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Abstract: Blockchain technology, initially developed as a decentralized and transparent mechanism
for recording transactions, faces significant privacy challenges due to its inherent transparency,
exposing sensitive transaction data to all network participants. This study proposes a blockchain
privacy protection algorithm that employs a digital mutual trust mechanism integrated with ad-
vanced cryptographic techniques to enhance privacy and security in blockchain transactions. The
contribution includes the development of a new dynamic Byzantine consensus algorithm within the
Practical Byzantine Fault Tolerance framework, incorporating an authorization mechanism from the
reputation model and a proof consensus algorithm for robust digital mutual trust. Additionally, the
refinement of homomorphic cryptography using the approximate greatest common divisor technique
optimizes the encryption process to support complex operations securely. The integration of a smart
contract system facilitates automatic and private transaction execution across the blockchain network.
Experimental evidence demonstrates the superior performance of the algorithm in handling privacy
requests and transaction receipts with reduced delays and increased accuracy, marking a significant
improvement over existing methods.

Keywords: digital mutual trust mechanism; blockchain; global privacy protection algorithm; dynamic
Byzantine consensus algorithm; fully homomorphic encryption

MSC: 68M25

1. Introduction

Bitcoin, as a pioneering peer-to-peer electronic currency system, employs a public
ledger known as the blockchain to record all transactions. This decentralized ledger ensures
that every full network node retains a copy of all Bitcoin transactions, fundamentally distin-
guishing it from traditional centralized systems [1]. While this decentralized architecture
enhances system robustness by preventing single points of failure and centralized data
breaches [2], it also introduces significant privacy challenges. The inherent requirement for
transaction transparency among all participating nodes exposes sensitive transaction and
account balance information, compromising user confidentiality [3].

In recent studies, various researchers have outlined advanced privacy-enhancing
techniques within blockchain frameworks to tackle transaction privacy issues effectively.
For example, Wang and Liao [4] introduced a blockchain privacy protection algorithm that
utilizes Pedersen commitment and zero-knowledge proofs to obscure transaction details
while preserving their verifiability. In another significant contribution, An et al. [5] pro-
posed the TCNS framework. This framework aims to enhance privacy in crowdsensing by
employing a dual verification process through twice consensuses of blockchain, ensuring
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robust user attribute protection. Furthermore, Garcia et al. [6] developed a blockchain-
based data governance framework tailored for electronic prescriptions in healthcare. Their
work leverages blockchain’s provenance capabilities to safeguard privacy, showcasing
the technology’s adaptability in sensitive sectors such as healthcare. These diverse ap-
proaches demonstrate blockchain’s potential in enhancing data privacy across various fields.
Steffen et al. [7] present ZeeStar, a programming language and compiler framework that
facilitates the implementation of private smart contracts on Ethereum. This framework
utilizes homomorphic encryption and non-interactive zero-knowledge proofs to offer a
robust privacy mechanism, allowing developers to create contracts with enhanced privacy
constraints efficiently. Chen et al. [8] introduce a Decentralized Privacy-preserving Deep
Learning (DPDL) model for Vehicular Ad Hoc Networks (VANETs), which integrates
blockchain and fully homomorphic encryption to safeguard data privacy. This model
decentralizes computational tasks to edge nodes, thereby minimizing network overhead
and enhancing data security during both transmission and analysis. Ali et al. [9] propose a
hybrid deep learning model for the Industrial Internet of Medical Things (IIoMT), which
uses homomorphic encryption and a consortium blockchain to secure Electronic Medical
Records (EMRs). This approach provides a robust framework for performing statistical and
machine learning operations on encrypted data, addressing privacy and security challenges
prevalent in healthcare applications. Wu et al. [10] developed BPF-Payment, a blockchain-
based fair payment system for cloud computing that utilizes the Paillier homomorphic
encryption scheme. This system ensures transaction fairness and data privacy between
users and service providers, exemplifying the integration of blockchain as a trustworthy
intermediary in cloud service transactions. Jia et al. [11] proposed a Blockchain-Enabled
Federated Learning Data Protection Aggregation Scheme that employs differential privacy
and homomorphic encryption. This scheme is designed for the Industrial Internet of Things,
providing secure data aggregation while mitigating risks associated with model extraction
and reverse engineering attacks in federated learning environments. Tang et al. [12] address
computational efficiency in additively homomorphic encryption systems. They introduce
an efficient algorithm for solving the Elliptic Curve Discrete Logarithm Problem, thereby
enhancing the decryption process, which is pivotal for practical applications in blockchain
and federated learning that require rapid and secure data decryption.

These scholarly contributions demonstrate significant strides in the realm of blockchain
privacy and security. Each addresses specific limitations of preceding systems and paves
the way for the practical application of secure, scalable blockchain technologies across
various industries. Our work leverages these foundational studies to introduce novel
methodologies that tackle persistent challenges in blockchain privacy, especially focusing
on previously unaddressed issues related to the visibility of transaction elements within
blockchain systems.

However, despite these innovations, none have comprehensively mitigated the visi-
bility issues associated with inputs, outputs, account balances, and transaction details in
blockchain systems.

This paper introduces a novel global privacy protection algorithm that centers on a
digital mutual trust mechanism, aiming to reconcile privacy with the integrity and efficiency
demands of blockchain technology. Our primary contributions are as follows:

1. We integrate the reputation model and proof of stake within a Practical Byzantine
Fault Tolerance (PBFT) framework, and we propose a dynamic Byzantine consensus al-
gorithm that enhances the scalability and efficiency of node participation in consensus,
addressing one of the primary limitations of traditional PBFT implementations.

2. We refine homomorphic encryption techniques using an approximate greatest com-
mon divisor method. This advancement enables the encryption of transaction details
and account balances without compromising the ability to perform computations on
encrypted data, thereby maintaining functionality alongside privacy.
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3. By incorporating smart contracts into our privacy-focused blockchain framework, we
automate the execution of transactions and the management of privacy settings, signif-
icantly reducing potential delays in privacy request handling and transaction processing.

2. Digital Mutual Trust Mechanism

Alliance chains are commonly referred to as industry memory blockchains or local
area chains. The characteristics of an alliance chain are as follows: Firstly, the alliance
chain achieves local decentralization. The organizations or enterprises participating in
the alliance chain are decentralized, but appear as a whole externally. The second is the
hierarchical management mechanism for data permissions. An alliance chain is formed by
several enterprises or groups, which is only open to specific organizations and groups and
only exists at organizational nodes. The trust between organizational nodes is high, and
their data read and write permissions are managed at the internal level of the alliance. The
third is that data can be modified, but their modification requires consensus from nodes
within the alliance. The fourth is that the scope of participation in the alliance chain is not
entirely shared by the parties of common interest. The alliance chain is currently mainly
used in banking, product traceability, supply chain finance, and so on. For information
asymmetry and malicious node behavior, the proposed method introduces a reputation
model and authorization mechanism in a proven consensus algorithm [13,14] in a practical
byzantine fault tolerance (PBFT) consensus algorithm, integrates PBFT and delegated proof
of stake (DPoS) ideas [15], proposes a new dynamic Byzantine consensus algorithm, and
then establishes digital mutual trust mechanism.

2.1. Consensus Algorithm Based on Reputation Authorization Certificate

DPoS equity authorization proves that consensus algorithms can effectively solve
the problem that PBFT nodes cannot be dynamically changed, and consensus efficiency
grows in a square order with the number of nodes. However, a DPoS consensus algorithm
has the problem that nodes have low enthusiasm for voting and malicious nodes cannot
quickly handle it. Therefore, the proposed method proposes a reputation proof of stake
consensus algorithm, introduces a reputation model to replace equity, and realizes the
rapid elimination of malicious nodes by setting reputation values and node states [16].

2.1.1. Node Reputation Model

Reputation value is a way to express the credibility of nodes. At the same time,
reputation value affects the discourse power of consensus nodes. With a higher reputation,
the more say nodes will have, and the greater the probability of obtaining the right to
participate in block generation. The process of node participation in representative node
selection or block generation is collectively referred to as consensus. The node reputation
value comes from the performance of the historical consensus participation process and
reflects the current status of the node as much as possible, that is, the more recent the
consensus performance is, the greater the impact on the current reputation value [17]. In
order to prevent the node reputation value from being too high and causing centralization,
and to reflect the fluctuation of the node reputation value as much as possible, set the
maximum credit value max of this node and obtain the i credit value Ri of this node,
as follows:  Ri = min

R0+∑
j
k=1[TSi ·rk

i ·φ(k)]
∑

j
k=1 φ(k),max

, j = 2, 3, · · ·

φ(k) = λi−k
(1)

Among them, R0 represents initial credit, TSi represents the i transaction resource
of a node, j represents i participants in a node, φ(k) represents the decay function, λ
represents any number in (0, 1), and rk

i represents the change value of the reputation value
when the node participates in the k consensus. If the node consensus process correctly
generates blocks or selects the correct node as the representative node, rk

i > 0 will be used.
Reputation value decreases with the order of participating consensus, that is, the weight of
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early consensus on current reputation value is reduced and the weight of recent consensus
is increased. The trustworthiness of R determines the trustworthiness of a consistent node.
The proposed method divides the status ST of the consensus node into the following
four categories according to the threshold value:

Excellent : Ri > α, ST = 3
Good : α ≤ Ri < β, ST = 2
Normal : β ≤ Ri < γ, ST = 1
Error : Ri < γ, ST = 0

(2)

The parameters α, β and γ meet max ≥ α > β > γ ≥ 0. To avoid nodes with low
reputation value participating in consensus, their rights are classified according to their
credit status. For each new node added to the network, the initial state is the lowest value
of Normal, namely R0 = β. Among the typical nodes, typical nodes can be selected only
when they are Normal or above that level. Only nodes with a Good and above status can
be selected as representative nodes. Consensus nodes can be divided into two categories:
representative and alternative. Only nodes with an Excellent status can be selected as
representative nodes. For nodes with an Error status, the system will clear them.

2.1.2. RPoS Consensus Algorithm

In RPoS, select the representative node according to the credit degree of the node.
Nodes with higher credit are easier to select. Firstly, the N node with the largest voting
credit is selected as the representative node. If a node is found to generate malicious
blocks or act with low enthusiasm, the node will lose its reputation and representative
node identity. The RPoS consensus process in a cycle includes three modules: select a
certain number of representative nodes based on the credit value; remove malicious nodes;
represent node scheduling and block generation. In RPoS, there are two main types of
nodes: common node and consistent node. The consensus node is divided into a candidate
node and a representative node, and the common node mainly executes transactions. The
subnet environment composed of consensus nodes is called the consensus network, and
the network environment composed of ordinary nodes is called the transaction subnet. The
nodes in the transaction subnet can participate in the consensus network according to their
wishes on the premise that the node status is Normal.

N represents the set of nodes in the network, k represents the total number of nodes,
Ni represents the ith node, i ∈ [1, k], NC represents the set of consensus nodes, k1 represents
all negotiation nodes, NCi represents i, NT represents transaction nodes, k2 represents the
number of transaction nodes, and NTi represents the i transaction node, so the following
can be obtained: {

N = NC ∪ NT
k = k1 + k2

(3)

Cij represents consensus node i voting on consensus node j; Cij is defined as follows:

Cij =

{
1, Node i votes for node j
0, Node i did not vote for node j

(4)

Rj represents the j reputation value of the node, and STi represents the i status of the
node. The total reputation value SRj of the node j and the number of votes mj of the node j
are as follows: {

SRj = ∑k1
i=1

(
Ri · Cij · STi

)
+ Rj

mj = ∑k1
i=1 Cij

(5)

Representative node selection requires selecting the top N of the total reputation
ranking under the premise of mj ≥ k1/2 + 1. When a node participates in the selection or
consensus process of representative nodes, its reputation value will change accordingly.
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The change in reputation value rk
i is related to the current status, enthusiasm, and malicious

degree of the node, as shown below:

rk
i = STi · e∆t · η(k) (6)

In the formula, ∆t represents the interval between the last two times node i participated
in the representative node selection or consensus process. When node i is positive, ∆t
is negative, and vice versa. η(k) is the fluctuation amplitude, which is related to the
number of consecutive positive performances of the node. When the node is positive,
η(k) is positive, and vice versa. The fluctuation amplitude in the consensus process is
greater than the absolute value of the fluctuation amplitude in the process of selecting the
representative node.

2.2. Dynamic Byzantine Consensus Algorithm Based on PBFT-RPoS

Although PBFT has Byzantine Fault Tolerance, high efficiency, and low power con-
sumption [18–20], it also has shortcomings such as malicious nodes that cannot be elimi-
nated in time and C/S response mode; since the number of nodes in the network cannot
be dynamically sensed, the efficiency of consistency will decline when the number of
nodes increases. To solve these problems, the PBFT consistency protocol and master node
scheduling are optimized based on RPoS, and a dynamic Byzantine consensus algorithm
(DPBFT) is proposed.

2.2.1. PBFT Consensus Algorithm

PBFT is a state machine replication algorithm, which can ensure system security and
activity when the number of failed nodes is less than or equal to f = (n− 1)/3, where
n represents the total number of nodes in the network. The PBFT algorithm divides the
network into main nodes and other nodes. The basic process is as follows:

1. The client sends the business request to the master node.
2. The main node transfers the requirements to another node, while the other nodes

handle them uniformly.
3. After processing the request, other nodes return a message to the client.
4. When the client receives the same information from f + 1 nodes, the request is executed.

The consensus of PBFT consists of three steps: preliminary preparation, preparation,
and confirmation. The algorithm consensus process is implemented in the view. There
is a primary node in the node, and other nodes are backup nodes. Figure 1a shows the
consensus operation process of the PBFT consensus algorithm in a distributed network
with four nodes and one malicious node. The specific steps are as follows:

1. Request stage: a requester sends a request to the master node, and the request infor-
mation is m;

2. Pre-preparation stage: the host sorts the requests received by the client, and then
broadcasts the pre-preparation message ⟨⟨PRE− PREPARE, View, n, D(m)⟩, m⟩ to
each backup node, where m is the request message sent by the client, and D(m) is the
summary of the request message m;

3. Preparation stage: When the copy node receives the pre-prepared information, it
checks the validity of the message according to D(m), View, and n. If it is confirmed
to be true, it sends the preparation message ⟨PREPARE, View, n, D(m), i⟩ to other
nodes; i is the replica node number and receives preparatory information from other
replica nodes. If the number of received preparation messages reaches 2 f + 1, the
node enters the preparation state;

4. Confirmation phase: the replica node broadcasts the confirmation message
⟨COMMIT, View, n, D(m), i⟩, notifies other nodes that they are ready, and receives
the confirmation message from other replica nodes. When the number of confirmation
messages received reaches 2 f + 1, the request is completed;
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5. Feedback stage: all backup nodes send feedback to the client, and the client will
receive the same f + 1 results from different nodes as the final result.
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2.2.2. Improvement of Consistency Protocol

The PBFT algorithm uses a three-segment protocol to ensure that each replica node has
the same execution order. The three-segment protocol includes one single-node broadcast
and two all-node network broadcasts [21]. The number of consensus messages transmitted
is Z1 = 2n2 − n, and n is the total number of nodes in the entire network.

The complete consistency protocol has two communication processes with O
(
n2)

complexity. Moreover, PBFT is a state machine replica replication algorithm. The master
node needs to collect and sort the requests and then distribute them to the replica nodes. In
essence, it is a C/S response mode, which is not suitable for P2P environments [22].

The consensus node is elected by reputation authorization voting, and RPoS can
eliminate malicious nodes according to node reputation; therefore, the consensus nodes
can be regarded as trusted.

Therefore, a consistency protocol with less time complexity is proposed, as shown in
Figure 1b. The specific steps are as follows:

1. Request phase: the requester broadcasts and sends request messages. All nodes sort
the request messages in chronological order and verify the validity of the messages;

2. Preparation stage: each replica node compares the information of the master node
with the information collected by itself, and broadcasts the verification information if
it passes the verification;

3. Confirmation phase: when each node receives the correct verification message from
no less than 2 f nodes, the request is completed.

When implementing the simplified protocol in a network with n nodes, the number
of times for consensus message propagation is Z2 = n2 + n, and the number of times
for consensus message propagation reduction is ∆Z = Z1 − Z2 = n2 − 2n. Compared
with that before simplification, the simplified consistency protocol has changed from three
segments to two segments, reducing O

(
n2) in number. In the case of a large number of

consensus nodes, the bandwidth requirements of the network can be greatly reduced, and
the consistency between nodes can be greatly improved.

2.2.3. Dynamic Byzantine Consensus Algorithm

The dynamic Byzantine consensus algorithm combines the consensus algorithm of
reputation authorization proof on the basis of PBFT to establish the node reputation model.
The consensus process includes the following three aspects: consensus node selection,
master node scheduling, and consensus protocol. On this basis, the earliest N node is
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selected for negotiation through authorization voting on the node credit value. Through
the shuffling algorithm and node status, the master node can rotate within a week, and the
consistency protocol is used to achieve data consistency in the distributed network.

The shuffling algorithm is used to disrupt the order of the selected N consensus nodes
and then schedule the master node [23]. DPBFT adopts the scheduling mechanism of the
master node to ensure the security and dynamic performance of the distributed system.
PBFT selects the next master node by rotation to predict in advance that the next master
node may bring risks. Therefore, the proposed method proposes to select the node with
the most continuous positive behaviors as the master node. The more times a node has
continuous positive behaviors, the more likely it is to select it as the primary node. The
possibility of selecting this node as the main node Pi is as follows:

Pi =
mi · STi

∑k
j=1(mi · STi)

(7)

where mi represents the number of consecutive positive behaviors. In multiple nodes, when
the probability value and the probability of ST = 3 are the maximum, the random number
is used to determine the master node RN.

RN = (n⊕ Timestamp)modN (8)

where n represents the number of nodes in the current network, and N represents the
number of scheduling times. After the master node schedules N/2 times, the existing
consensus node is cleared, and the new consensus node is authorized based on credit.

Node consensus is mainly the process of building the data consistency of distributed
network nodes. In the request phase, all consensus nodes sort the transaction requests in
chronological order, simplifying the original three-segment PBFT protocol into a
two-segment protocol and reducing the time and bandwidth consumption caused by
the consensus process [24].

Through the above digital mutual trust mechanism, we can quickly generate blocks
and build blockchains, using the secure mutual trust blockchain as the basis for subsequent
global privacy protection. In addition, the password algorithm and privacy are protected
in the blockchain.

3. Methodology

Through a detailed examination, we aim to elucidate the intricate steps and innovative
approaches proposed by the authors to address the pressing challenges surrounding privacy
in blockchain systems. From an exploration of existing limitations to the introduction of
novel techniques such as the digital mutual trust mechanism and dynamic Byzantine
consensus algorithm, each facet of the proposed methodology will be scrutinized.

The method begins by discussing the intrinsic transparency of blockchain as imple-
mented in systems. This transparency, while ensuring data integrity and preventing fraud,
simultaneously compromises user privacy by making all transactions visible on the public
ledger. The need for enhanced privacy mechanisms is clear, especially in compliance with
financial confidentiality norms and regulatory standards. It identifies the limitations of
current privacy-enhancing techniques in blockchain systems. These include the inadequate
concealment of transaction details, account balances, and participant identities, which do
not satisfy the strict privacy requirements of many potential blockchain applications.

To address these challenges, this paper proposes a novel digital mutual trust mech-
anism. This mechanism integrates an authorization system derived from a reputation
model, where nodes in the blockchain are evaluated and authorized based on their his-
torical behavior and contributions to the network integrity. The reputation model assigns
a quantitative value to each node’s trustworthiness, influencing its role and weight in
the consensus process. Nodes with higher reputation scores have a greater influence in
decision-making processes, such as transaction validation and block creation. The core of
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the proposed method is the development of a new dynamic Byzantine consensus algorithm
that incorporates the reputation-based authorization within the Practical Byzantine Fault
Tolerance (PBFT) framework. This enhancement allows for more dynamic and efficient
handling of node failures and malicious activities, thus improving overall system resilience.

To ensure that the privacy of data is maintained even during processing, this paper re-
fines homomorphic encryption techniques using the approximate greatest common divisor
(GCD) method. This advancement allows the blockchain to perform encrypted calculations
without decrypting, maintaining confidentiality while enabling useful computations like
balance checks and transaction validations. The integration of smart contracts is another
pivotal aspect of the proposed architecture. These contracts automatically execute transac-
tions according to predefined rules and conditions encoded in the blockchain, facilitating
seamless and private transfers of value without human intervention. The practical im-
plementation of these concepts results in a privacy-focused blockchain framework. This
framework encrypts all transaction details and only reveals information necessary for the
validation process, thus maintaining a high level of confidentiality.

The effectiveness of the proposed system is validated through rigorous experiments.
These experiments demonstrate the capability of the privacy protection algorithm to han-
dle inter- and intra-chain transactions efficiently while maintaining the privacy of the
transaction details against various threat models. Specific attention is given to privacy
protection across different blockchain partitions. The system ensures that data integrity
and privacy are maintained even when transactions cross the boundaries of these parti-
tions, which is critical for applications involving multiple blockchain networks. Within
a single blockchain or partition, the system prevents unauthorized access to transaction
data, ensuring that only participants who are directly involved in a transaction have access
to their details. This granular level of control is crucial for maintaining confidentiality in
sensitive business environments.

4. Blockchain Global Privacy Protection Algorithm
4.1. Homomorphic Encryption Technology

In homomorphic cryptography, the homomorphic cryptographic algorithm is rep-
resented as HE = (keyGen, Enc, Dec, Eval) [23], where HE.keyGen

(
1λ

)
represents a key

generation algorithm, inputs security indicators λ, and outputs the public key pk, key sk,
and bootstrap public key evk, namely (pk, sk, evk)← keyGen

(
1λ

)
; HE.Enc(pk, m) repre-

sents the encryption algorithm. Input pk and plaintext m, and output ciphertext c, i.e.,
c← Enc(pk, m) ; HE.Dec(sk, c) represents the decryption algorithm. sk and c are input
and output, that is, m∗. m∗ ← Dec(sk, c) ; HE.Eval(evk, f , c) represents the evaluation
algorithm. Enter pk, function f and l ciphertext c = (c0, c1, · · · , cl−1). i ciphertext ci corre-
sponds to i plaintext mi, and the output fresh ciphertext c∗, namely c∗ ← Eval(evk, f , c) ,
Dec(sk, c∗) = f (m), f ∈ ↕, ↕, represents the operation circuit in the plaintext space. f
meeting the above conditions belongs to the permitted function, that is, the operation
function f can correctly perform homomorphic operations. If any function f can meet the
conditions, the scheme is called an all-homomorphic encryption scheme [24].

In the traditional integer homomorphic encryption algorithm DGHV, the symmetric
encryption scheme of the partially homomorphic encryption scheme is c← m + 2r + pq ,
where r is a small integer randomly generated in the encryption process, p is the key, and
q is a large integer generated in the key generation phase, m ∈ {0, 1}. The decryption
algorithm is (cmodp)mod2← Lsb(c)× or⌈c/p⌋ , where Lsb is the least significant bit [25]
and ⌈·⌋ is rounded. Due to the interference of r, this encryption scheme cannot correctly
identify the value of plaintext m, so m + 2r is called noise. When the noise value is greater
than p/2, it cannot be decrypted correctly. Therefore, m + 2r < p/2 must be guaranteed
before decryption.

The parameter a is introduced to define amodp = a− ⌈a/p⌋ × p. In the decryption
algorithm of the above scheme, the range of cmodp is (−p/2, p/2]. When the value of
cmodp is greater than p/2, it cannot be decrypted correctly. In the process of homomorphic
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operation, the noise will increase with the operation, resulting in the ciphertext obtained
after the operation not being decrypted correctly. Therefore, we need to encrypt again to
update the ciphertext [26].

If the function f in the HE.Eval(·) algorithm can be executed correctly, HE.Eval(·)
belongs to permitted function, namely HE.Eval(evk, f , c). The result decrypted after the f
operation is exactly the result of the f corresponding plaintext operation. If the decryption
algorithm belongs to the permitted function, it can perform decryption in the Eval algo-
rithm, that is, HE.Eval(pk2, Dec, sk′1, c′). The specific process of re-encryption is as follows:
The sk′1 is obtained by encrypting the private key sk1 of the first layer with the public
key pk2 of the second layer. Use pk2 to encrypt ciphertext c to obtain c′ and decrypt sk′1
and c′; the result c∗ is equivalent to that of plaintext m encrypted by pk2, and c∗ is a fresh
ciphertext, which can definitely be decrypted correctly. The whole process is equivalent to
refreshing ciphertext c to ciphertext c∗. However, the homomorphic encryption algorithm
above can only encrypt one bit of plaintext at a time, so the proposed method improves the
scheme and proposes a scheme that can encrypt n bits of plaintext at one time. First, in the
key generation phase, a key p and large integer q are generated according to the security
parameter λ. The encryption algorithm is c← m + 2nr + pq , where n is the number of
bits encrypted at one time, and p and q are generated in the key generation phase. In
the process of encrypting plaintext, the n value is determined according to the specific
plaintext, and the n value is the same. In order to ensure the correctness of decryption,
ensure m + 2nr < p/2. The decryption algorithm is m← (cmodp)mod2n .

However, in the above solutions, if pq is used as the public key, you can easily find the
private key p. Therefore, the proposed method introduces the biggest convention problem
to the above encryption algorithm [27], that is, adding some ciphertext {xi; xi = 2nri + pqi}
encrypted with plaintext as 0, using the set as the public key, and adding the sum of some
subsets of the set randomly to the encryption algorithm during encryption to ensure the
security of the scheme. Since the added ciphertext is 0, it has no effect on decryption.

The approximate maximum common divisor problem is still a mathematical problem
that cannot be solved at present, and any attack on this scheme can be converted into a
solution to the maximum approximate common divisor problem, so it is determined that
this scheme is safe. Combined with the encryption scheme of shortening the size of the
public key, the approximate GCD problem is introduced and the encryption algorithm is
improved as follows:

c← m + 2nr + 2n ∑
1≤i,j≤

√
τ

bi,jxi,0xj,1 (9)

In the formula, p ∈
[
2η−1, 2η

]
determines b ∈ {0, 1}, xi,b = pqi,b + ri,b, i ∈

[
1,
√

τ
]
,

η and τ as the adjustment parameters in the key generation phase, the public key is
pk =

(
x0, x1,0, x1,1, · · · , x√τ,0, x√τ,1

)
, and the number of public keys is 2

√
τ. In the key

generation phase, a random vector b =
(
bij

)
, bij ∈ {0, 1} is generated. In this scheme, the

public key size is reduced to 2
√

τ. The decryption algorithm is as follows:

(cmodp)mod2n (10)

Therefore, a secure homomorphic encryption scheme is obtained and used in the
subsequent blockchain global privacy protection.

4.2. Homomorphic Encryption Global Privacy Protection Algorithm

The scheme adopts a homomorphic encryption algorithm to encrypt transactions
and accounts in the blockchain, and the account balance is stored in the blockchain as a
password file. Using E(v1), E(v2), · · · , E(vt) to represent t ciphertext with a balance of
v1, v2, · · · , vt, miners can effectively calculate the ciphertext of f (v1, v2, · · · , vt) [28]. The
proposed method builds a global privacy protection blockchain based on smart contracts;
the system can not only cover up the input, output, and transaction details of the traditional
blockchain trading system but also enable the smart contract running on the blockchain to
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process the plaintext information, expand the blockchain application scenario, and truly
achieve global privacy protection [29].

4.2.1. Privacy Blockchain

The private blockchain transaction information is encrypted into ciphertext using the
homomorphic encryption algorithm, and the transaction ciphertext information is stored in
the data block. Each transaction content includes the address of the transaction initiator
and the address of the transaction receiver; the transaction initiator encrypts the account
balance with its own public key, and the transaction amount needs to be encrypted with the
public key of the transaction receiver, the non-interactive zero-knowledge certification π
that proves the transaction is reasonable, the number of transfer currencies specified under
the ciphertext state, and the transaction-related substrings. Among them, π includes the
non-interactive zero-knowledge proof π1 provided by the fully homomorphic encryption
blockchain equivalent transaction protocol and the minimum necessary zero-knowledge
proof π2 provided by the fully homomorphic encryption blockchain transaction protocol.

The data block structure of the transaction data privacy protection blockchain is similar
to Ethereum [30]; the block consists of three parts: block, uncle block, and transaction list.
The block contains all the hash values of the previous block [31], the hash values of all
the blocks in the block, the hash of all the transaction lists in this block, the hash of all
the transaction receipt lists in this block, the difficulty level of this block, the block serial
number, the timestamp created in this block, the random number, etc. Tertiary blocks are
isolated blocks. Since the transaction data privacy protection blockchain may produce
multiple legal blocks at the same time, in order to ensure security, competitive blocks
are allowed to hang on the main chain, and isolated blocks can be up to 6 heights. The
transaction list stores all transactions in this block. The private blockchain uses smart
contracts to create transactions as follows:

1. Transaction originator A sends a request to establish a smart contract. When initiating
a transaction request, the transaction ciphertext information and π are jointly pub-
lished in the private blockchain network, and the private blockchain then creates a
smart contract transaction request;

2. Node V on the network, i.e., user V, synchronizes the transaction and verifies whether
the transaction is valid according to the π provided by transaction initiator A. User V
places the verified transaction request into the transaction storage pool and forwards
it to other nodes. Other nodes receiving the transaction request repeat the process of
user V;

3. The miner packs this transaction and other transactions into the block and runs the
called contract code on the local EVM until the end of the code operation;

4. User V sends the block containing the transaction request of transaction initiator A to
the peer node and spreads it throughout the network;

5. The consensus node verifies the rationality of all transactions in the block after receiv-
ing the block. If the block passes the verification, the node will delete the request of
original transaction initiator A to create a smart contract transaction in the memory
pool, synchronize the private blockchain, and deploy the smart contract in their local
private blockchain.

4.2.2. Smart Contracts on the Privacy Blockchain

In the process of a Bitcoin transaction, the transaction initiator must indicate in signed
words that it is a legitimate user of UTXO and use the output script to specify the transaction
receiver. At the start of each transaction, a signature for authentication needs to be generated
using the private key, and for each transaction, the total input cannot be less than the total
output. Ethereum transactions are similar to Bitcoin. Ethereum uses an account/balance
model, and the status can be stored in the account in real time. This account model greatly
facilitates smart contracts.
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A smart contract is a piece of code stored in each node participating in the blockchain
network, which can be regarded as an electronic version of a traditional contract. Suppose
that in a payment system with an account architecture, transaction initiator A wants to
transfer t coins to transaction receiver B, and transfer operations and some necessary checks
can be deployed in the blockchain. Transaction initiator A can publish the transaction as
follows: “Transfer t coins of A to user B, and σ is a signature of t”. A smart contract is
activated through transaction information to verify the correctness of a signature. If A
has more than t coins, it will transfer money and publish transaction information on the
blockchain. Otherwise, the transaction will be ignored.

In the above simple transaction, anyone can learn that t coins are transferred from user
A to user B. Therefore, based on the traditional blockchain transaction model, the proposed
method solves this problem by encrypting transaction information with homomorphic
encryption. This paper proposes a FHE.Enc(·)-based homomorphic password algorithm,
which saves the balance of each user account as a password file to a blockchain account
book. Transaction initiator A can publish the transaction as follows: “Transfer FHE.Enc(t)
coins of A to user B”. The transaction information is a zero-knowledge proof π without
interaction, which can prove that FHE.Enc(t) is correct and the balance on the account
is more than t. Other nodes on the blockchain verify the transaction information. If the
confirmation is correct, a confirmed transaction will be published. On a blockchain, an
intelligent contract will be automatically transferred. The smart contract updates the
account balance password of transaction initiator A and the account balance of transaction
initiator B according to the execution results. After a period of time, the protocol will be
added to the blockchain together with the new blockchain. If not, the transaction will be
ignored by the verification node.

4.2.3. Build a Blockchain Scheme to Protect Transaction Data Privacy

In the account mode, the transaction information in the blockchain is encrypted
using a homomorphic encryption algorithm, and only the balance of the account is saved
in the blockchain as a password file. When a transaction initiator passes a transaction
message through a blockchain, it needs to provide a zero-knowledge proof π that proves
the transaction is reasonable. Other verification nodes on the blockchain calculate according
to the π verification. If the transaction information is confirmed, the smart contract will
be executed correctly on the blockchain. The smart contract will update the password of
the account according to the execution result; otherwise, it will be ignored. The specific
implementation process of the global privacy protection blockchain is as follows:

1. Setup phase

The public parameters of the data privacy protection scheme are generated in the
setting phase. In this stage, the security parameters of the homomorphic encryption scheme
and the computing circuit depth that the homomorphic encryption can handle are used
as inputs to generate the public parameter params of homomorphic encryption without
bootstrap conversion.

2. User initialization phase

In the initialization phase, the user information is generated by the homomorphic
encryption algorithm. To simplify the algorithm, users only consider transaction initiator
A, transaction receiver B, and other third-party verification nodes V in the global privacy
protection blockchain. The input in this stage is params; the user’s public key, private key,
and password information are then generated. You can use the public key of the consumer
as the transaction collection address, and the private key can generate a digital signature σ.

Because the transaction is composed of the transaction originator and the transaction
receiver, in this process, the data security mechanism must generate the public key and
private key, respectively. When transaction initiator A initiates a transaction, user A’s
public key pkA, private key skA, and account balance tA’s ciphertext CA,tA need to be
generated at this stage, including CA,tA = FHE.Enc(pkA, tA). Only the ciphertext CA,tA
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of transaction initiator A is stored on the blockchain ledger. In the transfer transaction
stage, it is necessary to generate a non-interactive zero-knowledge proof π1 to prove that
the transaction amount is equal and a non-interactive zero-knowledge proof π2 to prove
that the transaction account amount is sufficient. Therefore, in the initialization phase, A
needs to encrypt tA, t and tA−t with its own public key to generate ciphertext CA,tA , CA,t
and CA,tA−t, and A needs to encrypt transaction amount t with B’s public key to generate
ciphertext CB,t.

3. Transfer transaction stage

When a transaction is involved, the account balance of transaction initiator A is tA, and
the t amount needs to be transferred to transaction receiver B. In the transfer transaction
stage, according to the homomorphic encryption blockchain transaction protocol, trans-
action initiator A first generates a π1, proving that the tA input is the transaction amount
t, A’s own public key pkA, transaction receiver B’s public key pkB, ciphertext CA,t, and
ciphertext CB,t. When the hash length is k = 64, the success probability of fraud verification
node V of transaction initiator A generating π1 is 2-64, that is, the security strength of π1
reaches 264.

To verify the reasonableness of the above transactions, it is also necessary for transac-
tion initiator A to generate a π2. The input of π2 is the pre-transaction A account balance
tA, transaction amount t, A’s own public key pkA, transaction receiver B’s public key pkB,
and A’s own public key encryption tA, t, tA−t to generate ciphertext CA,tA , CA,t, CA,tA−t
and public parameter D (large enough). In the case of k = 64, the probability of the success
of transaction initiator A generating π2 and cheating verification node V is also 2-64, that
is, the security strength of π2 also reaches 264.

In the transfer transaction stage, transaction initiator A transfers t amount to transac-
tion receiver B. In this stage, A takes the public parameters params, t, tA, pkA, CA,tA , π1, π2,
pkB and the ciphertext CA,tA−t of A’s account balance minus the transaction amount tA − t
as input and generates the transfer statement x =

(
CA,t, CB,t, pkA, pkB, CA,tA , CA,tA−t

)
and

the non-interactive zero-knowledge proof π = (π1, π2). When A publishes transaction infor-
mation in the private blockchain, it needs to send x and π to the private blockchain network.

4. Operation phase

Verification node V only needs to verify whether the π provided by transaction initiator
A can prove that the transaction is reasonable, that is, it can prove that the transaction
amount of transaction initiator A’s account decreases, the corresponding transaction amount
of transaction receiver B’s account needs to be increased, and before trading, trader A’s
account balance tA is more than the trading volume t. In this stage, params, x, and π are
inputs. If the confirmation is correct, there will be an authenticated transaction, which will
trigger a smart contract on a blockchain for automatic transfer. The smart contract updates
the account balance ciphertext of transaction initiator A to C′A,tA = CA,tA − CA,t and the
account balance ciphertext of transaction receiver B to C′B,tA = CB,tA − CB,t according to
the execution result. Otherwise, ignore this transaction. After a period of time, the verified
transactions will be confirmed, that is, they will join the blockchain together with the
new block. In general, the verification process is carried out on a blockchain. Transaction
confirmation can trigger the automatic transfer of smart contracts on the chain.

When a transaction involves a change operation, for example, transaction initiator A
transfers t amount to transaction receiver B, in fact, A only needs to transfer t1 amount, that
is, transaction receiver B needs to change t− t1 amount to A. A uses the public key of trans-
action receiver B to encrypt t as CB,t = FHE.Enc(pkB, t), and the actual transfer amount t1
of encrypted transaction is CB,t1 = FHE.Enc(pkB, t1). Based on the global privacy protec-
tion scheme of homomorphic encryption, other verification nodes V on the blockchain can
verify whether the transaction receiver B has completed the zeroing operation.
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5. Experiments and Results

The objective of these experiments was to validate the efficacy of the proposed
blockchain global privacy protection algorithm based on a digital mutual trust mech-
anism. The experiments compared the proposed method against two established methods
referenced in the literature (hereafter referred to as Method [4] and Method [5]) to evaluate
their capabilities in ensuring privacy within and between blockchain networks.

5.1. Experiments Setup

To validate the effectiveness of the proposed blockchain global privacy protection
algorithm, a detailed experimental setup was meticulously configured using six high-
performance computers as nodes, each equipped with an Intel Core i7 processor, 16 GB
RAM, and 512 GB SSD, operating under Linux Ubuntu 20.04. These nodes were intercon-
nected using a gigabit switch within a closed-network environment, and segmented into
three logical partitions (global, ns1, and ns2) to facilitate distinct inter- and intra-partition
tests. Custom-developed blockchain simulation software, based on the Hyperledger Fabric
framework, was modified to incorporate the proposed digital mutual trust mechanism
and simulate the reference Methods [4,5]. The standard cryptographic protocols were
implemented across all communications within the blockchain network, including the use
of TLS/SSL for data transmission security.

5.2. Detection of Inter-Blockchain Privacy Protection Capability
5.2.1. Experimental Scenarios and Methodology

Two primary scenarios were tested to assess the integrity and performance of
privacy protection:

Scenario 1: Inter-Blockchain Privacy Protection
Objective: Evaluate how effectively each method protects data privacy across different

blockchain partitions.
Process:
Transactions are simulated from the client to various nodes.
Tests are performed to delete and immediately query the partition database of a legal

node, testing resilience to data tampering.
Scenario 2: Intra-Blockchain Privacy Protection
Objective: Test the response of the system when dealing with private transactions

within the same blockchain partition.
Process:
Simulated private transactions aimed at testing the system’s capacity to safeguard

transaction confidentiality and data integrity against unauthorized access.
Each scenario was executed 200 times to ensure statistical relevance, and the results

were logged for comparative analysis.
The internal data of the partition are maintained by the partition participants. Any

malicious node’s damage to the data cannot cause damage to the entire partition data. The
experiment simulates the data destruction by malicious nodes by deleting the correspond-
ing partitioned database. The specific detection steps are as follows: When the network
connection between all nodes is Normal and the connection between the client and all
nodes is Normal, the client sends different simulated partition transactions to different
nodes, and then simulates the transaction request of the illegal partition. Delete the parti-
tion database of a legal node, query the partition data immediately, wait for the node data
synchronization to complete, and then query the partition data of the node.

The detection results of inter-blockchain privacy protection by different methods are
shown in Table 1.

As demonstrated in Table 1, across 200 experiments, all three methods—the proposed
method, as well as reference Methods [4,5]—met the expectations for ensuring the integrity
and correctness of privacy data across blockchain chains. Specifically, each method suc-
cessfully processed and acknowledged all transaction requests sent to Nodes 1 through
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4, which are part of the ns1 partition, achieving a perfect success rate of 200/200. Con-
versely, transactions directed towards Nodes 5 and 6, which lie outside the ns1 partition,
were appropriately rejected, as evidenced by the 0/0 success rates for these nodes. This
outcome validates the robust partitioning logic inherent in our privacy protection algo-
rithms, effectively safeguarding data integrity and enforcing access controls across different
blockchain segments.

Table 1. Detection results of privacy protection correctness between blockchain chains by differ-
ent methods.

The Reference
Method and

Scenario

Number of Test
Groups

Tested Result
Nodes 1 to 4
Successful

Sent/Receipt

Nodes 5
Successful

Sent/Receipt

Nodes 6
Successful

Sent/Receipt

[4]—1 200 200/200 0/0 0/0
[4]—2 200 200/200 - -
[5]—1 200 200/200 0/0 0/0
[5]—2 200 200/200 - -

Furthermore, Scenario 2 probes the resilience of our system against threats to data
integrity, particularly in situations where a node’s database within the ns1 partition is
deliberately compromised. The immediate failure of the receipt query following the
database deletion, succeeded by a successful query after system recovery, highlights the
system’s robust capability to restore and synchronize data among partition participants.
This mechanism ensures that the integrity and availability of partitioned data are preserved,
even amid malicious attempts to disrupt network operations.

Table 1 concisely encapsulates these findings, illustrating a consistent 200/200 success
rate for initial transmissions to nodes within the ns1 partition, complemented by effective
recovery and data synchronization that affirm the efficacy of our proposed mechanisms.

5.2.2. Performance

In order to further verify the inter-blockchain privacy protection capabilities of the
three methods, the single-node performance of the three methods is tested. First, four
servers are selected to deploy blockchain nodes, and each node deploys 1~10 blockchain
platforms, simulating the scenario where four institutions participate in 1~10 businesses at
the same time, and a test machine simulates sending 1~10 business transaction requests to
blockchain nodes. The experiment is divided into 10 groups. In each group of experiments,
the client’s pressure requests are equally distributed to each partition. Then, select the same
four servers to deploy blockchain nodes that add the feature of partition consensus. Each
node participates in 1~10 partitions, respectively. Simulate the scenario where four insti-
tutions participate in 1~10 businesses at the same time. The same test machine simulates
sending 1~10 partition transaction requests to blockchain nodes. The experiment is also
divided into 10 groups. In each group of experiments, the client’s pressure requests are
equally distributed to each partition. The total performance value of single-node processing
is compared, as shown in Table 2.

Table 2. Single-node performance test results.

Method
Single-Node Processing Total Performance Value

1 2 3 4 5 6 7 8 9 10

The proposed method 6005 5588 5861 5752 5703 5626 5606 5218 5019 4830
The reference [4]

method 7016 6875 6758 6712 6689 6401 6270 5891 5559 5344

The reference [5]
method 6259 6986 6972 6815 6635 6356 6014 5509 5428 5250
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As shown in Table 2, no matter how large the partition involved in a node is, compared
with Method [4] and Method [5], the method of the invention has the overall processing
efficiency value of a single node, which can greatly reduce network resource consumption,
that is, the proposed method can bring considerable performance improvement while
ensuring correctness and integrity.

5.3. Detection of Privacy Protection Capability in the Blockchain
5.3.1. Experimental Scenarios and Methodology

The objective of these experiments was to evaluate the privacy protection efficacy
of the proposed blockchain method in comparison with reference Methods [4,5]. Specif-
ically, the experiments were designed to test the robustness of privacy controls in sce-
narios involving private transactions within a simulated blockchain environment. Each
experiment was designed to test data integrity and privacy enforcement across different
blockchain partitions.

Three distinct scenarios were executed to assess the correctness of privacy protection
mechanisms under various conditions:

Scenario 1: A private transaction request was sent to Node 1, with hash values
collected from Nodes 2 and 3. The expected result was that the privacy transaction request
would fail, demonstrating effective access control.

Scenario 2: A private transaction request was sent to Node 1, with hash values
collected again from Nodes 2 and 3. Subsequently, the privacy transaction receipt was
queried from Nodes 4, 5, and 6. The expected result was that the transaction request would
succeed, but the receipt query would fail, indicating restricted data access.

Scenario 3: A private transaction request was sent to Node 1, with hash values
collected from Nodes 1 and 2. After deleting the partitioned ledger database of Node 1, an
immediate query for the receipt of the private transaction was made, followed by a second
query after some time. The expected result was that the initial query would fail but the
subsequent query would succeed, testing the resilience and recovery capabilities of the
blockchain system.

The correctness detection results of privacy protection in the blockchain chain of
different methods are shown in Table 3.

Table 3. Detection results of privacy protection correctness in blockchain chain by different methods.

No Number of
Test Groups

Meet the Expected Number of Groups

The Proposed
Method

The Reference [4]
Method

The Reference [5]
Method

1 200 200 200 200
2 200 200 148 153
3 200 200 162 141

The results (Table 3) indicate that in all 200 tests, the proposed method consistently
met the expected outcomes, demonstrating superior performance in maintaining trans-
action privacy compared to the reference methods. Specifically, the proposed method
successfully restricted unauthorized access and maintained data integrity after simulated
data tampering, highlighting its robustness against privacy breaches. In contrast, reference
Methods [4,5] showed lesser efficacy, particularly in scenarios requiring fine-grained control
over transaction privacy.

5.3.2. Performance

In blockchain systems, privacy protection algorithms primarily address users’ needs
for the confidentiality of personal information, with a significant focus on the latency associ-
ated with processing private transactions. This experiment was conducted using a network
of six nodes configured to simulate various user scenarios to evaluate the performance
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of our proposed privacy protection algorithm compared to reference Methods [4,5]. The
results are shown in Figures 2 and 3:
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and wait for other privacy participants’ node signature verification, local persistence, and
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return of a confirmation message, so the delay shows an upward trend; however, the delay
of the method of the invention is always shorter than that of the methods referred to in
references [4,5], its stability is 5 ms, and the overall delay time is acceptable to users.

As can be seen from Figure 4, as the number of participants increases, the receiving
node needs to request the receipt information from other participant nodes, in addition to
querying the local database itself, and wait for the local query and return of query results
from other privacy participant nodes. Therefore, the delay gradually increases. However,
in the whole process of the experiment, the delay of the method is always shorter than that
of Method [4] and Method [5], both of which are 2.5 milliseconds, which can meet users’
requirements for privacy.
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The experimental results underscore the superior performance of the proposed method,
which integrates a homomorphic encryption blockchain privacy protection algorithm based
on smart contracts. This integration not only secures the input, output, and transaction
details but also enhances the overall security framework of the blockchain. While reference
Methods [4,5] effectively protect data privacy during transmission and ensure data accuracy
and integrity, our proposed method excels in reducing operational delays and enhancing
transaction efficiency. This capability makes it particularly suitable for applications where
timely data processing is crucial, such as in financial transactions or sensitive data exchanges
in healthcare systems.

6. Discussion
6.1. Efficiency Considerations in Homomorphic Encryption

The proposed utilization of homomorphic encryption in this study prompts a thorough
examination of its efficiency, particularly concerning computation time and calculation
operations. Homomorphic operations are categorized into three types: partially homo-
morphic addition, partially homomorphic multiplication, and fully homomorphic addition
and multiplication. Analyzing the application of homomorphic algorithms reveals several
critical considerations.

Homomorphic encryption and decryption times are directly proportional to the size
of the dataset, with encryption and decryption times typically increasing linearly with the
quantity of data. Similarly, the duration for partially homomorphic addition is influenced
by both the number of operations and the size of the dataset. Generally, the time for
partially homomorphic addition increases proportionally with the growth in dataset size
and operation count. Additionally, the computational performance of partially homomor-
phic multiplication is linearly related to the quantity of data. As the dataset expands, the
time required for computation also increases. Furthermore, the performance of partially
homomorphic multiplication is non-linearly correlated with the number of operations, with
computation time growing by a factor of N as the number of operations increases.

Fully homomorphic operations impose high demands on performance and may not
be suitable for all scenarios. For real-time tasks with small dataset sizes, it is advisable to
solely consider partially homomorphic addition. Conversely, for non-real-time tasks, it is
preferable to avoid using partially homomorphic multiplication operations and instead opt
for partially homomorphic addition operations to complete homomorphic calculations.
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6.2. Limitations of Nodes in Blockchain Networks

In addition to exploring the efficiency implications of employing homomorphic en-
cryption within blockchain networks, it is imperative to delve into the intricacies of the
nodes operating within these decentralized systems. In the realm of blockchain and cryp-
tography, nodes serve as the fundamental building blocks, each maintaining a copy of the
distributed ledger and participating in transaction validation and consensus mechanisms.
However, these nodes are not without their limitations, which can significantly influence
the overall performance and scalability of the network.

One critical limitation lies in the computational power of individual nodes. The cryp-
tographic operations involved in homomorphic encryption, such as encryption, decryption,
and homomorphic computations, require substantial computational resources. Nodes with
limited computing capabilities may struggle to perform these operations efficiently, leading
to potential bottlenecks in transaction processing and network throughput. Moreover, as
the blockchain network grows in size and complexity, the computational demands placed
on each node increase proportionally, exacerbating these limitations further.

Another factor to consider is the storage capacity of nodes within the blockchain
network. The decentralized nature of the blockchain necessitates that each node stores
a copy of the entire transaction history, known as the blockchain ledger. As the volume
of transactions grows over time, so does the size of the blockchain, placing strain on the
storage capacity of individual nodes. Nodes with insufficient storage may face challenges
in maintaining a complete and up-to-date copy of the blockchain, potentially compromising
the integrity and security of the network.

Furthermore, bandwidth constraints can pose significant challenges for nodes, par-
ticularly in blockchain networks where peer-to-peer communication is prevalent. Nodes
rely on network connectivity to broadcast transactions, propagate blocks, and participate
in consensus protocols. Limited bandwidth can result in delays in transaction propagation,
increased latency in block propagation, and potential forking issues within the network.
Consequently, nodes operating in environments with constrained bandwidths may strug-
gle to keep pace with the demands of the blockchain network, impacting overall network
performance and reliability.

6.3. Key Size and Validation in Encryption and Decryption

Validation against the encryption key is a cornerstone of cryptographic security, partic-
ularly in the context of homomorphic encryption within blockchain systems. This process
is pivotal in verifying that encrypted data remain intact and confidential throughout their
lifecycle. Essentially, it ensures that only authorized parties with access to the decryption
key can decipher the encrypted information accurately. In the realm of blockchain and
cryptography, the integrity of encrypted data is paramount, as any compromise could
undermine the trust and reliability of the entire network.

The key size used in encryption and decryption plays a pivotal role in determining
the robustness of cryptographic security. In cryptographic protocols, such as homomorphic
encryption, the key size directly impacts the complexity of encryption algorithms and
the computational effort required for decryption. Generally, larger key sizes bolster the
security of encrypted data by increasing the complexity of brute-force attacks and other
cryptographic vulnerabilities. However, this enhanced security comes at the cost of height-
ened computational overhead, as larger keys necessitate more extensive computational
resources and longer processing times for encryption and decryption operations. Balanc-
ing security requirements with computational efficiency is a critical consideration when
determining the appropriate key size for encryption and decryption operations within
blockchain networks. While larger key sizes offer greater security assurances, they may
impose significant performance penalties on resource-constrained nodes, hindering the
overall efficiency and scalability of the network. Conversely, smaller key sizes may offer
improved computational efficiency but could compromise the security of encrypted data,
rendering them more susceptible to cryptographic attacks.
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Achieving an optimal balance between security and efficiency requires a nuanced
understanding of the cryptographic algorithms employed, the computational capabilities
of network nodes, and the specific security requirements of the blockchain application.
Moreover, advancements in cryptographic research and algorithmic optimizations play
a crucial role in mitigating the trade-offs between security and efficiency, enabling the
development of more robust and scalable cryptographic solutions tailored to the unique
challenges of blockchain environments.

7. Conclusions

In public blockchain networks, the transparency of transaction data poses significant
privacy risks by enabling the potential tracing of transaction pathways and identification
of users, thus endangering privacy. This highlights the necessity for robust blockchain data
encryption to effectively protect privacy rights. This study introduces a novel blockchain
privacy protection algorithm based on a digital mutual trust mechanism. It enhances
the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm with a reputation
model and authorization mechanism, leading to a dynamic Byzantine consensus algorithm.
This serves as the foundation for our privacy strategy, further strengthened by advancing
homomorphic encryption using the approximate greatest common divisor technique. The
integration of smart contracts enables automated transaction executions, establishing a
comprehensive privacy protection framework. From experimental results, it reduces delay
times for privacy requests by 5.3% compared to traditional methods. This approach ensures
blockchain technology’s secure application, meeting stringent privacy requirements. Our
work contributes to advancing blockchain privacy protection discourse, offering a scalable
and effective solution to a key sector challenge.
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