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Abstract: The Internet of Things (IoT) with non-orthogonal multiple access (NOMA) has been antici-
pated to offer diverse real-time applications, wherein the crux is to guarantee the age of information
(AoI) for dynamic traffic. However, the traffic temporal variation provokes the interdependence
between queue status and interference, in which context the AoI performance remains to be further
explored. In this paper, an analytical framework is established to characterize the AoI performance
in NOMA-IoT networks with random Bernoulli and deterministic periodic arrivals. Particularly, a
numerical algorithm is devised to obtain the queue service rate, and tractable expressions for AoI
violation probability and average AoI under both the first-come first-served (FCFS) and the preemp-
tive last-come first-served (LCFS-PR) service disciplines are derived. Simulations are conducted to
validate the proposed analysis. The results unveil that LCFS-PR conduces to better AoI performance
than FCFS, and yet the gain diverges for each device with different traffic arrival configurations. In
addition, the result shows that with sporadic traffic arrival, the periodic pattern outperforms the
Bernoulli pattern, whereas this advantage gradually diminishes with more frequent packet arrival.

Keywords: NOMA; IoT; packet arrival; queue service discipline; AoI violation probability; time-average
AoI

MSC: 94A05; 60J10

1. Introduction

By connecting billions of devices to the Internet, the Internet of Things (IoT) merges
the physical and digital universes, thus making our lives more responsive and more intel-
ligent [1]. Benefiting from IoT, data of our concern can be precisely collected and further
utilized to provide fine-grained mastery in diverse real-time applications, e.g., industrial
manufacturing, quality monitoring, and transportation control [2–4]. One distinctive
feature of these applications is the strict constraint on information freshness since the obso-
lescence of acquired information inevitably results in deterioration in the system decision
accuracy and reliability. Therefore, evaluating the freshness of the sensed information is of
utmost importance for network design [5,6]. In this regard, Age of Information (AoI) has
been introduced as a performance metric to quantify information freshness [7]. Specifically,
AoI gives the time elapsed since the newest delivered packet was generated at the source.
Different from the conventional time delay metric, AoI places particular emphasis on the
latency experienced by the destination, which is jointly affected by packet generation and
packet transmission.

The conflict between massive communication devices and scarce communication re-
sources is becoming increasingly prominent. Several spectrum-sharing techniques are pro-
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posed to solve this key problem in various network scenarios, such as heterogeneous networks
and cognitive relay networks [8,9]. In addition, non-orthogonal multiple access (NOMA) is
also perceived as a potent solution since NOMA, which is different from orthogonal multiple
access (OMA), allows multiple devices to transmit on the same resource. By NOMA, devices
are multiplexed in the power domain, and meanwhile, the intended signal for each device
is extracted from the superimposed signals by utilizing successive interference cancellation
(SIC) at the destination. Therefore, NOMA offers the potential to enhance resource utilization
efficiency and reduce access delay [10,11]. The mature application of NOMA in wireless
networks is regarded to be promising, which paves the way for future B5G/6G systems. In
the context of information freshness gathering spiraling attention, it is necessary to explore
and understand the AoI performance in NOMA-IoT networks.

Since the concept of AoI was introduced, AoI has sparked enormous research interest
due to its effectiveness. Specifically, AoI-oriented scheduling strategies have been devised to
guarantee timely information delivery [12–14]. In addition, several pioneering works have
been dedicated to studying the AoI performance in the field of queuing theory. Expressions
for time-average AoI in status update systems with different packet management policies
at the source node are obtained in [15]. In [16], the authors consider the AoI stationary
distribution in a single-server information update system under both first-come first-
served (FCFS) and last-come first-served (LCFS) queue service disciplines. Apart from the
continuous-time queuing models, the AoI performance in the discrete-time queuing model
has also come into sight by taking note of the broad deployment of slotted-operated IoT
infrastructures. In this line of research, the authors in [17] consider the AoI minimization
problem under general interference constraints and derive the peak and average AoI
expressions for discrete-time queues with FCFS. Resorting to the temporal properties of
the AoI sample path, the generating function of AoI in a single-server queuing system
is provided in [18], while taking into account FCFS and LCFS with preemptive (LCFS-
PR) disciplines. Moreover, the impacts of bufferless and single buffer sources on the AoI
distribution are analyzed in [19] under the Bernoulli arrival assumption. The average
AoI of a status update system with size 2 is studied in [20], where probabilistic packet
preemption is considered by constituting a three-dimensional age process.

However, the above-mentioned works rely on abstract queuing models and overlook
the impact of mutual interference. More explicitly, the packet departure process is as-
sumed to be a certain distribution and hence falls short of capturing the impact of wireless
transmissions. Recognizing this, several attempts have been made to mimic the packet
departure according to the tightly entangled transmissions resulting from the fact that the
mutual interference hinges upon the time-varying queue status of each node. Considering
such a model, the authors in [21] demonstrate that with different deployment density
configurations, the Poisson bipolar networks under LCFS-PR can achieve better average
AoI performance than those under FCFS. Moreover, the effect of packet arrival patterns on
the AoI performance is analyzed in [22,23]. Specifically, the average AoI and its violation
probability in Poisson bipolar networks with sources having different buffer size, together
with different arrival patterns, are derived in [22]. Accounting for the mutual interference
in the macroscopic network scale and the queue evolution in the microscopic network scale,
the authors in [23] characterize the peak AoI in uplink IoT networks for randomly and
periodically generated traffic.

The benefit of NOMA has attracted attention in the literature in the study of informa-
tion freshness in NOMA networks, and a number of works have been conducted recently.
The time-average AoI performance considering a typical two-user NOMA network is inves-
tigated in [24]. By leveraging the stochastic hybrid system (SHS) method, the authors show
the potential of NOMA in reducing AoI. An adaptive NOMA/OMA transmission policy
is proposed in [25] to minimize the system AoI. Moreover, the system AoI performance
in IoT networks with OMA and NOMA scheduling schemes is compared in [26]. The
authors in [27] show that AoI reduction can be achieved by using a new design of cognitive
radio-inspired NOMA.
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Albeit enlightening in understanding the fundamental AoI performance in NOMA
networks, the aforementioned works are based on the generate-at-will model [28] and
thereby lack the ability to characterize the dynamic packet arrivals and departures. In
the foreseen IoT networks with diverse applications, update packets can be generated
according to different event detection modes, such as random detection of burst status
updates and periodic detection of regular meter readings. Therefore, it is necessary to
consider the packet arrival type arising in various scenarios. In addition, queue service
discipline that may potentially lead to AoI reduction is worth revisiting in NOMA networks.
As such, it calls for additional efforts to further explore the AoI performance in NOMA-IoT
networks while accounting for different arrival types and queue service disciplines.

In this paper, AoI performance in a NOMA-IoT network with two variants of traffic
arrival models, i.e., Bernoulli and periodic arrivals, is characterized under two different
queue service disciplines, i.e., FCFS and LCFS-PR. Capitalizing on the temporal queuing
perspective, the service rates of different links are tightly entangled in their temporal
queuing evolutions due to the wireless NOMA transmission. To overcome such difficulty,
an iteration algorithm is proposed to decouple the intertwined service rate. Then, the
AoI violation probability and average AoI for Bernoulli and periodic arrivals are analyzed
under FCFS and LCFS-PR service disciplines. In summary, the main contributions of this
paper can be summarized as follows:

• An analytical framework for evaluating AoI in the depicted network model is devel-
oped. The devised framework is eligible for encompassing both random Bernoulli
and deterministic periodic arrivals and, meanwhile, incorporating the impact of FCFS
and LCFS-PR disciplines on the AoI performance.

• The entangled transmission induced by the interdependence between queue buffer
length and mutual interference is taken into consideration. Accordingly, an iterative
numerical algorithm is proposed to deduce the queue service rate, and tractable
expressions for the AoI violation probability and average AoI are derived.

• It follows from the results that by operating under LCFS-PR, better AoI violation
probability and average AoI can be achieved than that under FCFS, whereas the gain
is more prominent when there are more frequent arrivals. Moreover, there exists an
evident disparity among the attained AoI enhancement triggered by LCFS-PR for each
device. In addition, the periodic arrival pattern is preferable to the Bernoulli arrival
pattern in terms of network average AoI for sporadic arrival, while this advantage
gradually vanishes as the packet arrival becomes more intensive.

The rest of the paper is organized as follows. The system model is described in
Section 2. The queuing model and the service rate are elaborated in Section 3. The detailed
analysis of AoI performance under FCFS and LCFS-PR is presented in Sections 4 and 5,
respectively. Simulation results and discussions are provided in Section 6. Finally, Section 7
concludes this paper.

Mathematical Notations: Throughout this paper, the uppercase and lowercase bold
letters are used to denote a matrix and a vector, respectively. Ik is the k× k identity matrix.
1k and 0k is a k× 1 all ones and all zeros vector, respectively. The L1 and L∞ norm of a vector

a ∈ Rk×1 is given by ∥a∥1 =
k
∑

i=1
|ai| and ∥a∥∞ = max

1⩽i⩽k
|ai|, respectively. The superscript T

represents the transpose operation. x̄ denotes its complementary value, i.e., 1− x. E[·] is
the expectation function.

2. System Model

Consider an uplink NOMA IoT system composed of K devices, denoted by D1, . . . , DK,
and an access point (AP), as illustrated in Figure 1. All devices collect ambient information
and encapsulate it into equal-sized packets. The pending packets are then sent to AP by
utilizing NOMA. The transmissions are organized into discrete time slots, where the slot
duration is the packet transmission period. Assuming power-law path-loss, the received
signal power from Dk attenuates at rate κd−α

k , in which dk is the distance from Dk to AP, α
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denotes the path-loss exponent, and κ is the path-loss constant. Wireless channels are also
subjected to shadow fading and small-scale fading. More specifically, the instantaneous
channel gain from Dk to AP at the t-th time slot is determined by hk(t) = κdα

k ξk|gk(t)|2,
where ξk is the shadow fading gain with log-normal distribution, and gk(t) ∼ CN (0, 1)
characterizes the Rayleigh fading, which remains constant within one time slot and varies
independently across time slots.

AP

D2

D1
 DK

Figure 1. An illustration of the considered network scenario.

In this work, two variants of arrival patterns, i.e., Bernoulli arrival and periodic arrival,
are considered. Despite the difference, both arrival processes can be modeled by the discrete
phase-type distribution due to its versatility and flexibility. In general, the phase-type distri-
bution gives the probability of hitting times until absorption in a Markov process with one
absorbing state [29]. In order to characterize the packet arrival process of Dk, we consider
an absorbing discrete-time Markov chain (DTMC) with state space {0, 1, · · · , τk}, where
state 0 represents the absorbing state and states {1, · · · , τk} are the transient states. In the
context of packet arrival, the absorbing state implies packet arrival, whereas the transient
states are represented by τk different phases. The transition matrix can be expressed as

Φk =

[
1 0
vk Vk

]
, (1)

where Vk ∈ Rτk×τk is the substochastic transient matrix, and vk = 1τk − Vk1τk ∈ Rτk×1

represents the absorption probability from a given transient state. The probability of starting
from any of its transient state is formulated as an initialization vector βk =

[
β1, · · · , βτk

]
∈

R1×τk , in which βi is the probability that the DTMC starts from the transient state i. Hence,
the parameter tuple (βk, Vk) determines a phase-type distribution.

The phase-type distribution provides generalization across multiple traffic arrival mod-
els. The periodic arrival for Dk with deterministic generation cycle τk can be characterized
by setting Vk as

Vk =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0




, (2)

where the transition probability between transient states is equal to 1 because the packet
arrival process is deterministic.

The generation cycle for periodic arrival is fixed as τk, which also corresponds to τk

phases. Without loss of generality, the initialization vector is given by βk =
[
1, 0T

τk−1

]
.

Concerning the Bernoulli arrival at Dk, we have τk = 1 because there exists only one
phase. As such, the parameter tuple characterizing the Bernoulli arrival degenerates into
(βk, Vk) = (1, 1− νk), where νk denotes the packet arrival probability at each time slot.

Each device has an infinite-size buffer to accommodate the arrived update packets. In
addition, we consider the following two queue service disciplines:
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• FCFS: All packets are served in the order of arrivals. If the queue is not empty, then
a newly arrived packet has to wait until the transmission of the foregoing packet
completes. Otherwise, a newly arrived packet can be served directly.

• LCFS-PR: The newest packet is given priority. It can immediately enter service upon
arrival, whereas the ongoing service will be interrupted and postponed. Only when
the newest packet completes its service, the suspended packet with the latest arrival
timestamp restarts transmission.

Assume that only when the signal-to-interference-plus-noise ratio (SINR) received
by AP exceeds the decoding threshold, i.e., θk, the transmission of Dk is successful. Upon
successful delivery, AP feeds back an ACK. While in the case of transmission failure, a
NACK is sent by AP and the undelivered packet is stored in the buffer waiting to be
retransmitted. In particular, the ACK/NACK message is fed back instantaneously and
error-freely. Without loss of generality, the queuing activities are assumed to be followed
with the early-arrival late-departure model. That is to say, packets arrive at and depart
from the queue at the beginning and the end of each time slot, i.e., t+ and t−, respectively.

In uplink NOMA networks, SIC is utilized at AP to successively extract each device’s
signal. The link quality metric that is used for ordering devices in this work is the mean
signal power. Without loss of generality, we index each device based on the descending
order of its link distance, i.e., d1 > d2 > · · · > dK. Let Qk(t) represent Dk’s queue length at
time slot t. Since no packet is sent when the transmission queue is empty, we can write the
SINR of Dk as follows

SINR(ψ1,ψ2)
k (t) =

Ptxhk(t)1(Qk(t) > 0)
k−1
∑

j=1
Ptxhj(t)1

(
Qj(t) > 0

)
+ N0

, (3)

where 1(·) is a binary indicator function, that takes a value of 1 under the condition and
0 otherwise, Ptx and N0 are the transmit power and the noise power, respectively. The
superscript ψ1 ∈ {F, L} represents the FCFS (ψ1 = F) and the LCFS-PR (ψ2 = L) queue
discipline, respectively. And ψ2 ∈ {B, P} represents the Bernoulli (ψ2 = B) and periodic
(ψ2 = P) arrival pattern, respectively.

Throughout this paper, information freshness is measured by AoI, which is formally
defined as the time difference from the generation time of the latest received (freshest)
update packet to the current system time. Let ∆(ψ1,ψ2)

k (t) denote Dk’s AoI at time slot t, in
which the queue discipline and the packet arrival pattern are specified by the superscript

(ψ1, ψ2). ∆(ψ1,ψ2)
k (t) evolves based on the dynamic packet arrival and delivery, which can

be mathematically described as

∆(ψ1,ψ2)
k (t + 1) =





min
{

t + 1− Gk(t), ∆(ψ1,ψ2)
k (t)

}
+ 1, case 1,

∆(ψ1,ψ2)
k (t) + 1, case 2,

(4)

where Gk(t) is the arrival time of the delivered packet by Dk at time slot t, case 1 represents
that the packet is successfully delivered at (t + 1)−, and case 2 denotes that the transmission
fails or there is no transmission at (t + 1)−. It is noteworthy that in case 1, the delivery of
a preempted packet under the LCFS-PR discipline does not trigger the AoI performance
reset because its information is obsolete.

In fact, ∆(ψ1,ψ2)
k (t) constructs a time-varying process. Therefore, we need to focus

on some summary metrics for the system’s performance. A widely used fundamental
metric is the AoI violation probability, which gives the probability that the AoI exceeds a
certain age threshold and characterizes the information freshness fluctuation over time. In
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a stationary and ergodic queuing system, the AoI violation probability can be equated with
the asymptotic frequency distribution [16], which is given by

P(ψ1,ψ2)
k (δ) ≜ lim sup

t→∞
P
{

∆(ψ1,ψ2)
k (t) > δ

}
= lim sup

Ω→∞

1
Ω

Ω

∑
t=1

1

(
∆(ψ1,ψ2)

k (t) > δ
)

. (5)

Aside from the AoI violation probability, we also evaluate the time-average AoI. Using
the above, the time-average AoI at the destination AP from Dk is defined as

∆(ψ1,ψ2)
k ≜ lim sup

Ω→∞

1
Ω

Ω

∑
t=1

∆(ψ1,ψ2)
k (t). (6)

Considering all devices, the network time-average AoI can be expressed as

∆(ψ1,ψ2)
ntw ≜

1
K

K

∑
k=1

∆(ψ1,ψ2)
k . (7)

3. Queue Analysis
3.1. Queuing Model

From the temporal evolution perspective, the queuing dynamics under both Bernoulli
and periodic arrivals can be abstracted by a unified PH/G/1 queue. In particular, the queue
service rate of Dk, denoted by µk(t), is determined by the NOMA transmission success
probability given below

µk(t) = P
{ K⋂

i=k,1(Qi(t)>0)

{
SINR(ψ1,ψ2)

i (t) ⩾ θi

}}
. (8)

We use two binary variables Ak(t) and Dk(t) to represent the status of packet arrival
and packet departure for Dk at time slot t, respectively, of which the value is set to 1 upon
arrival or successful transmission, and 0 otherwise. As a result, the temporal evolution of
Qk(t) can be given by

Qk(t + 1) = Qk(t)− 1(Qk(t) > 0)Dk(t) + Ak(t). (9)

We can infer from (3) and (8) that Dk(t) depends on the queue length of all the other
queues, i.e., [Q1(t), . . . , Qk−1(t), Qk+1(t), . . . , QK(t)]. As a result, the temporal evolution
of one particular queue depends on the queue status of all the others, thus consequently
resulting in the interdependence between the service process and queue status. The problem
is further exacerbated by the fact that the service rate of each device varies with the time
slot index t, as we note from (8). Therefore, a temporal correlated queuing process is
induced, complicating the subsequent analysis extremely. In that respect, we focus on the
asymptotic stationary regime and regard the packet departure process from Dk as identical
as its stationary distribution over time [21,23]. Specifically, under the Bernoulli arrival
model, the packet departs the queue with success probability µk = lim

t→∞
µk(t). Note that

under the periodic arrival model, a packet generation cycle for Dk contains τk time slots,
with each equivalent to one phase. Accordingly, the stationary queue transition state can
be classified into τk phases. Taking this point into account, we approximate the queue

service rate under the periodic arrival model as µk = Eτk

[
lim
t→∞

µk(t)
]

, where the success

probability is averaged across τk different phases within the same packet generation cycle
to alleviate the dependence.
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The probability transition matrix of the two-dimensional DTMC jointly constructed
by Dk’s queue length and its phase can be written as

Pk =




Bk,1 Bk,0
Ak,2 Ak,1 Ak,0

Ak,2 Ak,1 Ak,0
. . . . . . . . .


, (10)

where Bk,1 = Vk and Bk,0 = vkβk are the boundary substochastic matrices with size τk × τk.
In addition, Ak,2 = µkVk, Ak,1 = µkBk,0 + µ̄kVk, and Ak,0 = µ̄kBk,0 are τk × τk substochastic
matrices characterizing three potential queue length state transitions within all τk phases,
i.e., the queue length minus 1, remains unchanged, and add 1, respectively.

The stationary distribution of Dk’s queue length Qk(t) and its phase Jk(t), i.e., πkqj ≜
lim
t→∞

P{Qk(t) = q, Jk(t) = j} (q = 0, 1, . . ., j = 1, . . . , τk), can be uniquely derived by solving

the following equations
πkPk = πk, πk1 = 1, (11)

where πk is expressed in block form as πk = [πk0, πk1, · · · ] with πkq =
[
πkq1, · · · , πkqτk

]
.

With Bernoulli arrival, we have τk = 1 and (βk, Vk) = (1, 1− νk). Hence, Pk degener-
ates into

Pk =




ν̄k νk
ν̄kµk λk νkµ̄k

ν̄kµk λk νkµ̄k
. . . . . . . . .


, (12)

in which λk = 1− νkµ̄k − ν̄kµk. Therefore, from (11), we can explicitly derive that

πkq =





1− νk
µk

, q = 0,

νk
µk

(
1− νkµ̄k

µk ν̄k

)(
νkµ̄k
µk ν̄k

)q−1
, q ⩾ 1.

(13)

With periodic arrival, the queuing process is of the quasi-birth-death (QBD) type,
resulting in a block tridiagonal structure for the probability transition matrix as shown
in (10). By utilizing the matrix-analytic method (MAM), the stationary probability can be
given in a matrix-geometric form as

πkq = πk1Rq−1
k , q ⩾ 1, (14)

where Rk is the non-negative rate matrix that can be determined by the unique minimal
solution of the quadratic matrix equation given by [30]:

R2
kAk,2 + RkAk,1 + Ak,0 = Rk. (15)

In general, the rate matrix Rk can be obtained by several numerical algorithms in-
cluding the basic linear progression algorithm and improved algorithms with quadratic
convergence [29]. In view of the fact that Ak,0 is the product of a column vector µ̄kvk and a
normalized row vector βk, Rk can be expressed as Rk = Ak,0

(
Iτk −Ak,1 − sp(Rk)Ak,2

)−1,
where sp(Rk) is the spectral radius of Rk which can be derived by solving the scalar equa-
tion x = βk

(
Iτk −Ak,1 − xAk,2

)−1
µ̄kvk for x in (0, 1). Once Rk is obtained, πk0 and πk1 can

be further obtained by solving the following linear matrix equation

[πk0, πk1]

[
Bk,1 Bk,0
Ak,2 RkAk,2 + Ak,1

]
= [πk0, πk1], (16)
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with the normalization πk01τk + πk1
(
Iτk Rk

)−11τk = 1.

3.2. Service Rate

In this subsection, we provide a step-by-step analysis of the service rate µk. Due to
the interdependence among all queues, µk depends on the queue statuses of the other
K− 1 queues. Therefore, there exist 2K−1 situations, with each corresponding to a specific
combination of queue status of all other queues. Focusing on calculating µk, we need to
consider different situations of queue status combinations. Specifically, for situation m,
where m = 1, 2, · · · , 2K − 1, the queue status of Dj is represented by ζm

k,j ∈ {0, 1}. Therefore,
the service rate µk can be written as

µk =
2K−1

∑
m=1

K

∏
j=1,j ̸=k

∣∣∣ζm
k,j − χj

∣∣∣µc
k,m, (17)

where χj = ∥π j0∥1 is the empty probability of Dj’s queue, µc
k,m is the conditional service

rate given in the m-th queue status situation. Without loss of generality, we assume
that the number of queues with a non-empty buffer in the m-th situation is ρm, where
ρm ∈ {1, . . . , K}. The devices having non-empty queues are indexed as σ1 < · · · < σϱ <
· · · < σρm , wherein Dk’s index is particularly set as σϱ. As such, µc

k,m can be expressed as

µc
k,m = P

{ Lm⋂

i=ϱ

SINR(ψ1,ψ2)
σi ⩾ θσi

}
. (18)

Apparently, the key to deriving µc
k,m is to figure out the conditional joint probability,

which is presented by the following proposition.

Proposition 1. In the depicted network, the conditional service rate of Dk with index σϱ conditioned
on the m-th situation can be derived as

µc
k,m = exp

(
ωU−1γ

)
detU−1

ρm

∏
i=1

ωi

(
ωU−1ei

)−1
, (19)

where ei is an unit vector with size ρm × 1, and its i-th element equals to 1, ω =
[
ω1, . . . , ωρm

]

is with size 1 × ρm and ωi =
(

Ptx
N0

κξσi d
−α
σi

)−1
, γ =

[
0T

ϱ−1,−γT
0

]T
is with size ρm × 1 and

γ0 =
[
γϱ, . . . , γρm

]T, wherein γi =
−θσi

1+θσi
for 1 ⩽ i ⩽ ρm, and U is a ρm × ρm M-matrix [31]

expressed in the following block form as

U =

[
Iϱ−1 0(ϱ−1)×(ρm−ϱ+1)

γ01T
ϱ−1 ΓL + Iρm−ϱ+1

]
, (20)

in which Γ is a (ρm − ϱ + 1)× (ρm − ϱ + 1) diagonal matrix with the elements of γ0 =
[
γϱ, . . . , γρm

]T
on the diagonal, and L is a (ρm − ϱ + 1)× (ρm − ϱ + 1) lower triangular matrix with all elements
equal to 1.

Proof. The proof is provided in Appendix A.

According to Proposition 1, the expression of µk can be further derived by substituting (19)
into (17). However, we find that µk still relates to the queue empty probability of other devices.
More specifically, µk is a function of π j0 (j ̸= k). Similarly, πk0 that can be obtained by solving
the Markov chain with a probability transition matrix constructed by µk is also required for
calculating the service rate of the other K− 1 devices. In essence, this is an interdependent
problem. By leveraging the fixed-point theory [32], an iterative algorithm is devised to
calculate the service rate. The overall algorithm is demonstrated in Algorithm 1.
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Algorithm 1 Numerical iterative algorithm

1: Initialization: l = 0; π
(l)
10 , . . . , π

(l)
K0;

2: repeat
3: for k = 1 to K do
4: Enumerate the queue status combination, i.e., ζm

k,j, ∀j ̸= k, ∀m ∈
{

1, . . . , 2K−1};

5: Calculate the conditional service rate µc
k,m, ∀m ∈

{
1, . . . , 2K−1} by Proposition 1;

6: Update µ
(l+1)
k by substituting χj = ∥π

(l+1(j<k))
j0 ∥1 into (17);

7: Reconstruct the probability transition matrix Pk as (10) by using µ
(l+1)
k ;

8: Update π
(l+1)
k0 by solving the equations given by (13) and (16) for Bernoulli and

periodic arrival, respectively;
9: end for

10: Update l ← l + 1;

11: if µ
(l)
k < νk for Bernoulli arrival

∣∣∣ µ
(l)
k < 1

τk
for periodic arrival, ∃k ∈ {1, . . . , K} then

12: Break;
13: end if
14: until ∥π(l)

k0 −π
(l−1)
k0 ∥∞ < ε, ∀k ∈ {1, . . . , K}

15: Return: πk0 ← π
(l)
k0 , ∀k ∈ {1, . . . , K}, and µk based on (17);

Within the proposed algorithm, the pre-defined error tolerance is given by ε. In
particular, we update µ

(l+1)
k by leveraging π

(l+1)
10 , . . . , π

(l+1)
k−10 , π

(l)
k+10, . . . , π

(l)
K0 in the l-th

iteration. The newly obtained service rate is then used to rebuild the probability transition
matrix, based on which we can update Dk’s stationary probability. This iteration procedure
is applied for both Bernoulli and periodic arrival types, whilst the difference lies in solving
the specific Markov chain. Loynes’s condition is verified to guarantee queue stability.
After each iteration, we check the convergence threshold and end the iterations under the
given precision. Finally, µk is derived by substituting the derived π j0 (j ̸= k) into (17).
Note that the K-dimensional DTMC, which is built by the queue lengths of all devices,
is homogeneous, irreducible, and aperiodic. Algorithm 1 converges after the fixed-point
iteration due to the fact that there uniquely exists a steady-state solution. The temporal
dynamic of each queue can be characterized by leveraging Algorithm 1. Based on this, we
can present the analysis of AoI statistics in the following subsection.

4. AoI Analysis under FCFS

In this section, we delve into the analysis of AoI under the FCFS queue discipline.
Based on the Bernoulli arrival and periodic arrival, analytical expressions for the AoI
violation probability and time-average AoI are presented.

As an initial step, we first concentrate on the temporal evolution of AoI. Let tk,i and
t′k,i represent the arrival and departure time of the i-th packet of Dk, respectively. It should
be noted that the AoI sample path can be divided along the packet arrival boundary
into a set of non-intersecting segments. Specifically, the i-th segment of Dk’s AoI falls
into the set

{
∆(F,ψ2)

k (t)
∣∣∣t− tk,i < ∆(F,ψ2)

k (t) ⩽ t− tk,i−1

}
for i = 1, 2, . . ., as illustrated in

Figure 2. With FCFS, G(F,ψ2)
k,i is the time duration holding the condition that AoI exceeds a

given age constraint δ, i.e., ∆(F,ψ2)
k (t) > δ, in the i-th AoI segment. Moreover, we denote

Xk,i = tk,i − tk,i−1 and Tk,i = t′k,i − tk,i as the inter-arrival time and the system time of the
i-th packet of Dk, respectively. Thus, we have

G(F,ψ2)
k,i =

{
max

{
Xk,i − (δ− Tk,i), 0

}
, if Tk,i < δ,

Xk,i, if Tk,i ⩾ δ.
(21)
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Figure 2. AoI sample path under FCFS with age constraint δ, where the number labeled under t-axis
denotes the packet index.

It can be inferred from the queuing evolution that the AoI process is stationary and
ergodic [16]. Consequently, the AoI violation probability of Dk can be represented by

P(F,ψ2)
k (δ) = lim sup

Ω→∞

1
Ω

Ω

∑
t=0

1

(
∆(F,ψ2)

k (t) > δ
)
= lim sup

Ω→∞

1
Ω

(
N(Ω)

∑
i=1

G(F,ψ2)
k,i + ι(Ω)

)
, (22)

where N(Ω) is the number of AoI segments before time Ω, and ι(Ω) denotes the residual
time duration of which the condition ∆(F,ψ2)

k (t) > δ holds after the N(Ω)-th segment and

before timestamp Ω. Note that ι(Ω)
Ω approaches zero as Ω goes to infinity, which further

results in

P(F,ψ2)
k (δ) = lim sup

Ω→∞

1
Ω

N(Ω)

∑
i=1

G(F,ψ2)
k,i = lim sup

Ω→∞

N(Ω)

Ω
1

N(Ω)

N(Ω)

∑
i=1

G(F,ψ2)
k,i

(a)
=

(
lim sup

Ω→∞

∑
N(Ω)
i=1 Xk,i

N(Ω)

)−1

lim sup
Ω→∞

1
N(Ω)

N(Ω)

∑
i=1

G(F,ψ2)
k,i , (23)

where (a) is due to the fact that N(Ω) goes to infinity almost surely with increasing Ω, and
hence the time duration Ω can be disassembled into the interarrival times. By noticing
that the system is stationary and ergodic, the packet index subscript i can be omitted for
simplification. As a result, we can finally express the AoI violation probability as

P(F,ψ2)
k (δ) =

E
[

G(F,ψ2)
k

]

E[Xk]
. (24)

Following (24), it can be seen that both E[Xk] and E
[

G(F,ψ2)
k

]
play a role of paramount

importance in characterizing the AoI violation probability. Nevertheless, the detailed
derivations differ from each other under different arrival models. Specifically, E[Xk] is
equal to 1

νk
and τk for Bernoulli and periodic arrivals, respectively. In the respect of

E
[

G(F,ψ2)
k

]
, we unfold the analysis as follows.

Under the Bernoulli arrival model, E
[

G(F,B)
k

]
can be calculated according to (21) as

E
[

G(F,B)
k

]
=

∞

∑
t=1

E
[

G(F,B)
k

∣∣∣Tk = t
]
P
{

Tk,i = t
}

=
δ−1

∑
t=1

∞

∑
x=δ−t+1

(x− δ + t)P{Xk = x, Tk = t}+
∞

∑
t=δ

∞

∑
x=1

xP{Xk = x, Tk = t}. (25)

Furthermore, the joint probability mass function (PMF) of Xk and Tk is given by the
following lemma.
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Lemma 1. With the FCFS queue discipline, the joint PMF of the inter-arrival time Xk and system
time Tk for Dk, i.e., P{Xk = x, Tk = t}, for x ⩾ 1, t ⩾ 1, under the Bernoulli arrival model is
given by

P{Xk = x, Tk = t} =
(

µkµ̄t−1
k

(
1−

(
µ̄k
ν̄k

)x)
+

µk

µ̄2
kνk

(
ν̄k

(
µ̄k
ν̄k

)t
− µ̄t

k

)(
µ̄k
ν̄k

)x
(µk − νk)

)
(1− νk)

x−1νk. (26)

Proof. The proof is provided in Appendix B.

By leveraging Lemma 1 together with (25), we can obtain E
[

G(F,B)
k

]
for the Bernoulli

arrival model.
Under the periodic arrival model, the inter-arrival time of Dk is fixed as τk. Based on

the relation between the inter-arrival τk and the given age constraint δ, G(F,P)
k given in (21)

consequently degenerates into different cases as follows

G(F,P)
k =





0, if Tk < δ− τk,

τk + Tk − δ, if ς(τk) ⩽ Tk < δ,

τk, if Tk ⩾ δ.

(27)

where ς(τk) = max{δ− τk, 0}+ 1(δ ⩽ τk). Therefore, E
[

G(F,P)
k

]
can be derived by

E
[

G(F,P)
k

]
=

δ−1

∑
t=ς(τk)

(τk + t− δ)P{Tk = t}+
∞

∑
t=δ

τkP{Tk = t}. (28)

As mentioned in Section 3.1, the departures from the same device over time are
considered to be temporally independent, and thus, the packet departure process can be
characterized by a geometric distribution. Therefore, the system time Tk under the periodic
arrival model has the following PMF

P{Tk = t} = φk(1− φk)
t, t = 1, 2, · · · , (29)

where φk can be determined by solving the equation φk = µk − µk(1− φk)
τk with 0 < φk <

µk [17]. Combining (28) and (29), we have E
[
G(F,P)

k

]
for the periodic arrival model.

Armed with these results, we can concretely characterize the AoI violation probability
under both Bernoulli and periodic arrival models when the FCFS queue discipline is
applied. The details are given by the following proposition.

Proposition 2. In the depicted network, the expression of AoI violation probability of Dk with
Bernoulli arrival under FCFS is obtained as

P(F,B)
k (δ) =

µ2
k ν̄δ

k − µ3
k ν̄δ

k − 2µ̄δ
kµkνk + µ̄δ

kµ2
kνk(1− δ) + µ̄δ

kν2
k (1 + δµk)

µkµ̄k(µk − νk)

+
(µ̄k/ν̄k)

δ(µk ν̄k + ν̄δ
k (νk − µk ν̄k)

)

µkµ̄k
. (30)

In addition, the AoI violation probability of Dk with periodic arrival under FCFS is obtained as

P(F,P)
k (δ) =





(
1− (1− φk)

τk
)
(1− φk)

δ−τk

φkτk
, if τk < δ,

1− (1− φk)
δ + φkδ− 1

φkτk
, if τk ⩾ δ.

(31)
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Proof. By substituting (25) and (28) into (24), we can obtain (30) and (31), respectively.

Note that Dk’s AoI violation probability also gives its complementary cumulative
distribution function (CCDF) on AoI, which can be used as AoI performance guarantees
for the system design. From this point of view, Dk’s average AoI for Bernoulli arrival and
periodic arrival can be obtained by using (30) and (31), respectively, which is given by

∆(F,ψ2)
k =

∞

∑
δ=1

δ
(

P(F,ψ2)
k (δ− 1)− P(F,ψ2)

k (δ)
)
=





ν̄k
µk − νk

+
1
νk

+
νk
µk
− νk

µ2
k

, for ψ2 = B,

τk + 1
2

+
1
φk

, for ψ2 = P.
(32)

5. AoI Analysis under LCFS-PR

In this section, we analyze the AoI performance when the packet transmissions are
conducted by the LCFS-PR discipline. In particular, every packet may or may not complete
its service depending on whether it would be preempted by a new packet arrival. The
packet that enters service upon its generation and can complete its service without being
preempted is referred to as an informative packet. As such, the informative packet always
contains the freshest information, while packets generated prior to the informative packet
become obsolete due to preemption. Let ηk represent the probability that a coming arrival
for Dk is an informative packet, which is equivalent to

ηk = P{Xk ⩾ Sk}, (33)

where Sk is the service time of Dk. In other words, ηk corresponds to the probability
that the undergoing service is not preempted by any new arrival. The number of service
preemptions between the inter-arrival time of two sequential informative packets is denoted
by H, which thereby follows a geometric distribution with the following PMF

P{H = h} = (1− ηk)
hηk, h = 0, 1, · · · . (34)

With LCFS-PR discipline, only the successful delivery of an informative packet can
trigger the AoI reset. As shown in Figure 3, the AoI process can also be divided into
non-intersecting sets. This is similar to the analysis presented in Section 4, but the set
boundary here is along the informative packet arrivals. As such, the time duration holding
the condition that AoI is larger than a certain age constraint δ in the i-th informative packet
inter-arrival, which is denoted by G(L,ψ2)

k,i , can be expressed as

G(L,ψ2)
k,i =





max
{

X̃k,i −
(

δ− T̃k,i

)
, 0
}

, if T̃k,i < δ,

X̃k,i, if T̃k,i ⩾ δ,
(35)

where X̃k,i and T̃k,i is the interarrival and system time of the i-th informative packet of Dk,
respectively.

Gk
(
,1
L,

...

t1 44 332 2 5 5 6 771

packet arrival
packet departure

ψ2)

Gk
(
,2
L,ψ2) Gk

(
,3
L,ψ2) Gk

(
,4
L,ψ2)

∆(
k
L,ψ2)(t) X̃k,1 X̃k,2 X̃k,3 X̃k,4

δ

Figure 3. AoI sample path under LCFS-PR with age constraint δ, where the number labeled under
t-axis denotes the packet index.
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Following along similar lines as in Section 4, the AoI violation probability under
LCFS-PR queue discipline can be evaluated as

P(L,ψ2)
k (δ) =

E
[

G(L,ψ2)
k

]

E
[

X̃k

] . (36)

In the following, we proceed with our analysis on P(L,ψ2)
k (δ) by deriving E

[
G(L,ψ2)

k

]

and E
[

X̃k

]
under different arrival models. Under the Bernoulli arrival model, the probability

that a new arrival is informative, i.e., ηk defined by (33), can be further derived as

ηk
(a)
=

∞

∑
n=1

P{Xk ⩾ n}P{Sk = n} = µk
1− ν̄kµ̄k

, (37)

where (a) is due to the independence between the inter-arrival and service time. Next, we
give the PMF of X̃k under Bernoulli arrivals and LCFS-PR discipline.

Lemma 2. With the LCFS-PR queue discipline, the PMF of the informative packet inter-arrival
time under the Bernoulli arrival model can be derived as

P
{

X̃k = x
}
=

νkµkµ̄x
k

µk − νk

((
ν̄k
µ̄k

)x
− 1
)

, x = 1, 2, · · · . (38)

Proof. The proof is provided in Appendix C.

As a direct corollary, we can obtain E
[

X̃k

]
from Lemma 2 as

E
[

X̃k

]
=

1− µ̄k ν̄k
µkνk

. (39)

When the LCFS-PR discipline is applied, the informative packet preempts the ongoing
service if there is any, and thus, the system time of the informative packet is comprised only
of its service time. In fact, the PMF of T̃k is a conditional probability under the condition
that the service for the informative packet can be completed. As a result, for t = 1, 2, · · · ,
we have

P
{

T̃k = t
}
= P{Sk = t|Sk ⩽ Xk} =

µkνk
ηk

µ̄t−1
k

∞

∑
x=t

ν̄x−1
k = (1− µ̄k ν̄k)µ̄

t−1
k ν̄t−1

k . (40)

According to (35), the expression of E
[

G(L,B)
k

]
can be derived analogously to that

in (25), which is detailedly given by

E
[

G(L,B)
k

]
=

δ−1

∑
t=1

∞

∑
x=δ−t+1

(x− δ + t)P
{

X̃k = x, T̃k = t
}
+

∞

∑
t=δ

∞

∑
x=1

xP
{

X̃k = x, T̃k = t
}

, (41)

where the joint PMF of X̃k and T̃k is the product of their marginal PMF due to the indepen-
dence between each other under LCFS-PR.

Under the periodic arrival model, the packet inter-arrival is determined as a constant,
i.e., τk. Moreover, in line with the LCFS-PR discipline, the informative packet inter-arrival
time is equivalent to

X̃k = (H + 1)τk, (42)

where H is the preemption number during the inter-arrival between two successive in-
formative packets. We can deduce from the PMF of H given by (34) that X̃k is a discrete
random variable with range X = {τk, 2τk, · · · }. Moreover, X̃k has the following PMF
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P
{

X̃k = x
}
= (1− ηk)

x
τk
−1

ηk, (43)

where ηk, as defined by (33), can be derived in the periodic arrival model as

ηk =P{τk ⩾ Sk} = 1− µ̄
τk
k . (44)

As a result, we have
E
[

X̃k

]
=

τk

1− µ̄
τk
k

. (45)

In addition, the system time of any informative packet under the LCFS-PR discipline
lasts no more than τk time slots. This implies that T̃k takes value randomly from the set
T = {1, 2, · · · , τk}. Therefore, we have

P
{

T̃k = t
}
= P{Sk = t|Sk ⩽ τk} =

µkµ̄t−1
k

ηk
. (46)

In essence, T̃k is the service time of the informative packet, and it is independent of
the informative packet inter-arrival X̃k. This results in

P
{

X̃k = x, T̃k = t
}
=

{
(1− ηk)

x
τk
−1

µkµ̄t−1
k , if (x, t) ∈ X × T ,

0, otherwise.
(47)

According to the relation between the packet interarrival τk and the given age con-
straint δ, we can evaluate E

[
G(L,P)

k

]
based on (35) under the periodic arrival model. Specifi-

cally, when τk ⩾ δ, we have

E
[

G(L,P)
k

]
= ∑

x∈X

(
δ−1

∑
t=1

(x− δ + t)P
{

X̃k = x, T̃k = t
}
+

τk

∑
t=δ

xP
{

X̃k = x, T̃k = t
})

. (48)

In addition, when τk < δ, we have

E
[

G(L,P)
k

]
= ∑

x∈X ′

τk

∑
t=ς(x)

(x− δ + t)P
{

X̃k = x, T̃k = t
}

, (49)

where X ′ =
{(⌈

δ
τk

⌉
− 1
)

τk,
⌈

δ
τk

⌉
τk, · · ·

}
⊆ X , and ς(x) = max{δ− x, 0}+ 1(δ ⩽ x) ∈ T .

On the basis of these analyses, we arrive at the following proposition, which gives the
AoI violation probability expression under LCFS-PR.

Proposition 3. In the depicted network, the expression of AoI violation probability of Dk with
Bernoulli arrival under LCFS-PR obtained as

P(L,B)
k (δ) =

µk ν̄δ
k − νkµ̄δ

k
µk − νk

. (50)

In addition, the AoI violation probability of Dk with periodic arrival under LCFS-PR is obtained as

P(L,P)
k (δ) =





(
1− µ̄

τk
k
)
µ̄

δ−τk
k

µkτk
, if τk < δ,

1−
µ̄δ

k + δµk − 1
µkτk

, if τk ⩾ δ.

(51)

Proof. The above expression (50) is attained by plugging (39) and (41) into (36). Analo-
gously, (51) follows by substituting (45), (48) and (49) into (36).
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Likewise, we can obtain the average AoI of Dk for Bernoulli and periodic arrivals
under LCFS-PR by leveraging (50) and (51), respectively, which leads us to

∆(L,ψ2)
k =

∞

∑
δ=1

δ
(

P(L,ψ2)
k (δ− 1)− P(L,ψ2)

k (δ)
)
=





1
νk

+
1
µk

, for ψ2 = B,

τk + 1
2

+
1
µk

, for ψ2 = P.
(52)

6. Simulation Results and Discussion

In this section, we investigate the AoI performance through Monte Carlo simulations
and verify our analysis by comparing the simulation and analytical results. In addition,
the effects of different network parameters on the AoI performance are discussed. The
simulation parameters are summarized in Table 1. In particular, the large-scale propagation
model combines both path loss and shadowing to capture the power falloff with distance,
and the small-scale fading is modeled using Rayleigh distribution, which is commonly
used in the literature [22,33]. In addition, the successful decoding threshold for NOMA
and the transmit power are set according to [34] and [35], respectively.

Table 1. Simulation parameters.

Parameter Notation Value

number of device K 3
path-loss exponent α 4
path-loss constant κ −18 dB

shadowing ξk
Log-normal distribution with

standard deviation of 6 dB
small-scale fading gk(t) Rayleigh fading

transmit power Ptx 23 dBm
noise power N0 −114 dBm

decoding threshold θk 0 dB
link distance (d1, d2, d3) (180 m, 150 m, 120 m)

iteration precision ε 10−4

Figure 4 plots the AoI violation probability versus AoI constraint for each device
with different arrival settings under FCFS and LCFS-PR disciplines. It follows from this
figure that the analytical results provide a good match with the simulation results, thus
confirming the accuracy of our analysis. Moreover, it can be observed that there exists
an apparent discrepancy among the enhancement level by applying LCFS-PR for each
device’s AoI violation probability. To be more specific, for D1 and D2, LCFS-PR queue
discipline can ameliorate the AoI violation probability to a certain extent, while this gain
vanishes for D3. This can be intuitively explained as follows. The queue service rates of
D1 and D2 are improved by utilizing SIC. Therefore, fresh information can be more likely
successfully delivered, thus refining the AoI violation probability. However, D3 suffers
from the mutual interference induced by NOMA. Hence, the preempted fresh information
may still become obsolete due to the degraded queue service rate, which substantially
counteracts the benefits of LCFS-PR. Furthermore, we can conclude from this figure that
for all devices, when their traffic arrivals are homogeneous, LCFS-PR can achieve relatively
more distinct improvement in the AoI violation probability compared to the case that
devices have heterogeneous traffic arrivals.



Mathematics 2024, 12, 1440 16 of 23

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)

Figure 4. AoI violation probability versus AoI constraint for each device with different arrival
settings under FCFS and LCFS-PR disciplines. Lines and markers denote the analysis and simulation
results, respectively, and colors are used to distinguish between different arrival settings as labeled
by annotations. (a) D1 with Bernoulli arrivals. (b) D1 with periodic arrivals. (c) D2 with Bernoulli
arrivals. (d) D2 with periodic arrivals. (e) D3 with Bernoulli arrivals. (f) D3 with periodic arrivals.

Figure 5 depicts the AoI violation probability of each device as a function of the
Bernoulli arrival rate or periodic generation cycle, under a varying value of AoI constraints
and different types of queue disciplines. In particular, we set homogeneous traffic arrivals
for all devices. We immediately notice that the analytical results track the simulation
results well, which validates the feasibility of our analysis. Moreover, we observe that
more frequent arrivals can give LCFS-PR a significant role in reducing the AoI violation
probability, while infrequent arrivals efface the benefit of LCFS-PR and result in the same
AoI violation probability performance with FCFS. In addition, it follows from this figure
that the benefit of the AoI violation probability of D1, D2, and D3, stemming from the LCFS-
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PR discipline, diminishes visibly. This observation also coincides with that drawn from
Figure 4, showing the differentiated gain for each device attained by leveraging LCFS-PR.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e)

3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f)

Figure 5. Each device’s AoI violation probability as a function of its Bernoulli arrival rate or periodic
generation cycle with different AoI constraint settings under FCFS and LCFS-PR disciplines. Lines and
markers denote the analysis and simulation results, respectively, and colors are used to distinguish
between different AoI constraint settings as labeled by annotations. (a) D1 with Bernoulli arrivals.
(b) D1 with periodic arrivals. (c) D2 with Bernoulli arrivals. (d) D2 with periodic arrivals. (e) D3 with
Bernoulli arrivals. (f) D3 with periodic arrivals.

Figure 6 shows the network average AoI for a varying value of Bernoulli arrival
rate or periodic generation cycle, under FCFS and LCFS-PR service disciplines with both
NOMA and OMA settings. From Figure 6, the close match between the analytical and
simulation results further proves the accuracy of our analysis. Also, we find that under
the FCFS discipline, there is a gradual decline in the network average AoI performance
with light traffic, whereas the network average AoI performance contrastingly rises with a
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further increase in arrivals. This is due to the tradeoff between the frequent arrivals and the
resulting interference, which plays a critical role in the transmission success probability. In
contrast, the network average AoI under LCFS-PR exhibits a downtrend with respect to the
packet arrivals since the preemption by the newest packet contributes to the information
freshness. The effectiveness of LCFS-PR over FCFS in reducing the network average AoI
notably emerges when there are more frequent arrivals. This result indicates that the traffic
arrival intensity should be brought into the selection of queue service discipline. In addition,
it can be seen from this figure that compared to the benchmarking OMA transmissions,
NOMA enjoys a clear advantage with respect to network average AoI. More specifically,
this superiority under FCFS enlarges with increasing arrival frequency, while it does not
vary evidently with arrival frequency under LCFS-PR.
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Figure 6. Network average AoI versus Bernoulli arrival rate or periodic generation cycle with NOMA
and OMA settings under FCFS and LCFS-PR disciplines. Lines and markers denote the analysis and
simulation results, respectively, and colors are used to distinguish between NOMA and OMA as
labeled by annotations. (a) Bernoulli arrivals. (b) Periodic arrivals.

In order to further reveal the impact of traffic arrival patterns on the average AoI
in NOMA-IoT networks, we plot the network average AoI as a function of the packet
inter-arrival slot in Figure 7. It can be observed that under the same service discipline,
the deterministic periodic pattern can achieve a better average AoI than the random
Bernoulli pattern for sporadic arrival, whereas this advantage gradually diminishes with
more intensive arrival. Since packets keep accumulating in the device’s queue for small
inter-arrival slots, the networks under both Bernoulli and periodic arrival are influenced by
severe interference incurred by transmissions and retransmissions. Note that interference
under periodic arrival exhibits a regular style, while it has a certain abruptness under
Bernoulli arrival. As a result, for large inter-arrival slots, the network under periodic arrival
suffers from more moderate interference compared to that under Bernoulli arrival, thus
leading to better AoI performance. This result sheds light on the impact of traffic arrival
patterns on the network average AoI.

Figure 8 plots the ratio of average AoI under LCFS-PR and FCFS for each device versus
the Bernoulli arrival rate or periodic generation cycle. In particular, we evaluate the average
AoI ratio achieved by each device under NOMA. It follows from this figure that LCFS-PR
can always provide a better guarantee of delivering fresh information than FCFS for all
devices, thus indicating the effectiveness of the LCFS-PR discipline. However, the average
AoI of each device under the LCFS-PR discipline is slightly better than that under the
FCFS discipline for sporadic packet arrivals, i.e., νk < 0.3 for Bernoulli arrival and τk > 7
for periodic arrival. With increasing packet arrival intensity, the superiority of LCFS-PR
becomes more pronounced, but the enhancement level differs from devices. The reason
comes from the fact that the queue service rate of both D1 and D2 can benefit from the
SIC, leading to higher transmission quality and more fresh updates. As for D3, the mutual
interference devastates its link quality, consequently resulting in information staleness.
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This result again exhibits the AoI improvement disparity among each device. In this light,
different devices may flexibly adopt their queue service disciplines to strike a good balance
between their AoI performance enhancement and the implementation complexity.
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Figure 7. Network average AoI versus inter-arrival slot under different service disciplines and
arrival patterns.
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Figure 8. The ratio of average AoI under LCFS-PR and FCFS for each device with NOMA versus

packet arrival. (a) ∆
(L,B)
k

∆
(F,B)
k

versus Bernoulli arrival rate. (b) ∆
(L,P)
k

∆
(F,P)
k

versus periodic generation cycle.

7. Conclusions

In this paper, the AoI performance of a NOMA-based IoT network was investigated.
Specifically, random Bernoulli and deterministic periodic arrivals, as well as FCFS and
LCFS-PR service disciplines, were incorporated into the analytical study. From the per-
spective of the temporal queuing model, a numerical iterative algorithm was proposed to
obtain the queue service rate while taking into account the wireless NOMA transmission.
Furthermore, tractable expressions on AoI violation probability and time-average AoI for
Bernoulli and periodic traffic arrivals are derived under the FCFS and LCFS-PR disciplines.
Simulation results were presented to validate the proposed analytical framework. The
results reveal that the LCFS-PR discipline outperforms the FCFS discipline in delivering
fresh information, especially when there are more frequent arrivals. Meanwhile, different
devices under LCFS-PR in the NOMA group can attain different extents of melioration of
AoI performance. Another key takeaway from the results is that the deterministic periodic
pattern can achieve better average AoI than the random Bernoulli pattern for sporadic
arrival, whereas this advantage gradually diminishes with more frequent packet arrival.
The derived results can provide helpful guidance in characterizing and understanding
how the traffic arrivals and service disciplines affect the AoI performance in NOMA-IoT
networks. As a further generalized extension, investigating up to the AoI performance in
networks using a continuous-time queuing model is regarded as a concrete direction. Addi-
tionally, a variety of design options may stretch out from a more in-depth exploration of the
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impact of general arrival types and intelligent service disciplines on the AoI performance
of NOMA-IoT networks.
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Appendix A

Proof of Proposition 1. The conditional service rate µc
k,m can be equivalently expressed as

µc
k,m = P

{ ρm⋂

i=1

{
SINR(ψ1,ψ2)

σi ⩾ θσi1(i ⩾ ϱ)
}}

= P
{ ρm⋂

i=1

{ Ptxhσi
i

∑
j=1

Pthσj + N0

⩾
θσi

1 + θσi

1(i ⩾ ϱ)
}}

= P{Uh ⩾ γ}, (A1)

where h =
[

Ptx
N0

hσ1 , . . . , Ptx
N0

hσρm

]T
. Note that each element in h follows exponential distribu-

tion. As a result, we further have

P{Uh ⩾ γ} =
∫

H

ρm

∏
i=1

ωiexp(−ωh)dh

(a)
=

ρm

∏
i=1

ωi exp
(
−ωU−1γ

) ∫

H′
exp

(
−ωh′

)
dh′

(b)
=

ρm

∏
i=1

ωi exp
(
−ωU−1γ

) ∫

Rρm
+

exp
(
−ωU−1γ′

)
detU−1dγ′

=
ρm

∏
i=1

ωi exp
(
−ωU−1γ

)
detU−1

ρm

∏
i=1

∫ ∞

0
exp

(
−ωuiγ

′
i
)
dγ′i , (A2)

whereH =
{

h ∈ Rρm
+

∣∣∣Uh ⩾ γ
}

. We can deduce from the M-matrix U that U−1 exists and

every element of U−1 is non-negative. Hence, the integral variable h ∈ H can be expressed
in the form of h = U−1γ+ h′, in which h′ ∈ H′ =

{
h′ ∈ Rρm

+

∣∣∣h′ = U−1γ′, γ′ ⩾ 0ρm

}
. This

consequently leads to (a). (b) results from the integral variable changing with h′ = U−1γ′

and det U−1 represents the Jacobian determinant. Let ui denote the i-th column of U−1 and
γ′i denote the i-th element of γ′, then (19) can be derived by algebraic manipulations.

Appendix B

Proof of Lemma 1. According to the FCFS queue discipline, for the i-th packet of Dk, the
inter-arrival time Xk,i and the system time Tk,i are mutually dependent on each other.
Specifically, Tk,i can be expressed in terms of Xk,i as

Tk,i = Sk,i + max
{

Tk,i−1 − Xk,i, 0
}

, (A3)
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where Sk,i is the service time, i.e., transmission time, of the i-th packet of Dk.
We first calculate the conditional PMF of Tk,i given Xk,i = x, x ⩾ 1. From (A3),

we have

P
{

Tk,i = t
∣∣Xk,i = x

}
=

P
{

Sk,i = t
∣∣Tk,i−1 ⩽ x

}
P
{

Tk,i−1 ⩽ x
}
+ P

{
Sk,i + Tk,i−1 − x = t

∣∣Tk,i−1 > x
}
P
{

Tk,i−1 > x
}

. (A4)

Note that Sk,i and Tk,i−1 follows independent geometric distribution with parameter µk

and 1− µ̄k
ν̄k

, respectively [30]. Let p1 and p2 denote the first and second term on the R.H.S.
above, respectively. More specifically, p1 can be obtained as

p1 = µkµ̄t−1
k

x

∑
w=1

(
1− µ̄k

ν̄k

)(
µ̄k
ν̄k

)w−1
= µkµ̄t−1

k

(
1−

(
µ̄k
ν̄k

)x)
. (A5)

And, p2 can be calculated as

p2 =
x+t−1

∑
w=x+1

(
1− µ̄k

ν̄k

)(
µ̄k
ν̄k

)w−1
µkµ̄x+t−w−1

k =
µk

(
ν̄k(µ̄k/ν̄k)

t − µ̄t
k

)
(µ̄k/ν̄k)

x(µk − νk)

µ̄2
kνk

. (A6)

Combined with the marginal distribution of Xk,i, i.e., P
{

Xk,i = x
}
= (1− νk)

x−1νk,
the joint PMF P

{
Xk,i = x, Tk,i = t

}
can be derived, which concludes the proof.

Appendix C

Proof of Lemma 2. For Dk, we use XNPR
k and XPR

k to represent the inter-arrival between
an informative packet and its next arrival, and the inter-arrival between two sequential
non-informative packets, respectively. As such, the inter-arrival time of the informative
packet of Dk, i.e., X̃k, can be expressed as

X̃k = XNPR
k + XPR

k + · · ·+ XPR
k︸ ︷︷ ︸

H

, (A7)

where H is the number of service preemption during the informative packet inter-arrival.
Due to the independence between inter-arrival times, the probability generating

function (PGF) can be employed to calculate the PMF of X̃k. Let GX(z) = E
[
zX] denote the

PGF of a random variable X. Recall that the PMF of H is given by (34), we have

GX̃k
(z) = GXNPR

k
(z)

∞

∑
h=0

(1− ηk)
hηk

(
GXPR

k
(z)
)h

, (A8)

where ηk is specified by (37). From the definition, GXNPR
k

(z) is a conditional expectation
given the condition that there is no preemption for the current service. As a result, we have

GXNPR
k

(z) = E
[

zXk
∣∣∣Xk ⩾ Sk

]
=

νkµk
ηk

∞

∑
x=1

zx ν̄x−1
k

x

∑
s=1

µ̄s−1
k =

zµkνk
ηk(1− zν̄k)(1− zν̄kµ̄k)

. (A9)

Similarly, GXPR
k
(z) can be calculated as

GXPR
k
(z) = E

[
zXk
∣∣∣Xk < Sk

]
=

νkµk
1− ηk

∞

∑
x=1

zx ν̄x−1
k

∞

∑
s=x+1

µ̄s−1
k =

zνkµ̄k
(1− ηk)(1− zν̄kµ̄k)

. (A10)

By plugging back (37), (A9) (A10) into (A8), we have

GX̃k
(z) =

zµkνk
(1− zµ̄k)(1− zν̄k)

. (A11)



Mathematics 2024, 12, 1440 22 of 23

Hence, the PMF of X̃k can be recovered by taking derivatives of GX̃k
(z) asP

{
X̃k = x

}
=

1
x!

dx

dzx GX̃k
(z)
∣∣∣
z=0

. This concludes the proof.
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