0,1(ξ) + a1c
(

ξ +
1
4

)
.

Based on Equation (23), I0,1(ξ) =
4
3 hI

′
0,1(ξ) is attained. Hence, M′′(ξ) = a0 I

′′
0,1(ξ) =

− a0
4ξ I

′
0,1(ξ). Noting that I

′
0,1(ξ) 6= 0 for ξ ∈ (0,+∞), M(ξ) contains at most two 0s in

(0,+∞). When n = 0, an easy computation gives M(ξ) = a0 I0,1(ξ). Because

I0,1(ξ) =
∫
L1

ξ

βdν =
∮

L1
ξ

⋃−→
BO

⋃−→
OA

βdν−
∫
−→
BO

βdν−
∫
−→
OA

βdν,

=
∮

L1
ξ

⋃−→
BO

⋃−→
OA

βdν =
∫∫

Ω

dνdβ 6= 0,

where Ω is the interior of L1
ξ

⋃−→
BO

⋃−→
OA. Therefore, M(ξ) does not contain zero in (0,+∞).

The proof finishes now.
We investigated LC bifurcations in systems composed of PSD mappings, specifically

focusing on LCNs within a PSDS consisting of four regions. We employed a Melnikov
mapping of order one to analyze the system’s behavior when perturbed by nth-degree
real polynomials. This approach provides valuable insights into the bifurcation behavior
of PSDS systems with a global center. The practical implications of this research extend
to various applications where understanding LCs is critical. For instance, in the study of
dynamical systems, these findings can help predict and control oscillatory behavior, which
is prevalent in diverse fields, including engineering, biology, and physics. By determining
the LCNs around critical points in such systems, engineers can make informed decisions
to optimize performance and stability. The mathematical representation of the Melnikov
function and the application of recurrence formulas further contribute to a comprehensive
understanding of the system’s behavior. It is important to note that the higher boundary
derived from Theorem 1 is not always optimal. This suggests that there may be room
for further refinement and exploration, particularly in determining the lower boundary
for LCNs.

5. Conclusions

In the article, a system composed of planar third-order Liénard mappings with a
global epicenter having at most[n

4

]
+ 5
[

n− 1
4

]
+ 2
[

n− 2
4

]
+ 8,

LCs around the critical point by utilizing a first-order Melnikov function containing
four zones is shown. Recurrence formulas have been applied to get the comprehensive
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mathematical representation of a MM whose order is 1 that could be stated as combinations
of I0,1(ξ), I1,1(ξ) and I2,1(ξ) with polynomial coefficients. Afterward, bifurcating LCNs
near the critical point by employing PF and the Riccati equation is determined. The higher
boundary given by Theorem 1 is not optimal generally. The lesser boundary for LCNs
could not be given because verifying the coefficient independence for the polynomials
of I0,1(ξ), I1,1(ξ) and I2,1(ξ) has been difficult, which will be the future direction of the
conducted research.
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