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Abstract: We consider testing for error persistence in spatial panels with (potentially correlated)
individual heterogeneity. We propose two variants of an ad hoc testing procedure based on first
transforming out the individual effects, either by time-demeaning or by taking forward orthogonal
deviations, then estimating an encompassing spatio-temporal model. The procedure can also be
employed under the random effects assumption, in which case, although suboptimal, it can be com-
putationally cheaper and safer than existing tests. We report Monte Carlo simulations demonstrating
satisfactory empirical properties.
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1. Introduction

It is uncommon for empirical spatial panel analysts to test for serial error correlation,
not least because of a lack of infrastructure. In fact, while there has been substantial attention
in the methodological literature to the uncorrelated heterogeneity/“random effects” case
(see in particular [1]), there are no readily available tests for serial error correlation in the
important case when the individual heterogeneity is allowed to be correlated with the
explanatory variables (so-called “fixed effects”). This is in contrast with the more popular
spatial dependence tests, where many recent contributions have been devoted to the fixed
effects case [2–5], and also further specification issues like Hausman testing [6] or general
error “sphericity” [7].

Time is usually incorporated in standard spatial panel models under the form of time
dummies, which account for non-space-related correlation in the cross-section, and of
individual, time-invariant effects, which account for the persistence in time of individual-
specific characteristics. On the converse, time-decaying serial error correlation of the kind
exemplified, in the simpler case, by a first-order autoregressive process is rarely considered
in this field. This is unfortunate because the efficiency of maximum likelihood estimation
hinges on an i.i.d. assumption for the remainder errors, which would be violated by the
presence of serial correlation (for a comparison of estimates of static spatial models with or
without serial error correlation, see [8], Tables 4 to 6).

Dynamic spatial panel models, where the dependent variable follows an autore-
gressive process, are an active research area (see e.g., [9–12]) with plenty of empirical
applications. In applied work on static panels, on the other hand, all attention does usually
go to spatial correlation features, and serial dependence in the errors is seldom tested [13],
despite the fact that, as per Griffith [14], “time rather than geographic dependency domi-
nates the structuring of information in space-time data cubes”: i.e., correlation in time is
generally likely to be stronger than in space.

There are important differences in both economic interpretation and estimation be-
tween dynamic models and static ones with autocorrelated errors. As often happens,
though, these are less pronounced on the testing side: maintaining the null of uncorrelated
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errors in a static model on stationary data—the appropriate condition for meaningful
estimation of a static spatial panel model through the usual Maximum Likelihood (ML) or
Generalized Moments (GM) methods—either feature will cause a serial correlation-testing
statistic to diverge. In other words, whether one approaches the issue of time persistence
under the form of serial error correlation, or rather based on the specification of a dynamic
model (see e.g., [15]), testing for serial error correlation as a diagnostic check is nevertheless
relevant in both approaches, as any omitted dynamics would show up in error persis-
tence. Moreover, very strong serial correlation, emerging either in the form of an estimated
parameter near 1 (see the example in Section 5) or of extremely high test statistics, can
signal a nonstationarity problem, suggesting the need to reconsider the specification in a
broader sense.

This paper sets out to address the issue of testing for serial error correlation proper (i.e.,
of the time-decaying type) in spatial panels while accounting for individual effects of the
fixed type, which are the most general specification and encompass the case of random-type
effects. In doing so, we aim to provide practical guidance to researchers who want to check
their specification against the above features. If any standard spatial panel (static, with
either a spatial lag, a spatial error, or both, and with individual effects) does not “pass”
the residual serial correlation test, then it is due for thorough respecification because the
consequences are most likely to be serious. In fact, either of the three misspecifications
(omission of a lagged dependent variable; omission of serial correlation in the error term;
and error nonstationarity) will cause inconsistency of the standard ML estimator.

In particular, we suggest two feasible testing strategies based on eliminating individual
effects altogether—i.e., generally applicable without making any assumption on the nature
of individual fixed effects and their correlation with the regressors. The first is based on
time-demeaning and inspired by Wooldridge [16]; the second is based on taking forward
orthogonal deviations of the data in the spirit of Lee and Yu [17] and Debarsy and Ertur [2].
In both cases, the full spatial model (including serial error correlation) is estimated using
transformed data, then the resulting serial correlation coefficient is tested for departures
from the appropriate derived null hypothesis—which depends on the transformation
employed—corresponding to the original null of no serial error correlation.

In the following, after a brief review of the literature, we set out the general model with
unobserved heterogeneity, spatial lags and both spatially and serially correlated errors; then
we review ML estimation thereof and describe the transformation needed to eliminate the
fixed effects. In Section 3, we outline the testing procedure. Section 4 contains a motivating
example, exposing serial correlation in a well known model from the spatial panel literature.
Section 5) is dedicated to a Monte Carlo assessment of the properties of the proposed tests
in finite samples, with special attention to the small sizes frequently appearing in applied
literature. Conclusions follow.

1.1. Literature Review and Background

Testing for serial correlation has often been overlooked so far in the spatial panel
literature, with a few notable exceptions. Baltagi et al. [1] have extended the spatial panel
framework to serial correlation in the remainder errors, deriving joint and conditional
tests (see in particular their C.2 statistic), while Elhorst [18] has considered simultaneous
error dependence in space and time. Lee and Yu [13] proposed a very general specification
including spatial lags, spatially and serially correlated errors together with individual
effects. They assess the biases due to neglecting serial correlation or some part of the spatial
structure through Monte Carlo simulation, and recommend a general to specific model
selection strategy. Yet this line of research has seen more methodological contributions (see
also [19]) than empirical applications. For example, we surveyed all the 481 Google Scholar
citations of the seminal paper Baltagi et al. [1] at the end of 2023, discovering that most are
either in methodological papers, or—the majority—in applied papers taking inspiration
from their general framework but not really employing the proposed serial correlation test. In
fact, the only studies actually performing a C.2 serial correlation test in a spatial context are
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Bouayad-Agha et al. [20], Millo and Carmeci [21,22], Aravindakshan et al. [23], Lottmann [24],
Kunimitsu et al. [25], Lim-Wavde et al. [26], Olivier and Del Lo [27] and Sadewo et al. [28]: all
this when a user-friendly R implementation of the C.2 has long been available (see [29],
Section 10.4.2.1). As Lee and Yu observe, “[i]n empirical applications with spatial panel
data, it seems that investigators tend to limit their focus on some spatial structures and
ignore others, and in addition, no serial correlation is considered” [13] (p. 1370).

The literature has until now concentrated on the random effects (RE) case. For testing
serial correlation in spatial pooled or RE panels (tests devised under the RE hypothesis
will in general be consistent under the special case of the pooled model), all three classic
likelihood-based testing procedures are available. In a Lagrange Multipliers (LM) frame-
work, one can use the C.2 test of Baltagi et al. [1] if the model has spatially correlated errors
(but no spatial lag). In a spatial lag panel setting, with or without RE, one can instead follow
Montes-Rojas [19]. The comprehensive estimation framework for static panels described
in Millo [8] allows estimating either the general, encompassing model with both spatial
(-lag as well as -error) and serial correlation, or the restricted case without serial correlation.
Likelihood ratio (LR) tests of the restriction of no serial correlation are therefore possible,
while allowing for spatial and/or random effects. Analogously, from within the encom-
passing model, the significance diagnostics for the autoregressive parameter amount to a
Wald test for serial correlation, asymptotically equivalent to the LR test mentioned above.

The above techniques cannot be directly applied to fixed effects (FE) panels, which on
grounds of robustness are often the preferred alternative in many applied fields, as macroe-
conomics, regional applications, or political science (in fact, as the argument goes, sets of
countries or regions cannot be seen as having been drawn randomly from a population, but
rather as being the population itself: see Elhorst [10] (Chapter ii); in favour of the random
effects view, see Mátyás and Sevestre [30] (Introduction)). This paper regards the proposal
of a feasible strategy for testing serial error correlation in static spatial panels of a rather
general nature. Devised for the fixed effects case, the testing procedure is not limited to
one of the spatial lag and spatial error types but allows for either one, and possibly for
combinations of the two. It encompasses the cases of random or no individual effects, given
that the individual effects—if any—are eliminated altogether by transformation.

It must be stressed that no formal results are presented regarding the consistency of
the proposed tests, which build upon existing estimation procedures. Yet the simulation
results presented below suggest that they can be very useful in signalling a serial correla-
tion problem, acting as a stopgap for empiricists until a desirable optimal test for serial
correlation under spatial and fixed effects is derived.

2. The Model

Our point of departure is the spatial panel data regression model with serially and
spatially correlated errors described in Millo [8] (The model in Millo [8] is, as discussed
there, itself both an extension of that of Baltagi et al. [1]—which did not include a spatial
lag—and a particularization of that in Lee and Yu [17]—which adds moving average terms).

y = (IT ⊗ λW)y + Xβ + u (1)

where y is the vector of observations on each cross-sectional unit i in each time period t,
with i = 1, . . . , N and t = 1, . . . , T, stacked by cross-section (so that time is the slowest
index), and X is a k × NT matrix of observations on the k regressors (which may contain
time dummies). As usual, W indicates the N × N matrix of known spatial weights whose
diagonal elements are set to zero, and IT is the identity matrix of order T. Moreover,
IN − λW is assumed to be non-singular.

The disturbance vector is the sum of individual effects and spatially autocorrelated
errors. In vector form, for each cross-section, this can be written as

ut = µ + εt and εt = ρWεt + νt. (2)
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The spatial correlation in the errors is supposed, for simplicity, to share the same spatial
structure as the dependent variable, described in the proximity matrix W. This assumption
can be easily relaxed employing two separate spatial matrices W1, W2.

The remaining disturbance term follows a first-order serially autocorrelated process.
Again, for each cross-section,

νt = ψνt−1 + et. (3)

ut, εt, νt and et are all N × 1 columns vectors, µ is the random vector of i.i.N(0, σ2
µ) region

specific effects; ρ (|ρ| < 1) is the spatial autoregressive coefficient and ψ (|ψ| < 1) is
the serial autocorrelation coefficient. Finally, µ and ε are assumed to be iid Normal, and
independent of each other. IN − ρW is assumed to be non-singular. No assumptions
are made, consistently with the FE approach, on the correlation between the individual
effects µ and the regressors X; while the latter are assumed exogenous with respect to the
idiosyncratic errors e. In the following, nevertheless, we will refer to the random effects
(RE) hypothesis—the assumption of independence between µ and X—as a special case of
our setting.

The model allows for serial correlation on each spatial unit over time as well as spatial
dependence between spatial units at each time period. The presence of individual effects
accounts for possible heterogeneity across spatial units.

Eliminating Fes by Transformation

If the exogeneity assumption for individual effects (RE hypothesis) did hold, individ-
ual effects could be kept as part of a spatio-temporal model. Random effects models with
spatial and serial correlation can in fact be estimated by maximum likelihood; Millo [8]
(Section 4) describes the iterative procedure. Statistical inference can then be based on the
information matrix. Millo [8], Millo and Piras [31] obtain standard errors for β̂ from GLS,
and employ a numerical Hessian to perform statistical inference on the error components.
These steps remain valid for particular restrictions of the general model: the specification
without individual effects (µ = 0) will be of interest in our case.

In the more general case where the RE assumption does not hold, to avoid endogeneity
concerns, the individual effects have to be either controlled for explicitly or, as is more often
the case, eliminated before estimation. This elimination is usually accomplished by either
differencing or time-demeaning the data (see [16], Section 10.5), or through the orthogonal
deviations transformation popularized by Arellano and Bover [32]. Once the fixed effects
have been transformed out, a restricted version of the above model assuming µi = 0 ∀i can
be estimated.

The well-known time-demeaning, or within transformation entails subtracting aver-
ages over the time dimension, so that the model is estimated using the transformed data:

ỹit = yit − ȳi, X̃it = Xit − X̄i (4)

where ȳ and X̄ denote time means of y and X. Standard FE models are estimated through
OLS using time-demeaned data. According to the framework of Elhorst [33], fixed effects
estimation of spatial panel models is also accomplished as pooled ML estimation using
time-demeaned data. Elhorst’s procedure has long been the standard in applied practice, but
has been questioned by Anselin et al. [34] because time-demeaning alters the properties of
the joint distribution of errors, introducing serial dependence; although, as it turns out, the
estimates of β and spatial parameters remain consistent: see Lee and Yu [35] (p. 257) for a
discussion of the issue, and Millo and Piras [31] (p. 33) for Monte Carlo evaluation of its
practical significance. To solve the problem, Lee and Yu [17] (3.2) suggest to apply a different
transformation which is well known from the panel data literature as forward orthogonal
deviations (henceforth OD) and has been proposed by Arellano and Bover [32] (pp. 41–42)
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in the context of dynamic, non-spatial panels (see also [36], p. 17). The transformed data
are then, for any variable (e.g., y),

y̌it =

√
T − t

T − t + 1

[
yit −

1
T − t

(yi,t+1 + . . . + yiT)

]
(5)

for t = 1, . . . , T − 1; one time period is lost in the transformation. In the case of the
model containing only individual effects, estimated by OLS on transformed data, the
two data transformations are equivalent as regards estimating the parameter of interest
β: in fact, β̂OD = β̂FE. From our viewpoint, the OD transformation has the desirable
characteristic of preserving the correlation structure of the errors; i.e., differently from the
FE transformation, of not inducing any artificial serial correlation in the transformed errors
(for a formal illustration of this last point, see [2], Section 2).

3. Testing for Serial Correlation

In this section, we outline the testing procedure for assessing serial correlation in the
remainder errors ν of the spatial model described by Equations (1)–(3). The null hypothesis
is that ψ = 0 in Equation (3). The test is based on the maximum likelihood estimate ψ̂∗

ML of
the serial correlation coefficient in the model on transformed data:

y∗ = (IT ⊗ λW)y∗ + X∗β + u∗

u∗ = (IT ⊗ ρW)u∗ + ν
νt = ψ∗νt−1 + et

(6)

where ∗ denotes a transformation of the data which (a) cancels out the individual hetero-
geneity, and (b) does possibly modify the original serial correlation parameter ψ to ψ∗.
As it happens, the two transformations we consider here do also preserve the regression
parameters β of the original model, and, if any, the spatial ones (λ, ρ) but this is inessential
to our purposes.

The testing procedure will take the form of a Wald-type linear restriction test on the
parameter ψ∗. The linear hypothesis under test will be derived from the original null
H0 : ψ = 0.

We take inspiration from a general testing procedure for serial correlation in fixed
effects panel models, described in Wooldridge [16] (Section 10.7.2) in the context of non-
spatial panels. i.e., put in our setting, he considers testing for H0 : ψ = 0 assuming that both
λ = 0 in Equation (1) and ρ = 0 in Equation (2) (Wooldridge [16] describes two different
ways to test for serial correlation drawing on transformed residuals: one, based on taking
first differences, has been popularized by Drukker et al. [37]; we concentrate on the other,
less popular proposal, based on time-demeaning the data, because it is more appropriate
for stationary data than the differencing way). In the latter case (non-spatial, pooled model
without individual effects), under the null of no serial correlation in the idiosyncratic errors,
the regression residuals of the pooled model must be uncorrelated. The same is true if
individual effects have been eliminated by OD, which preserves the original properties
of the idiosyncratic errors—but eliminates information for one time period. In the FE
case, on the other hand, if the original model’s errors are uncorrelated then we expect the
residuals from the quasi-demeaned regression to be negatively serially correlated, with
cor( ˆ̃uit, ˆ̃ui,t−1) = −1/(T − 1) for each t (see [16], Section 10.5.4). This correlation disappears
as T diverges, so standard serial correlation tests can be readily applied to panel data with
large T (see [38], Section 2.3 and Formula 12).

By analogy, the idea of transforming out the individual effects and then evaluating a
derived null hypothesis can be extended to other settings, provided that one can draw on a
consistent estimator for ψ∗. In the case of our interest, testing for serial correlation in the
errors of spatial panels can be addressed this way provided that the spatial features of the
model are appropriately taken into account. This can be carried out in the comprehensive
estimation approach including serial correlation mentioned above: i.e., transforming the
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data through either FE or OD, then estimating the original model on transformed data,
omitting the individual effects which have now been transformed out, and assessing ψ∗.
For any ψ, the likelihood of a model with spatial and serial correlation but no individual
effects is reported in Millo [8] (pp. 922–923), where estimation is also discussed.

Two different tests can be performed on the estimates, depending on the way indi-
vidual effects have been transformed out, as the transformation employed determines the
derived null hypothesis. If using OD, the derived null hypothesis resembles the origi-
nal: HOD

0 : ψ∗ = 0. Let us denote AROD the Wald restriction test for HOD
0 based on ML

estimation of the model (6) on data in orthogonal deviations:

AROD =
ψ̂∗

OD
SE(ψ̂∗

OD)
(7)

Given that the estimated model is well-specified under the null, this statistic can be expected
to tend, asymptotically, to N(0, 1).

In the FE transformation case, if the original model’s errors are uncorrelated, then FE
residuals are negatively serially correlated, with cor( ˆ̃uit, ˆ̃ui,t−1) = −1/(T − 1) for each t
(see [16], Section 10.5.4). This correlation disappears only as T diverges; for any finite T, the
derived null hypothesis becomes HFE

0 : ψ∗ = −1/(T − 1). We call ARFE the Wooldridge-
type AR(1) test for spatial panels based on testing HFE

0 based on ML estimation of the
model (6) on time-demeaned data:

ARFE =
ψ̂∗

FE + 1/(T − 1)
SE(ψ̂∗

FE)
(8)

Again, the estimated model is well-specified under the null (in particular, it allows for serial
error correlation), so this statistic can in turn be compared with N(0, 1).

Rejecting either of the above restrictions would make us conclude against the original
null of no serial correlation H0 : ψ = 0 in the original model. Notice that the ML model in
Equation (6), leaving ψ∗ free to vary, is well specified under H0 for both alternative procedures.

It shall be observed that testing procedures appropriate under the FE assumption are
a fortiori so under the more restrictive random effects (RE) assumption, whereby the indi-
vidual effects are uncorrelated with the regressors. Although under RE the encompassing
model can be directly estimated without need for transforming the data, the demeaning-
based approach is still valid. The above likelihood turns out to be much easier to optimize
with respect to the one including random individual effects, on which optimal Wald or
likelihood ratio tests can be based (on the computational issues in general, see [8], Section 5).
Moreover, ML estimation of the model without random effects, although including serial
correlation, still turns out computationally simpler than that of the spatial random effects
model, whose residuals are needed as the basis for the conditional LM test (C.2) of Baltagi
et al. [1] (see [8], Table 2, (sar+)semsr vs. (sar+)semre). Hence, employing a FE-type test
based on elimination of the individual heterogeneity, although suboptimal under RE, can
turn out to be both a more robust and a computationally less burdensome alternative under
the RE hypothesis as well—besides being the only viable choice under FE.

One last observation is that, being based on ML estimation of the transformed model,
both testing procedures depend on an assumption of normality of the remainder errors.
In the same line of reasoning, but more in general, they also depend on the space-time
dependence being correctly modelled by Equations (1)–(3); in principle, alternative data
generating processes (like e.g., that of [18]) would require the likelihood to be respecified:
although it can be conjectured that the tests maintain power towards misspecified alterna-
tives, this would require a formal proof. The results from robustness checks (reported in
Appendix A) are nevertheless encouraging.
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4. Monte Carlo Experiments

To assess the performance of ARFE and AROD in real-world conditions through Monte
Carlo simulation, we consider the rejection rates of either test at the 5% significance level:
this corresponds to the empirical size if the data are simulated under the null hypothesis
of no serial correlation, and to the empirical power of the test under alternative data
generating processes where ψ ̸= 0.

The simulation design is a generalization of that in Millo and Piras [31] (Section 8).
The idiosyncratic innovations are distributed as a standard Normal, and the individual
effects as N(0, σµ), so that σµ is also the ratio of error variances. Along with an intercept
term, we consider two regressors: x1 is sampled from a Uniform [−7.5, 7.5], x2 is drawn
from a standard Normal. The simulation parameters are chosen with a target R2 of 0.7.
The coefficients for the regressors are set to 0.5 and 10, respectively. Our spatial layout
is given by the 48 states of the continental US. The spatial weighting matrix is a simple
binary contiguity one. We consider three values for the number of time periods, the lowest
representative of a typical “short” panel, the highest of macroeconomic panels found in the
literature, and set T = 4, 10, 15. We allow combinations of two different values for both ρ
and λ, namely either zero (no effect) and 0.5, so that next to the usual two cases of spatial lag
(SAR) and spatial error (SEM), we consider both the case of no spatial correlation and that
of combined SAR and SEM processes. We consider three values for the objective parameter
ψ: zero, corresponding to no error persistence, and two positive levels of serial correlation:
0.3 (weak) and 0.8 (strong). For all experiments, 1000 replications are performed, so that the
95% confidence bands for the empirical size based on the binomial distribution are 0.036
and 0.064 (Table 1).

Table 1. Empirical size (bold) and power for the orthogonal deviations based AROD test for
H0 : ψ = 0, for N = 48 and different T. σµ is the individual effect variance, ρ and λ, respectively, the
SEM and SAR spatial parameters. 1000 replications.

AROD

σµ 0 0 0 0 1 1 1 1
ρ 0 0 0.5 0.5 0 0 0.5 0.5
λ 0 0.5 0 0.5 0 0.5 0 0.5

T ψ

4 0 0.062 0.061 0.064 0.066 0.068 0.069 0.063 0.061
4 0.3 0.459 0.453 0.429 0.490 0.442 0.471 0.472 0.460
4 0.8 0.993 0.990 0.996 0.994 0.995 0.991 0.993 0.996

10 0 0.057 0.052 0.045 0.056 0.052 0.051 0.050 0.060
10 0.3 0.998 0.999 0.997 0.998 0.999 0.999 0.998 0.998
10 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0 0.067 0.052 0.041 0.054 0.044 0.055 0.054 0.051
15 0.3 0.997 1.000 0.998 0.999 0.999 0.999 0.998 1.000
15 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Test size under validity of the null is reasonably close to 5% in all experiments, more
so when T = 10–15 than in the short panel. Empirical power is very good for the long
panels both for weak (ψ = 0.3) and for strong (ψ = 0.8) error persistence; in the short panel
case, power is moderate (near 50%) for the AROD test, while lower for the ARFE variant.
Results are much the same under either type of spatial dependence, both or none alike, and
under presence or absence of individual effects, testifying how effectively the procedure
controls for spatial and idiosyncratic features. The AROD test uniformly dominates the
ARFE over the short sample; for the longer panel, the results of the former are still slightly
better, but in this case performance is satisfactory for both versions so that either can be
safely employed (Table 2).
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Table 2. Empirical size (bold) and power for the within transformation based ARFE test for H0 : ψ = 0,
for N = 48 and different T. σµ is the individual effect variance, ρ and λ, respectively, the SEM and
SAR spatial parameters. 1000 replications.

ARFE

σµ 0 0 0 0 1 1 1 1
ρ 0 0 0.5 0.5 0 0 0.5 0.5
λ 0 0.5 0 0.5 0 0.5 0 0.5

T ψ

4 0 0.030 0.024 0.040 0.032 0.020 0.034 0.034 0.042
4 0.3 0.276 0.274 0.253 0.272 0.257 0.262 0.271 0.261
4 0.8 0.964 0.956 0.962 0.957 0.965 0.962 0.966 0.961

10 0 0.049 0.057 0.037 0.044 0.039 0.049 0.049 0.038
10 0.3 1.000 0.999 0.998 0.999 1.000 1.000 0.998 0.998
10 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0 0.045 0.045 0.038 0.048 0.037 0.042 0.046 0.051
15 0.3 0.997 1.000 1.000 0.999 0.999 0.998 0.999 1.000
15 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The proposed procedures prove effective in testing for serial error correlation in spatial
panels of lag and/or error type containing correlated individual heterogeneity. Because
elimination of the individual effects through transformation is appropriate—although
statistically suboptimal—under the random effects hypothesis as well, these FE-type tests
can be safely employed in dubious situations as regards the exogeneity of the effects. Being
computationally both cheaper and more robust than their RE counterparts, they can also be
employed in numerically problematic situations.

5. Illustrations

To illustrate the use (and the relevance) of the different tests, we will resort to some
well-known examples of spatial panels: one (Italian insurance) with a strong degree of
serial error correlation, but still no evidence of nonstationarity; another (Indonesian rice
farming) with mild serial correlation; and the last (the well-known Cigarette dataset) where
a static specification is outright inappropriate, in order to illustrate how investigating serial
correlation can reveal nonstationarity issues.

We consider random effects settings, allowing us to compare AROD and ARFE to
established tests and procedures: LMj the joint test of Baltagi et al. [1]; LMC.2 the conditional
serial correlation test of Baltagi et al. [1]; LR and Wald the Likelihood Ratio and Wald
tests equivalent to LMC.2, from estimating the encompassing model, and ψ̂ the estimated
coefficient from the latter.

It must be borne in mind, though, that—unlike the rest—AROD and ARFE would be
appropriate in a fixed effects setting as well. In turn, LR and Wald are feasible in a (random
effects) SAR + SEM setting, while LMj and LMC.2 only allow for SEM.

5.1. Italian Insurance

The Italian insurance example from Millo and Carmeci [21], as mentioned in Section 1.1,
was among the first empirical applications of the Baltagi et al. [1] C.2 conditional LM test.
Per-capita insurance expenditure in 103 Italian provinces is regressed on a set of drivers
(income, wealth, population density, cost of borrowing, agencies’ network density, educa-
tion, share of agriculture, average family size), some of which have limited (or no) time
variation, which makes a fixed effects regression infeasible. The model therefore takes into
account a mix of correlated and uncorrelated heterogeneity at different geographical levels:
fixed macroregional effects and unit (i.e., provincial) random effects. Spatial correlation is
introduced through a SEM term. It then becomes possible to employ the C.2 test for spatial
error correlation, allowing for both serial correlation and random effects. The same example
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is extended to a SAR + SEM setting in Millo [8] (Section 6.2), where a more complex spatial
structure emerges from the data. In both cases, there is evidence of serial error correlation.

In Table 3, all tests mentioned in the paper are performed first on the spatial error
specification (upper panel). The available procedures are then applied to the more general
SAR + SEM specification (lower panel). LM tests are not reported, being inappropriate in
this latter case, as they have been derived for a SEM model.

Table 3. Results and computing times (in seconds) for various serial correlation tests on the Italian
Insurance dataset, SEM (upper panel) vs. full SAR + SEM specification (lower panel). LMj is the
joint test of Baltagi et al. [1], LMC.2 the conditional serial correlation test ibid.. LR and Wald are the
Likelihood Ratio and Wald tests equivalent to LMC.2, from estimating the encompassing model: ψ̂

the estimated coefficient. AROD and ARFE are the proposed tests. Computing times are obtained
from R implementations on an AMD FX8320 desktop computer.

SEM LMj LMC.2 LR Wald ψ̂ AROD ARFE

Statistic 703.1 22.251 35.07 5.618 0.52 9.356 4.212
Distribution χ2

3 χ2
1 χ2

1 z - z z
p-value 0 0 0 0 - 0 0
Computing time 0.05 4.84 14.76 10.20 - 0.68 0.42

SAR + SEM

Statistic - - 36.009 5.607 0.54 9.260 3.791
Distribution - - χ2

1 z - z z
p-value - - 0 0 - 0 0.0002
Computing time - - 10.79 7.60 - 1.49 0.89

Under the random effects hypothesis, the upper left part of the table can be considered:
LM, LR and Wald-type tests and the estimate of ψ. All likelihood-based tests signal a
very strong departure from the null of serial uncorrelation, while ψ̂ from estimation of the
comprehensive model is “large” but far from one: consistent with stationarity. The AROD
and ARFE tests also reject the null well beyond any conventional significance level.

If the random effects hypothesis were considered dubious, then one could only look at
the results from the AROD and ARFE tests; again, there is little doubt about serial correlation
in the error terms of the present example.

5.2. Indonesian Rice Farming

The rice farming example [39] draws on 171 rice farms located in six different villages
of the Chimanuk River basin in West Java (Indonesia), observed over six growing seasons,
three wet and three dry, between 1975 and 1983. A production frontier equation is estimated,
relating rice output to the following inputs: seed, urea, phosphate, labour hours and land
(size), all but phosphate in logs (Dummy variables accounting for the use of high yield
varieties of seed, or for a mix of seed varieties and for the use of pesticides, and for the six
villages and for the season being a wet one are included in the original specification but
omitted here for the sake of simplicity). Following Druska and Horrace [39], the proximity
matrix is constructed considering all the farms of the same village as neighbours.

Spatial correlation between farms belonging to the same village can be expected;
a spatial error process seems theoretically more appropriate, due to spillovers across
neighbouring farms in climate and generic local factors affecting production, while it is less
easy to justify the inclusion of a spatial lag of the dependent variable: in fact, estimating
the encompassing SAR + SEM model yields strong SEM dependence but no evidence of
SAR (see [8], Section 6.1). In the following, for the sake of illustration, we will nevertheless
consider this last case as well.

Again, in Table 4, all tests mentioned in the paper are performed on a static spatial error
specification, then those appropriate are applied to the more general SAR + SEM specification.
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Table 4. Results and computing times (in seconds) for various serial correlation tests on the Rice
Farming dataset, SEM (upper panel) vs. full SAR + SEM specification (lower panel). LMj is the
joint test of Baltagi et al. [1], LMC.2 the conditional serial correlation test ibid.. LR and Wald are the
Likelihood Ratio and Wald tests equivalent to LMC.2, from estimating the encompassing model: ψ̂

the estimated coefficient. AROD and ARFE are the proposed tests. Computing times are obtained
from R implementations on an AMD FX8320 desktop computer.

SEM LMj LMC.2 LR Wald ψ̂ AROD ARFE

Statistic 1129.3 7.026 4.7306 2.129 0.087 2.005 3.085
Distribution χ2

3 χ2
1 χ2

1 z - z z
p-value 0 0.008 0.029 0.033 - 0.045 0.002
Computing time 0.15 5.41 15.40 9.95 - 1.72 2.46

SAR + SEM

Statistic - - 4.985 2.220 0.089 2.153 3.125
Distribution - - χ2

1 z - z z
p-value - - 0.0256 0.0264 - 0.031 0.0017
Computing time - - 23.28 15.37 - 2.64 3.96

Under the random effects hypothesis, in the left part of the table all likelihood-based
tests signal a mild departure from the null of serial uncorrelation, ψ̂ from estimation of the
comprehensive model being modestly sized. The AROD and ARFE tests also reject the null:
AROD just so, in line with the other procedures, ARFE more strongly.

5.3. Cigarettes

The Cigarette dataset is taken from Baltagi [40] (the spatial weights matrix is due to
Paul Elhorst; data and weights can be found, respectively, in the R packages Ecdat [41] and
splm [31]). The original application is in Baltagi and Levin [42]. Further reconsiderations
include Baltagi et al. [43], Baltagi and Griffin [44]. It contains data for the years 1963–1992
and 46 American states on the following: real per capita sales of cigarettes per person
of smoking age (i.e., over 14) measured in packs, average real retail price per pack, real
disposable income per capita and the minimum price per pack in neighbouring states.
The last variable is included in the original application in order to proxy for cross-border
smuggling [40] (p. 156); this could also be achieved controlling for spatial effects, as in the
above-mentioned cases.

Individual (state-specific) effects are included to account for idiosyncratic character-
istics of territory, like the presence of tax-exempt military bases or Indian reservations,
the prevalence of a religion that forbids smoking (like in Utah) or the effect of tourism.
Time effects are also included to account for (USA-wide) policy interventions and warn-
ing campaigns. Given their peculiar nature, both kinds of effects will better be assumed
fixed; however, in the following we consider both testing under the RE and under the
FE hypothesis.

The original application is dynamic, as it contains lagged consumption in order to
control for habit persistence in smoking. Nevertheless, a static version of the Cigarette
model has often been employed, mainly for illustration purposes, in a number of spatial
econometric studies [45–50] and will therefore be familiar to most researchers. This latter we
will use in our case, for the sake of illustration; given the theoretical reasons for persistence,
it will be of particular importance to test for serial error correlation.

In the upper panel of Table 5, all tests mentioned in the paper are performed on the
static spatial error specification. In the lower panel, the available procedures are applied
to the more general SAR + SEM specification, again excluding LM tests as they have been
derived for a SEM model.

If the random effects hypothesis can be trusted, the left part of the table can be
considered: LM, LR and Wald-type tests and the estimate of ψ. All likelihood-based tests
signal a very strong departure from the null of serial uncorrelation, while ψ̂ from estimation
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of the comprehensive model is very near to one. The AROD and ARFE tests also reject the
null well beyond any conventional significance level. If the random effects hypothesis is
considered dubious, then one can only look at the results from the AROD and ARFE tests;
again, there is little doubt about high persistence in the error terms. In any case, the results
point to very strong autoregressive behaviour in the residuals, bordering with unit roots
if we believe the RE hypothesis (under which ψ̂ = 0.98 is consistently estimated): a static
spatial panel specification assuming timewise-uncorrelated errors is inappropriate, and an
analysis of stationarity would be advisable.

Table 5. Results and computing times (in seconds) for various serial correlation tests, SEM (upper
panel) vs. full SAR + SEM specification (lower panel). LMj is the joint test of Baltagi et al. [1], LMC.2

the conditional serial correlation test ibid.. LR and Wald are the Likelihood Ratio and Wald tests
equivalent to LMC.2, from estimating the encompassing model: ψ̂ the estimated coefficient. AROD

and ARFE are the proposed tests. Computing times are obtained from R implementations on an
AMD FX8320 desktop computer.

SEM LMj LMC.2 LR Wald ψ̂ AROD ARFE

Statistic 12,588.9 885.2 2034.7 286.0 0.98 86.6 89.7
Distribution χ2

3 χ2
1 χ2

1 z - z z
p-value 0 0 0 0 - 0 0
Computing time 0.23 16.41 27.96 15.81 - 2.94 2.74

SAR + SEM

Statistic - - 2031.5 293.6 0.98 90.3 95.4
Distribution - - χ2

1 z - z z
p-value - - 0 0 - 0 0
Computing time - - 34.62 17.98 - 4.33 5.54

Lastly, computing times for the AROD and ARFE tests—based on production-quality
implementations in R [51]—are smaller than those for their LM, LR and Wald counterparts
by an order of magnitude; although all of them are still feasible on any machine for this,
rather moderate, sample size. Not least, in larger samples they are less prone to errors
due to numerical singularities in underlying procedures (see [8], Section 5.1.5 and Table 2,
comparing either (sar+)semsrre estimators (needed for LR and Wald) or (sar+)semre
(LM) with (sar+)semsr (AROD, ARFE)).

6. Discussion, Limitations and Directions for Future Research

We address testing for serial error correlation in spatial panels of lag and/or error
type, containing correlated individual heterogeneity. Comprehensive estimators both for
the encompassing model and for its restrictions have been developed in the literature for
the random effects case, as well as joint and conditional Lagrange multiplier tests (see
references above), so that the zero-restriction of the serial correlation coefficient can be
tested by either of the three well-known likelihood-based procedures. In contrast to the
wealth of techniques available for the random effects case, the fixed effects case—which is
often considered the most interesting one in spatial applications and is also appropriate
(but for a loss of efficiency) in case the random effect assumption should hold true—has
been given little attention.

We propose two feasible procedures for the fixed effects case, one based on observa-
tions in Wooldridge [16] and the other on the work of Lee and Yu [17] and Debarsy and
Ertur [2]. The former consists in estimating the full spatial model on time-demeaned data
and testing the resulting serial correlation coefficient for departures from the implied nega-
tive serial correlation induced by the demeaning transformation: the latter in employing,
instead of time-demeaning, the forward orthogonal deviations transformation of Arel-
lano and Bover [32]—which maintains the original correlation properties in transformed
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residuals but discards one time period—and directly testing the resulting coefficient for
departures from zero.

Elimination of the individual effects through transformation is appropriate, although
statistically suboptimal, even if the RE hypothesis holds; hence, our proposed FE-type
tests, unlike the RE ones, can be safely employed in dubious situations. Moreover, the
likelihood optimization procedure they are based upon is considerably simpler than that of
the full model with RE, and has been proven to work even on relatively big samples. The
computational burden from performing the proposed tests is actually smaller by an order
of magnitude than that of the conditional C.2 test of Baltagi et al. [1], which requires the
estimation of a spatial model with random effects.

A Monte Carlo experiment illustrates the size and power properties of the two pro-
posed procedures, which turn out satisfactory for both tests when T ≥ 10 while the
OD-based test fares better than the FE-based one in the short panel case (T = 4). We
also empirically address, in further simulations (see the Appendix B), the robustness to
partial misspecification of either the data generating process or the distribution of the errors.
Again, the results are encouraging. The proposed procedures can be trusted to consistently
signal a serial correlation problem in a wide range of applied situations. We provide them
for empirical spatial econometrics researchers wanting to check for the presence of time
persistence in their maintained model, in order to avoid the pitfalls mentioned in the
Introduction, in a more structured and consistent way than simply looking at graphical
depictions of the residuals (the latter being a useful first step nevertheless).

It must be noted, again, that we derive no formal results; based on intuitive arguments
and established properties of the building blocks employed, we conjecture that they can
be expected to be asymptotically distributed as a standard Normal. We do not simulate
the entire distribution, concentrating instead on the quantile most relevant in empirical
hypothesis testing (we thank an anonymous reviewer for insightful comments on this issue).
We do not discuss higher-order serial correlation either; while from a testing viewpoint the
proposed AR(1) test will have power against an AR(p) process (i.e., autocorrelation up to
the p-th order), it might not detect autocorrelation at just a higher order, like, e.g., what can
be expected at the fourth order in quarterly data.

The formal derivation of an optimal Lagrange Multiplier test for serial correlation like
the C.2 of Baltagi et al. [1] for a fixed effects context is a desirable outcome of future research,
as are tests for higher order serial correlation in spatial models. A related approach, which
is also not pursued here, to assessing the presence of time-decaying persistence would be to
estimate a dynamic model [9,17,52] and do a restriction test on the dynamic lag coefficient
(we thank an anonymous reviewer for this observation).
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Abbreviations
The following abbreviations are used in this manuscript:

ML maximum likelihood
GM generalized moments
FE fixed effects
RE random effects
LM Lagrange multiplier (test)
LR likelihood ratio (test)
OLS ordinary least squares
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GLS generalized least squares
OD (forward) orthogonal deviations
SAR spatially autoregressive (model)
SEM spatial error model

Appendix A. Robustness Checks

The procedure on which the tests are based relies on consistent ML estimation of the
serial correlation coefficient. The latter depends on the correct specification of the model,
both in terms of the data generating process with serial and spatial correlation, and in
terms of the distribution of the idiosyncratic error terms. In the following, we address
the consequences of (a) failing to specify the structure of the spatial-serial dependence
or (b) assuming the wrong distribution for the error terms. From this perspective, the
proposed tests will always be suboptimal under deviations from the ideal conditions of
iid Normal remainder errors and perfectly specified data generating process. Given the
practical orientation of the paper, and the fact that the ideal conditions will never really
apply in real-world situations, here we are concerned with the effects of “far distant”
misspecifications. Therefore we will consider, respectively, (a) a complete inversion of the
order of spatial and serial dependence, and (b) grossly asymmetric viz. leptokurtic error
distributions, quite unlikely to apply in practical situations.

Appendix A.1. Serial-Spatial Alternative Specification

To assess the robustness of the testing procedures to misspecification of the data
generating process, we consider an alternative to the sequential way in which serial-spatial
panel effects have been implemented since the seminal paper of Baltagi et al. [1], i.e.,
specifying the spatial processes as in Equations (1) and (2), then time-lagging the remainder
error only, as in Equation (3). In this experiment we change the time-space dynamics of the
error term, time-lagging the spatially correlated composite error:

ε = ρ(IT ⊗ WN)ε + ν
εt = ψεt−1 + et.

(A1)

In Table A1 we report empirical size and power for the tests in an experiment where the
DGP is as in Equation (A1), for a combined SAR + SEM model with either λ = 0.6, ρ = 0.6
or λ = 0.6, ρ = −0.6 and no individual effects (µ = 0). We choose T = 10 and, as usual,
N = 48. The results are practically indistinguishable from the corresponding ones for the
“true” simulation DGP reported in Tables 1 and 2.

Table A1. Empirical size (bold) and power for the AROD and ARFE tests for H0 : ψ = 0, for N = 48
and T = 10, on the alternative DGP in Equation (A1). ρ and λ are, respectively, the SEM and SAR
spatial parameters. 2000 replications.

λ = 0.6, ρ = 0.6 λ = 0.6, ρ = −0.6

ψ AROD ARFE AROD ARFE

0 0.058 0.050 0.059 0.053
0.1 0.397 0.360 0.407 0.381
0.2 0.929 0.920 0.927 0.919
0.3 0.999 0.999 1.000 0.999
0.4 1.000 1.000 1.000 1.000

Appendix A.2. Non-Normality

The ML estimator assumes normality of the remainder errors (e in Equation (6)). In
order to assess the practical effects of misspecification in the error distribution, following
Long and Ervin [53], we consider two alternative distributions to the Normal: one asym-
metric (skewed to the left), the χ2

k ; and one leptokurtic, with fatter tails than the Normal:
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the tk. Both are scaled to a standard deviation of one, while the χ2
k is also centered on zero

subtracting the expected value:

easymm ∼ χ2
k−k√

2k̇
elepto ∼ tk

k
k−2

(A2)

For these experiments, the DGP from Equations (1)–(3) is restricted to being either a
SAR process with λ = 0.6 (top panels) or a SEM process with ρ = 0.6 (bottom panels); no
individual effects (µ = 0); with N = 48, T = 10. Misspecification of the error distribution is
likely to affect the empirical rejection frequency: hence, we focus on checking the test size,
setting ψ = 0. A total of 2000 replications are performed; broken lines around the solid one
at 0.05 are 95% confidence bands for the empirical size (0.04; 0.06)

In Figure A1, we present the empirical size of the AROD and ARFE tests as the degrees
of freedom parameter k varies. The overrejecting behaviour of the AROD is slightly more
evident for strongly asymmetric errors (k < 7); more so in the presence of strong leptokur-
tosis (again, for k < 7). The empirical size of the ARFE test does instead not seem to change
(i.e., it remains only slightly underrejecting) with respect to the Normal errors case, for any
k. Summing up, our limited experiment hints at both tests being satisfactorily sized under
deviations from normality, exception made for the AROD under rather extreme choices of
the k parameter.
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Figure A1. Robustness check vs. error non-normality: empirical size of AROD (solid line) and ARFE

(broken line) for e ∼ χ2
k (asymmetric errors; left panels) or e ∼ tk (fat-tailed errors; right panels) as

k = 3, . . . , 11; DGP is a SAR process with λ = 0.6 (top panels) or a SEM process with ρ = 0.6 (bottom
panels); no individual effects (µ = 0); with N = 48, T = 10. 2000 replications are performed; broken
lines around the solid one at 0.05 are 95% confidence bands for the empirical size (0.04; 0.06).

Appendix B. Software Howto

Currently, estimation of static spatial panels with serial correlation is only available in
the open-source R environment [51] using available infrastructure from the plm and splm
packages [31,54]. In particular, the Within function can be used for within-transforming
the data, also directly inside the model formula to the spreml estimator
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In the following, we illustrate operation through the Rice Farming example, recovering
the results from the upper panel of Table 2 (spatial error model) and the lower panel (spatial
lag + error) can be reproduced setting ‘lag=TRUE’.

> ## load packages
> library(plm)
> library(splm)
> ## load data and neighbourhood matrix
> data(RiceFarms, package="splm")
> data(riceww, package="splm")
> ## calculate dimensions
> n <- pdim(RiceFarms)$nT$n
> T. <- pdim(RiceFarms)$nT$T

A model with spatially and serially correlated errors but no individual effects (see Equation (6)
above) is estimated:

> ## original model formula
> fm <- log(goutput) ~ log(seed)+log(urea)+phosphate+log(totlabor)+log(size)
> ## time-demeaned formula
> wfm <- Within(log(goutput)) ~ Within(log(seed)) + Within(log(urea)) +
+ Within(phosphate) + Within(log(totlabor)) + Within(log(size)) - 1
> ## estimate SEM+SR model (6) on demeaned data
> wmod <- spreml(wfm, data=RiceFarms, w=riceww, lag=FALSE, errors="semsr")

The necessary estimates ψ̂∗ and SE(ψ̂∗) can then be fetched from the model summary, and

the test statistic constructed as ARFE =
ψ̂∗+ 1

T−1
SE(ψ̂∗) .

> ## time-demeaned formula
> wfm <- Within(log(goutput)) ~ Within(log(seed)) + Within(log(urea)) +
+ Within(phosphate) + Within(log(totlabor)) + Within(log(size)) - 1
> ## estimate SEM+SR model (6) on demeaned data
> wmod <- spreml(wfm, data=RiceFarms, w=riceww, lag=FALSE, errors="semsr")
> ## extract relevant elements from model summary
> psi <- summary(wmod)$ErrComp["psi", "Estimate"]
> SE.psi <- summary(wmod)$ErrComp["psi", "Std. Error"]
> ## perform testing
> ARfe <- (psi + 1/(T. - 1)) / SE.psi
> p.ARfe <- 2 * pnorm(abs(ARfe), lower.tail=FALSE)
> round(p.ARfe, 4)

[1] 0.002

There is currently no support for orthogonal decomposition of panel data in R. Therefore,
performing the AROD test requires sourcing an ad hoc function:

> Orthog <- function(x) {
+ Ft <- function(t) {
+ Aplus <- matrix(NA, ncol=t, nrow=t)
+ for(i in 1:(t-1)) Aplus[i,] <- -1/(t-i)
+ diag(Aplus) <- 1
+ Aplus[lower.tri(Aplus)] <- 0
+ Aplus <- Aplus[-dim(Aplus)[[1]], ]
+
+ a <- numeric(t-1)
+ for(i in 1:(t-1)) a[i] <- (t-i)/(t-i+1)
+ a <- diag(sqrt(a))
+
+ Ft <- a %*% Aplus
+ Ft
+ }
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+ ortho <- function(x) Ft(length(x)) %*% x
+ res <- unlist(tapply(x, attr(x, "index")[[1]], ortho))
+ return(res)
+ }

and pre-transforming the data as shown below (a pooled model is estimated for conve-
niently preparing the data):

> ## OD-transformed formula
> ofm <- Orthog(log(goutput)) ~ Orthog(log(seed)) + Orthog(log(urea)) +
+ Orthog(phosphate) + Orthog(log(totlabor)) + Orthog(log(size)) - 1
> ## make orthog. transformed data and bespoke formula:
> ## preliminary estimation of pooled model
> omod <- plm(ofm, data=RiceFarms, m="p")
> ## make data.frame of transformed variables
> oX <- model.matrix(omod)
> oy <- pmodel.response(omod)
> odata <- as.data.frame(cbind(rep(1:n, each=T.-1), rep(1:(T.-1), n), oy, oX))
> dimnames(odata)[[2]] <- c("ind","tind","y","x1","x2","x3","x4","x5")
> ## make formula
> ofm <- y ~ x1 + x2 + x3 + x4 + x5

From here, one can then proceed as in the previous case. The auxiliary model is estimated,

and the test statistic constructed as AROD = ψ̂∗
SE(ψ̂∗) .

> omods <- try(spreml(ofm, data=odata, w=riceww,
+ lag=F, errors="semsr"))
> psio <- summary(omods)$ErrCompTable["psi", 1]
> SE.psio <- summary(omods)$ErrCompTable["psi", 2]
> ARod <- psio/SE.psio
> p.ARod <- 2 * pnorm(abs(ARod), lower.tail=FALSE)
> round(p.ARod, 4)

[1] 0.045
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