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Abstract: In this paper, under some suitable assumptions, using the Taylor expansion, Borel–Cantelli
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central limit theorem for error variance estimator in the pth-order nonlinear autoregressive processes
with independent and identical distributed errors was established. Four examples, first-order au-
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1. Introduction

Over the past twenty years, there has been an increasing interest in the nonlinear
time series literature, for example, the monograph by Tong [1] represents a good account
of nonlinear time series models. Compared to linear models, studying the properties of
estimators in nonlinear time series models is technically more complex and difficult. In this
paper, we will investigate the properties of estimators in nonlinear autoregressive processes.

Throughout this paper, we always assume that {εi, i ∈ Z} is a sequence of inde-
pendent and identically distributed random variables with mean zero, finite variance
σ2. {Xi, i ∈ Z} is a sequence of strictly stationary real random variables which satisfies
nonlinear autoregressive processes of order p

Xi = rθ

(
Xi−1, . . . , Xi−p

)
+ εi, (1)

for some θ =
(
θ1, . . . , θq

)′ ∈ Θ ⊂ Rq, where rθ, θ ∈ Θ, is a family of known measurable
functions from Rp → R. Obviously, Xi−1, . . . , Xi−s are independent of {ε j, j ≥ i}.

In recent years, many authors have studied the properties of estimators for the error
sequence. One research interest is the error density estimator, for example, Liebscher [2]
proved the law of logarithm and the law of iterated logarithm of the M-estimator in the
nonlinear autoregressive processes of order p with independent errors. Cheng and Sun [3]
studied the goodness-of-fit test of the errors in the nonlinear autoregressive processes
of order p with independent and identical distributed errors. Fu and Yang [4] obtained
the asymptotic normality of error kernel density estimators in the pth-order nonlinear
autoregressive processes with independent and identical distributed errors. Cheng [5]
obtained the asymptotic distribution of the maximum of a suitably normalized deviation of
the density estimator from the expectation of the kernel error density. Li [6] established the
asymptotic normality of the Lp-norms of error density estimators in the pth-order nonlinear
autoregressive processes with independent and identical distributed errors. Kim et al. [7]
considered the goodness-of-fit test of the errors in the nonlinear autoregressive processes
of order p with a stationary α-mixing error. Cheng [8] considered the uniform strong

Mathematics 2024, 12, 1482. https://doi.org/10.3390/math12101482 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101482
https://doi.org/10.3390/math12101482
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12101482
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101482?type=check_update&version=1


Mathematics 2024, 12, 1482 2 of 16

consistency of the classical Glivenko–Cantelli Theorem for the residual-based empirical
error in the pth-order nonlinear autoregressive processes with independent and identical
distributed errors. Liu and Zhang [9] established the law of the iterated logarithm for error
density estimators in the pth-order nonlinear autoregressive processes with independent
and identical distributed errors.

The other research interest is the error variance estimator. Cheng [10] obtained the
consistency and asymptotic normality of the variance estimator in the pth-order nonlinear
autoregressive processes with independent and identical distributed errors. As we know,
there are few results about the error variance estimators except for Cheng [10], and there
are no results for the almost sure central limit theorem for the error variance estimator,
and therefore, we will study the almost sure central limit theorem for the error variance
estimator in this paper.

The almost sure central limit theorem (ASCLT, for short) has been first introduced
independently by Brosamler [11] and Schatte [12]. Since then many interesting results have
been discovered in this field. The classical ASCLT for a sequence {X, Xn; n ≥ 1} of i.i.d.
random variables with zero means states that when Var(X) = σ2,

lim
n→∞

1
Dn

n

∑
k=1

dk I
{

Sk√
kσ

≤ x
}

= Φ(x) a.s. (2)

for all x ∈ R with the logarithmic averages dk = 1/k and Dn = ∑n
k=1 dk, Sk = ∑k

j=1 Xj.
However, logarithmic averaging is not the only one providing a.s. convergence for par-
tial sums of i.i.d. random variables. Peligrad and Révész [13] showed that (2) holds
with dk = (log k)α/k, α > −1. Berkes and Csáki [14] showed that (2) holds also if
dk = exp{(log k)α}/k, 0 ≤ α < 1/2. To compare these results, Hörmann [15], Tong
et al. [16], Miao [17], Li [18], Zhang [19,20], Wu and Jiang [21], and Li and Zhang [22–24]
showed that the a.s. limit (2) holds for any weight sequence {dk} satisfying a mild growth
condition similar to Kolmogorov’s condition on the law of iterated logarithm.

The paper is organized as follows. In Section 1, the significance and background of
research is introduced. Some assumptions and main results are stated in Section 2. Several
useful lemmas are listed in Section 3. The proofs are listed in Section 4. Examples are stated
in Section 5. In the sequel, we denote with C, C1, C2, · · · generic constants that may be
different in each of its appearances. I{A} denotes the indicator function of the set A. Φ(·)
denotes the distribution function of the standard normal random variable N .

2. Main Results

The goal of this paper is to study the properties of the estimator of the error variance
σ2 by means of the observations {X1, X2, · · · , Xn} in model (1). The main difficulty is
that we do not observe the error {ε1, ε2, · · · , εn}, the structure of estimation of parameters
is complex, and the residuals are unknown. We need to use Taylor’s expansion and
many other techniques to deal with it. This is the greatest contribution of this paper.
We will follow the following steps. Firstly, we compute an estimator θ̂ = (θ̂1, . . . , θ̂q)′ of
unknown parameter θ. Secondly, based on the estimator θ̂ and model (1), we calculate the
following residuals

ε̂i = Xi − rθ̂

(
Xi−1, . . . , Xi−p

)
, i = 1, 2, . . . , n. (3)

Finally, using the above residuals, we estimate the error variance σ2 by using the
following equation

σ̂2
n =

1
n

n

∑
i=1

ε̂2
i . (4)
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Before giving the main results, we need the following basic assumptions for model (1)
which will be used throughout the paper. For 1 ≤ i ≤ n and 1 ≤ j ≤ q, let

Yij ≜
∂

∂θj
rθ(Xi−1, . . . , Xi−p), Zijl ≜

∂2

∂θj∂θl
rθ∗(Xi−1, . . . , Xi−p),

where θ∗ = θ+λ(θ̂− θ) for some λ ∈ (0, 1). By the fact that Xi−1, . . . , Xi−s are independent
of {ε j, j ≥ i}, we conclude that εi is independent of Yij.

Assumption 1. Let U ⊂ Θ ⊂ Rq be an open neighborhood of θ. For any y ∈ Rp, θ =
(θ1, . . . , θq) ∈ U, j, l = 1, . . . , q, assume that∣∣∣∣∣ ∂

∂θj
rθ(y)

∣∣∣∣∣ ≤ M1(y),

∣∣∣∣∣ ∂2

∂θj∂θl
rθ(y)

∣∣∣∣∣ ≤ M2(y),

where E[M4
1(Xi−1, . . . , Xi−p)] < ∞ and E[M4

2(Xi−1, . . . , Xi−p)] < ∞ for each i ≥ 1.

Assumption 2. Let θ̂ = (θ̂1, . . . , θ̂q)′ be a strong consistent estimator for θ satisfying the following
law of iterated logarithm

lim sup
n→∞

√
n

log log n
∣∣θ̂− θ

∣∣ ≤ C, a.s., (5)

where |θ̂− θ| =
√

q
∑

j=1
(θ̂j − θj)2 and C is a positive constant.

Remark 1. By Corollary 2.2 of Klimko and Nelson [25], we know that the least square esti-
mator for the stochastic process under some suitable conditions satisfies (5). For the first-order
autoregressive progresses, Wang et al. [26] proved that the least square estimator of the unknown
parameters meets (5). For smooth threshold autoregressive progresses, Chan and Tong [27] obtained
the conditional least square estimators of the unknown parameters that satisfy (5). For general
nonlinear autoregressive progresses of order p, Liebscher [2] established M-estimators for the un-
known parameters that satisfy (5), Yao [28] obtained (5) for least square estimators of nonlinear
autoregressive progresses.

Now, we will state the main result for the almost sure central limit theorem of the error
variance estimator σ̂2.

Theorem 1. Suppose that {dk} is a sequence of positive numbers satisfying the following conditions:
(C1) lim supk→∞ kdk(log Dk)

ρ/Dk < ∞ for some ρ > 1, where Dn = ∑n
k=1 dk.

(C2) Dn → ∞, Dn = o(nϵ), for any ϵ > 0.
For model (1), under the Assumptions 1 and 2, if Eε4

1 < ∞, for all x ∈ R, we have

lim
n→∞

1
Dn

n

∑
k=1

dk I


√

k√
Var(ε2

1)

(
σ̂2

k − σ2
)
≤ x

 = Φ(x) a.s. (6)

Corollary 1. Let cn > 0 with cn ↑ ∞ and lim
n→∞

cn+1
cn

= 1 and k
l ≤ ( ck

cl
)γ, k < l for some constant

γ > 0. Denote

dk = log
ck+1

ck
exp

(
logβ ck

)
, Dn =

n

∑
k=1

dk, 0 ≤ β < 1/2.

Then, under the assumptions of Theorem 1, (6) also holds.
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Remark 2. If the conditions (C1) and (C2) of Theorem 1 is satisfied for some sequence {Dn}, then it
is also satisfied for any other sequence D∗

n = Ψ(Dn), provided that Ψ : R+ → R+ is differentiable,
Ψ′(x) = O(Ψ(x)/x) and log Ψ′(x) is uniformly continuous on (B, ∞) for some B > 0. Typical
examples are Ψ(x) = xγ, Ψ(x) = (log x)γ, Ψ(x) = (log log x)γ with some suitable γ > 0.

Remark 3. It is easy to show that dk = l(k)/k, where l(x) is slowly varying at infinity and
Dn → ∞, satisfies the conditions (C1) and (C2). So typical examples including dk = 1/k;
dk = logθ k/k, θ > −1; dk = exp(logγ k)/k, 0 ≤ γ < 1/2, 1 < ρ < (1 − γ)/γ.

3. Preliminary Lemmas

Some useful lemmas which are needed to prove the main result are given in the
following section.

Lemma 1 (Hall and Heyde [29], Theorem 2.11, P.23). Let X1 = S1 and Xi = Si − Si−1,
2 ≤ i ≤ n denote the differences of the sequences {Si, 1 ≤ i ≤ n}. If {Si,Fi, 1 ≤ i ≤ n} is a
martingale and p > 0, then there exists constant C depending only on p such that

E
(

max
1≤i≤n

|Si|p
)
≤ C

E

( n

∑
i=1

E(X2
i |Fi−1)

)p/2
+ E

(
max

1≤i≤n
|Xi|p

).

Lemma 2. For 1 ≤ i ≤ n, 1 ≤ j, l ≤ q, then for any 2 ≤ t ≤ 4, one can obtain

E|Yij|t ≤ EMt
1(Xi−1, . . . , Xi−p) ≤

(
EM4

1(Xi−1, . . . , Xi−p)
)t/4

< ∞,

E|Zijl |t ≤ EMt
2(Xi−1, . . . , Xi−p) ≤

(
EM4

2(Xi−1, . . . , Xi−p)
)t/4

< ∞.

Proof. The proof of Lemma 2 is obvious by Assumption 1 and the Hölder inequality.

Lemma 3. Assume that {Gn, n ≥ 1} is a sequence of random variables satisfying the ASCLT with
the weight {dk} defined as in Theorem 1, that is

∀ x ∈ R, lim
n→∞

1
Dn

n

∑
k=1

dk I{Gk ≤ x} = Φ(x) a.s.

Let {Rn, n ≥ 1} be a sequence of random variables converging almost surely to zero. Then,
{Gn + Rn, n ≥ 1} also satisfies the ASCLT. That is

∀ x ∈ R, lim
n→∞

1
Dn

n

∑
k=1

dk I{Gk + Rk ≤ x} = Φ(x) a.s.

Proof. For fixed x ∈ R and η > 0, recall that {Gn, n ≥ 1} satisfies the ASCLT, then we have

Tn,η :=

∣∣∣∣∣ 1
Dn

n

∑
k=1

dk I{Gk ≤ x + η} − Φ(x + η)

∣∣∣∣∣→ 0, a.s.

and

Wn,η :=

∣∣∣∣∣ 1
Dn

n

∑
k=1

dk I{Gk ≤ x − η} − Φ(x − η)

∣∣∣∣∣→ 0, a.s.

Remark that

{Gn + Rn ≤ x} ⊂ {Gn ≤ x + η} ∪ {|Rn| > η},
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{Gn ≤ x − η} ⊂ {Gn + Rn ≤ x} ∪ {|Rn| > η}.

Then, we can conclude that

1
Dn

n

∑
k=1

dk I{Gk + Rk ≤ x} − Φ(x)

≤ 1
Dn

n

∑
k=1

dk I{Gk ≤ x + η} − Φ(x + η) +
1

Dn

n

∑
k=1

dk I{|Rk| > η}+ |Φ(x + η)− Φ(x)|

≤ Tn,η +
1

Dn

n

∑
k=1

dk I{|Rk| > η}+
∫ x+η

x

1√
2π

e−
t2
2 dt

≤ Tn,η +
1

Dn

n

∑
k=1

dk I{|Rk| > η}+ η√
2π

,

and

1
Dn

n

∑
k=1

dk I{Gk + Rk ≤ x} − Φ(x)

≥ 1
Dn

n

∑
k=1

dk I{Gk ≤ x − η} − Φ(x − η)− 1
Dn

n

∑
k=1

dk I{|Rk| > η}+ Φ(x − η)− Φ(x)

≥ − Wn,η −
1

Dn

n

∑
k=1

dk I{|Rk| > η} − η√
2π

.

Noting that {Rn, n ≥ 1} is a sequence of random variables converging almost surely to
zero and the arbitrariness of η, the desired conclusion follows from above discussion.

Lemma 4 (Zhang [30], Lemma 2.10, P.391). Let {ζn, n ≥ 1} be a sequence of uniformly bounded
random variables and {dn}, {Dn} be defined as in Theorem 1. If there exist constants C > 0 and
δ > 0 and a sequence of positive numbers {a(k)} such that ∑∞

n=1 a(2n) < ∞ and

E|ζkζ j| ≤ C((k/j)δ + a(k)), for j/k > bn = (log Dn)
ρ/δ,

then

lim
n→∞

1
Dn

n

∑
k=1

dkζk = 0 a.s.

Lemma 5. Let {εi, i ≥ 1} be a sequence of independent and identically distributed random variables
with mean zero, finite variance σ2 and Eε4

1 < ∞. Let {dn}, {Dn} be defined as in Theorem 1. Then
for all x ∈ R,

lim
n→∞

1
Dn

n

∑
k=1

dk I

 1√
kVar(ε2

1)

k

∑
i=1

(
ε2

i − σ2
)
≤ x

 = Φ(x) a.s. (7)

Proof. Denote Tk = ∑k
i=1
(
ε2

i − σ2). Suppose that f is a bounded Lipschitz function. By
classical central limit theorem, we have

E f

 Tk√
kVar(ε2

1)

→ E f (N ) as k → ∞.
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By the conclusions in Section 2 of Peligrad and Shao [31] and Theorem 7.1 of Billings-
ley [32], we know that (7) is equivalent to

lim
n→∞

1
Dn

n

∑
k=1

dk f

 Tk√
kVar(ε2

1)

 = E f (N ), a.s.

Hence, to prove (7), it suffices to show that

1
Dn

n

∑
k=1

dk

 f

 Tk√
kVar(ε2

1)

− E f

 Tk√
kVar(ε2

1)

→ 0, a.s. n → ∞. (8)

For convenience, let Wk = f ( Tk√
kVar(ε2

1)
)− E f ( Tk√

kVar(ε2
1)
). Notice that {εi, i ∈ Z} are

independent, both f and f ′ are bounded, then we conclude that for 1 ≤ k < j ≤ n,

|EWkWj| =

∣∣∣∣∣∣Cov

 f

 Tk√
kVar(ε2

1)

, f

 Tj√
jVar(ε2

1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Cov

 f

 Tk√
kVar(ε2

1)

, f

 Tj√
jVar(ε2

1)

− f

 Tj − Tk√
jVar(ε2

1)

∣∣∣∣∣∣
≤ C1E

∣∣∣∣∣∣ f
 Tj√

jVar(ε2
1)

− f

 Tj − Tk√
jVar(ε2

1)

∣∣∣∣∣∣
≤ C2

E|Tk|√
jVar(ε2

1)
≤ C3

(ET2
k )

1/2√
jVar(ε2

1)

≤ C4

√
kVar(ε2

1)√
jVar(ε2

1)
≤ C5(

k
j
)1/2,

then by Lemma 4 with δ = 1/2 and a(k) ≡ 0, (8) holds, and therefore, the proof of (7)
is completed.

Lemma 6. Under the assumptions of Theorem 1, for any 1 ≤ j ≤ q, we have

lim sup
n→∞

log log n
n3/2

n

∑
i=1

Y2
ij = 0 a.s.

Proof. Let nk = [kα], α > 2. By Lemma 2 and the Markov inequality, for any ϵ > 0, it is
easy to known that

∞

∑
k=1

P

(
log log nk+1

n3/2
k

nk

∑
i=1

Y2
ij > ϵ

)

≤ C1

∞

∑
k=1

log log nk+1

n3/2
k

nk

∑
i=1

EY2
ij

≤ C2

∞

∑
k=1

log log nk+1

n3/2
k

· nk

≤ C3

∞

∑
k=1

log log(k + 1)
kα/2 < ∞.
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Then by the Borel–Cantelli lemma, we obtain

log log nk+1

n3/2
k

nk

∑
i=1

Y2
ij → 0 a.s. as k → ∞. (9)

Similarly, by Lemma 2 and the Markov inequality, for any ϵ > 0, one can obtain

∞

∑
k=1

P

(
log log nk+1

n3/2
k

max
nk<n≤nk+1

n

∑
i=nk+1

Y2
ij > ϵ

)

≤ C1

∞

∑
k=1

log log nk+1

n3/2
k

E

[
max

nk<n≤nk+1

n

∑
i=nk+1

Y2
ij

]

≤ C2

∞

∑
k=1

log log nk+1

n3/2
k

nk+1

∑
i=nk+1

EY2
ij

≤ C3

∞

∑
k=1

log log nk+1

n3/2
k

· [nk+1 − nk]

≤ C4

∞

∑
k=1

log log(k + 1)
k3α/2 · [(k + 1)α − kα]

≤ C5

∞

∑
k=1

log log(k + 1)
kα/2+1 < ∞.

By the Borel–Cantelli lemma, it follows that

log log nk+1

n3/2
k

max
nk<n≤nk+1

n

∑
i=nk+1

Y2
ij → 0 a.s. as k → ∞. (10)

Then combining (9) with (10), for nk < n ≤ nk+1, one can obtain

lim sup
n→∞

log log n
n3/2

n

∑
i=1

Y2
ij

≤ lim sup
k→∞

log log nk+1

n3/2
k

nk

∑
i=1

Y2
ij + lim sup

k→∞

log log nk+1

n3/2
k

max
nk<n≤nk+1

n

∑
i=nk+1

Y2
ij

→ 0 a.s. as k → ∞.

Thus, the proof of Lemma 6 is completed.

Lemma 7. Under the assumptions of Theorem 1, for any 1 ≤ j, l ≤ q, we have

lim sup
n→∞

(log log n)2

n5/2

n

∑
i=1

Z2
ijl = 0 a.s.

Proof. By Lemma 2 and the Markov inequality, for any ϵ > 0, it is easy to see that

∞

∑
n=1

P

(
(log log n)2

n5/2

n

∑
i=1

Z2
ijl > ϵ

)

≤ C1

∞

∑
n=1

(log log n)2

n5/2

n

∑
i=1

EZ2
ijl

≤ C2

∞

∑
n=1

(log log n)2

n5/2 n
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≤ C3

∞

∑
n=1

(log log n)2

n3/2 < ∞.

By the Borel–Cantelli lemma, one can obtain

(log log n)2

n5/2

n

∑
i=1

Z2
ijl → 0 a.s. as n → ∞.

The proof of Lemma 7 is completed.

Lemma 8. Under the assumptions of Theorem 1, for any 1 ≤ j ≤ q, we have

lim sup
n→∞

(log log n)1/2

n

∣∣∣∣∣ n

∑
i=1

Yijεi

∣∣∣∣∣ = 0 a.s.

Proof. Let

Ym =
m

∑
i=1

Yijεi, 1 ≤ m ≤ n.

Let Fm be the σ-algebra generated by the random variables {εi, 1 ≤ i ≤ m}. By the fact
that Yij and εi are independent, it is easy to compute that the process {Ym,Fm, 1 ≤ m ≤ n}
is a martingale. By Lemmas 1 and 2, for some 2 < t < 4, we know

E|Yn|t = E

∣∣∣∣∣ n

∑
i=1

Yijεi

∣∣∣∣∣
t

≤ C1E

( n

∑
i=1

E
(

Y2
ijε

2
i |Fi−1

))t/2
+ C2E

(
max

1≤i≤n
|Yijεi|t

)

≤ C3E

( n

∑
i=1

EY2
ij

)t/2
 · [Eε2

1]
t/2 + C4

n

∑
i=1

E|Yij|t · E|ε1|t

≤C5nt/2 + C6n ≤ C7nt/2. (11)

By the Markov inequality and (11), for any ϵ > 0, it is easy to obtain

∞

∑
n=1

P

(
(log log n)1/2

n
|

n

∑
i=1

Yijεi| > ϵ

)

≤ C1

∞

∑
n=1

(log log n)t/2

nt E

∣∣∣∣∣ n

∑
i=1

Yijεi

∣∣∣∣∣
t

≤ C2

∞

∑
n=1

(log log n)t/2

nt nt/2

≤ C3

∞

∑
n=1

(log log n)t/2

nt/2 < ∞.

By the Borel–Cantelli lemma, we can obtain

(log log n)1/2

n

∣∣∣∣∣ n

∑
i=1

Yijεi

∣∣∣∣∣→ 0 a.s. as n → ∞.

The proof of Lemma 8 is completed.



Mathematics 2024, 12, 1482 9 of 16

Lemma 9. Under the assumptions of Theorem 1, for any 1 ≤ j, l ≤ q, we have

lim sup
n→∞

log log n
n3/2

∣∣∣∣∣ n

∑
i=1

Zijlεi

∣∣∣∣∣ = 0 a.s.

Proof. Let nk = [kα], α > 2. By Lemma 2, the Markov inequality, Cr inequality and
Cauchy–Schwarz inequality, for any ϵ > 0, it is easy to see that

∞

∑
k=1

P

(
log log nk+1

n3/2
k

|
nk

∑
i=1

Zijlεi| > ϵ

)

≤ C1

∞

∑
k=1

(log log nk+1)
2

n3
k

E

(
nk

∑
i=1

Zijlεi

)2

≤ C2

∞

∑
k=1

(log log nk+1)
2

n3
k

· nk

nk

∑
i=1

EZ2
ijlε

2
i

≤ C3

∞

∑
k=1

(log log nk+1)
2

n2
k

nk

∑
i=1

(EZ4
ijl)

1/2(Eε4
i )

1/2

≤ C4

∞

∑
k=1

(log log nk+1)
2

nk
≤ C5

∞

∑
k=1

(log log(k + 1))2

kα
< ∞.

Then by the Borel–Cantelli lemma, we obtain

log log nk+1

n3/2
k

∣∣∣∣∣ nk

∑
i=1

Zijlεi

∣∣∣∣∣→ 0 a.s. as k → ∞. (12)

Similarly, By Lemma 2 and the Markov inequality and Cr inequality, for any ϵ > 0,
one can obtain

∞

∑
k=1

P

(
log log nk+1

n3/2
k

max
nk<n≤nk+1

∣∣∣∣∣ n

∑
i=nk+1

Zijlεi

∣∣∣∣∣ > ϵ

)

≤ C1

∞

∑
k=1

(log log nk+1)
2

n3
k

E

(
max

nk<n≤nk+1
|

n

∑
i=nk+1

Zijlεi|
)2

≤ C2

∞

∑
k=1

(log log nk+1)
2

n3
k

E

(
nk+1

∑
i=nk+1

|Zijlεi|
)2

≤ C3

∞

∑
k=1

(log log nk+1)
2

n3
k

· (nk+1 − nk)
nk+1

∑
i=nk+1

E
[

Z2
ijlε

2
i

]
≤ C4

∞

∑
k=1

(log log nk+1)
2

n3
k

· (nk+1 − nk)
nk+1

∑
i=nk+1

(EZ4
ijl)

1/2(Eε4
i )

1/2

≤ C5

∞

∑
k=1

(log log nk+1)
2

n3
k

· (nk+1 − nk)
2

≤ C6

∞

∑
k=1

(log log(k + 1))2

k3α
· k2(α−1) ≤ C7

(log log(k + 1))2

kα+2 < ∞.

By the Borel–Cantelli lemma, it follows that

log log nk+1

n3/2
k

max
nk<n≤nk+1

∣∣∣∣∣ n

∑
i=nk+1

Zijlεi

∣∣∣∣∣→ 0 a.s. as k → ∞. (13)
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Then combining (12) with (13), for nk < n ≤ nk+1, one can obtain

lim sup
n→∞

log log n
n3/2

∣∣∣∣∣ n

∑
i=1

Zijlεi

∣∣∣∣∣
≤ lim sup

k→∞

log log nk+1

n3/2
k

∣∣∣∣∣ nk

∑
i=1

Zijlεi

∣∣∣∣∣+ lim sup
k→∞

log log nk+1

n3/2
k

max
nk<n≤nk+1

∣∣∣∣∣ n

∑
i=nk+1

Zijlεi

∣∣∣∣∣
→ 0 a.s. as k → ∞.

The proof of Lemma 9 is completed.

Lemma 10. Under the assumptions of Theorem 1, for any 1 ≤ j, l, k ≤ q, we have

lim sup
n→∞

(log log n)3/2

n2

∣∣∣∣∣ n

∑
i=1

YijZilk

∣∣∣∣∣ = 0 a.s.

Proof. By Lemma 2, the Markov inequality, Cr inequality and Cauchy–Schwarz inequality,
for any ϵ > 0, it is easy to see that

∞

∑
n=1

P

(
(log log n)3/2

n2

∣∣∣∣∣ n

∑
i=1

YijZilk

∣∣∣∣∣ > ϵ

)

≤ C1

∞

∑
n=1

(log log n)3t/4

nt E

∣∣∣∣∣ n

∑
i=1

YijZilk

∣∣∣∣∣
t/2

≤ C2

∞

∑
n=1

(log log n)3t/4

nt nt/2−1
n

∑
i=1

E
[∣∣Yij

∣∣t/2|Zilk|t/2
]

≤ C3

∞

∑
n=1

(log log n)3t/4

nt/2+1

n

∑
i=1

(
E|Yij|t

)1/2(E|Zilk|t
)1/2

≤ C4

∞

∑
n=1

(log log n)3t/4

nt/2 < ∞.

where 2 < t ≤ 4 is defined in Assumption 1.
By the Borel–Cantelli lemma, we obtain

(log log n)3/2

n2

∣∣∣∣∣ n

∑
i=1

YijZilk

∣∣∣∣∣→ 0 a.s. as n → ∞.

The proof of Lemma 10 is completed.

4. Proof

Recall (1) and (3), by Taylor’s expansion expansion with the Lagrange remainder, there
exists λ ∈ (0, 1), and θ∗ = θ+ λ(θ̂− θ)

ε̂i = εi − [rθ̂(Xi−1, . . . , Xi−p)− rθ(Xi−1, . . . , Xi−p)]

= εi −
q

∑
j=1

(θ̂j − θj)Yij −
1
2

q

∑
j=1

q

∑
l=1

(θ̂j − θj)(θ̂l − θl)Zijl . (14)

Then by (14), we can obtain√
n

Var(ε2
1)

(
σ̂2

n − σ2
)
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=

√
n

Var(ε2
1)

(
1
n

n

∑
i=1

ε̂2
i −

1
n

n

∑
i=1

ε2
i +

1
n

n

∑
i=1

ε2
i −

1
n

n

∑
i=1

Eε2
i

)

=

√
1

nVar(ε2
1)

[
n

∑
i=1

(ε̂2
i − ε2

i )

]
+

√
1

nVar(ε2
1)

[
n

∑
i=1

(ε2
i − Eε2

i )

]

=

√
1

nVar(ε2
1)

 n

∑
i=1

(
q

∑
j=1

(θ̂j − θj)Yij

)2


+

√
1

16nVar(ε2
1)

 n

∑
i=1

(
q

∑
j=1

q

∑
l=1

(θ̂j − θj)(θ̂l − θl)Zijl

)2


−
√

4
nVar(ε2

1)

[
n

∑
i=1

q

∑
j=1

(θ̂j − θj)Yijεi

]

−
√

1
nVar(ε2

1)

[
n

∑
i=1

q

∑
j=1

q

∑
l=1

(θ̂j − θj)(θ̂l − θl)Zijlεi

]

+

√
1

nVar(ε2
1)

[
n

∑
i=1

q

∑
j=1

q

∑
l=1

q

∑
k=1

(θ̂j − θj)(θ̂l − θl)(θ̂k − θk)YijZilk

]

+

√
1

nVar(ε2
1)

[
n

∑
i=1

(ε2
i − Eε2

i )

]
=:In1 + In2 − In3 − In4 + In5 + In6. (15)

Recall the elementary inequality(
q

∑
i=1

aibi

)2

≤
(

q

∑
i=1

a2
i

)(
q

∑
i=1

b2
i

)
. (16)

For In1, by (5) and (16) and Lemma 6, it is easy to know that

In1 =

√
1

nVar(ε2
1)

 n

∑
i=1

(
q

∑
j=1

(θ̂j − θj)Yij

)2


≤
√

1
nVar(ε2

1)

q

∑
j=1

(θ̂j − θj)
2 ·

q

∑
j=1

n

∑
i=1

Y2
ij

=
1√

Var(ε2
1)

n
log log n

q

∑
j=1

(θ̂j − θj)
2 ·

q

∑
j=1

log log n
n3/2

n

∑
i=1

Y2
ij

→0 a.s. as n → ∞. (17)

For In2, by (5) and (16) and Lemma 7, one can obtain

In2 =

√
1

16nVar(ε2
1)

 n

∑
i=1

(
q

∑
j=1

q

∑
l=1

(θ̂j − θj)(θ̂l − θl)Zijl

)2


≤
√

1
16nVar(ε2

1)

q

∑
j=1

(θ̂j − θj)
2 ·

q

∑
l=1

(θ̂l − θl)
2 ·

q

∑
j=1

q

∑
l=1

n

∑
i=1

Z2
ijl

=
1

4
√

Var(ε2
1)

(
n

log log n

q

∑
j=1

(θ̂j − θj)
2

)2

·
q

∑
j=1

q

∑
l=1

(log log n)2

n5/2

n

∑
i=1

Z2
ijl

→0 a.s. as n → ∞. (18)
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For In3, by (5) and (16) and Lemma 8, one can obtain

In3 =

√
4

nVar(ε2
1)

[
q

∑
j=1

(θ̂j − θj) ·
n

∑
i=1

Yijεi

]

≤
√

4
nVar(ε2

1)

 q

∑
j=1

(θ̂j − θj)
2 ·

q

∑
j=1

(
n

∑
i=1

Yijεi

)2
1/2

=
2√

Var(ε2
1)

 n
log log n

q

∑
j=1

(θ̂j − θj)
2 ·

q

∑
j=1

(
(log log n)1/2

n

n

∑
i=1

Yijεi

)2
1/2

→0 a.s. as n → ∞. (19)

For In4, by (5) and (16) and Lemma 9, we have

In4 =

√
1

nVar(ε2
1)

[
q

∑
j=1

q

∑
l=1

(θ̂j − θj)(θ̂l − θl)
n

∑
i=1

Zijlεi

]

≤
√

1
nVar(ε2

1)

 q

∑
j=1

(θ̂j − θj)
2 ·

q

∑
l=1

(θ̂l − θl)
2 ·

q

∑
j=1

q

∑
l=1

(
n

∑
i=1

Zijlεi

)2
1/2

=
1√

Var(ε2
1)

( n
log log n

q

∑
j=1

(θ̂j − θj)
2

)2

·
q

∑
j=1

q

∑
l=1

(
log log n

n3/2

n

∑
i=1

Zijlεi

)2
1/2

→0 a.s. as n → ∞. (20)

For In5, by (5) and (16) and Lemma 10, we know

In5 =

√
1

nVar(ε2
1)

[
q

∑
j=1

q

∑
l=1

q

∑
k=1

(θ̂j − θj)(θ̂l − θl)(θ̂k − θk)
n

∑
i=1

YijZilk

]

≤
√

1
nVar(ε2

1)

 q

∑
j=1

(θ̂j − θj)
2 ·

q

∑
l=1

(θ̂l − θl)
2 ·

q

∑
k=1

(θ̂k − θk)
2 ·

q

∑
j=1

q

∑
l=1

q

∑
k=1

(
n

∑
i=1

YijZilk

)2
1/2

=
1√

Var(ε2
1)

( n
log log n

q

∑
j=1

(θ̂j − θj)
2

)3

·
q

∑
j=1

q

∑
l=1

q

∑
k=1

(
(log log n)3/2

n2

n

∑
i=1

YijZilk

)2
1/2

→0 a.s. as n → ∞. (21)

Combing (17)–(21), one can obtain

In1 + In2 − In3 − In4 + In5 → 0 a.s. as n → ∞. (22)

For In6, by Lemma 5, it is obviously that

lim
n→∞

1
Dn

n

∑
k=1

dk I

 1√
kVar(ε2

1)

k

∑
i=1

(ε2
i − Eε2

i ) ≤ x

 = Φ(x) a.s. (23)

Finally, (6) follows by combining (15), (22) with (23) and Lemma 3, thus the proof of
Theorem 1 is completed.
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5. Examples

Some examples are given in this section to verify the almost sure central limit theorem
for the error variance estimator for some special nonlinear autoregressive models. The first
example is a degenerate model, that is, AR(1) progresses.

Example 1. An AR(1) model is a family of {Xi} of random variables such that for every i ≥ 1

Xi = θXi−1 + εi,

where {εi, i ≥ 1} is a collection of i.i.d. random variables with zero mean and finite variance σ2. We
also assume that E exp{γ|εiε j|} < ∞ for some γ > 0 and any i, j ≥ 1. It is obviously that {Xi} is
a stationary model under the condition |θ| < 1.

It is easy to check that the Assumption 1 holds naturally. For Assumption 2, by
Theorem 1 of Wang et al. [26] and E exp{γ|εiε j|} < ∞, (5) holds for the least squares
estimator θ̂. Therefore, we have the following statement for AR(1) progression due to
Theorem 1.

Theorem 2. Suppose {dk} is a sequence of positive numbers satisfying conditions (C1) and (C2).
For the above AR(1) model, if E exp{γ|εiε j|} < ∞ for some γ > 0 and any i, j ≥ 1, for any x ∈ R,
one can obtain

lim
n→∞

1
Dn

n

∑
k=1

dk I


√

k√
Var(ε2

1)

(
σ̂2

k − σ2
)
≤ x

 = Φ(x) a.s.

The next example concerns the self-exciting threshold autoregressive (SETAR) pro-
gresses.

Example 2. Let {Xi, i ≥ p} be a sequence of stationary and geometrically ergodic random variable
satisfying the following continuous SETAR(p, l, d) progresses.

Xi =


a0 +

p

∑
m=1

amXi−m + εi, if Xi−d ∈ R1,

a0 +
p

∑
m=1

ajXi−m +
j

∑
k=2

bk(Xi−d − rk−1) + εi, if Xi−d ∈ Rj, j = 2, . . . , l

where {εi} is a collection of i.i.d. random variables with zero mean and finite variance σ2, R1, . . . , Rl
are the different regions with Rs = (rs−1, rs] for 1 ≤ s ≤ l, and −∞ = r0 < r1 < r2 < · · · <
rl−1 < rl = +∞ are the thresholds. Let θ0 = (a0, . . . , ap, b2, . . . , bl , r1, . . . , rl−1)

⊤ ∈ Θ ⊂ Rq

be the true parameters of the progresses and θ = (a0, . . . , ap, b2, . . . , bl , r1, . . . , rl−1)
⊤, X̃ i =

(Xi, . . . , Xi−p+1)
⊤, q = p + 2l − 1.

Condition C Suppose that {εi} has the density h and the density f of Xi is continuous
and has a support including the interval [rmin − η, rmax + η], η > 0 where rmin = min{r̄1 :
θ ∈ Θ}, rmax = max{r̄l−1 : θ ∈ Θ}. There is some ε > 0 such that r̄k−1 ≤ r̄k − ε for all
θ ∈ Θ and k = 2, . . . , l.

By Corollary 3.1 of Liebscher [2], under Condition C and E|εi|γ < ∞, E||X̃ i||γ < ∞,
γ > 4, the Assumption 2 holds. Therefore, we have the following result for SETAR
progresses due to Theorem 1.
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Theorem 3. Suppose {dk} is a sequence of positive numbers satisfying conditions (C1) and (C2).
For the above SETAR(p, l, d) progresses, under Assumption 1 and Condition C and E|εi|γ < ∞,
E||X̃ i||γ < ∞, γ > 4, for any x ∈ R, one can obtain

lim
n→∞

1
Dn

n

∑
k=1

dk I


√

k√
Var(ε2

1)

(
σ̂2

k − σ2
)
≤ x

 = Φ(x) a.s.

Next, we will consider the threshold-exponential AR progresses.

Example 3. Let Rj, j = 1, · · · , K be non-overlapping and non-empty intervals of R such that⋃
j Rj = R. A combined threshold-exponential AR progresses is defined by

Xi =
K

∑
j=1

(αj + β jXi−1)I{Xi−1 ∈ Rj}+ ce−γX2
i−1 Xi−1 + εi,

with X0 = x0 and {εi} is a collection of i.i.d. random variables with zero mean. Let the
true parameters θ0 = (α1, · · · , αK, β1, · · · , βK, c, γ)⊤ ∈ Θ ⊂ Rq and the parameters θ =
(α1, · · · , αK, β1, · · · , βK, c, γ)⊤ with q = 2K + 2.

For Assumption 2, if c ̸= 0, γ > 0, |β j| < 1, j = 1, · · · , K and E|εi|2+δ < ∞ for some
δ > 0, by Theorem 4 of Yao [28], (5) holds for the least squares estimator θ̂. Therefore, we
have the following statement for threshold-exponential AR progresses due to Theorem 1.

Theorem 4. Suppose {dk} is a sequence of positive numbers satisfying conditions (C1) and (C2).
For the above threshold-exponential AR progresses, if c ̸= 0, γ > 0, |β j| < 1, j = 1, · · · , K and
E|εi|2+δ < ∞ for some δ > 0 and Eε4

1 < ∞, then under Assumption 1, for any x ∈ R, one
can obtain

lim
n→∞

1
Dn

n

∑
k=1

dk I


√

k√
Var(ε2

1)

(
σ̂2

k − σ2
)
≤ x

 = Φ(x) a.s.

Next, we will consider the multilayer perceptrons progress.

Example 4. Multilayer perceptrons progressesw have become popular in nonlinear modeling due to
its universal approximation ability. Such an example is the model described below which has p input
units feeding by variables Xi−1, · · · , Xi−p at time i, a hidden layer with K units and one output
unit which provides the variable Xi

Xi =
K

∑
j=1

αjψ

(
p

∑
l=1

βl jXi−l + β0j

)
+ α0 + εi,

where {εi} is a collection of i.i.d. random variables with zero mean. Let the true parame-
ters θ0 = (α0, · · · , αK, βl j, 0 ≤ l ≤ p, 1 ≤ j ≤ K)⊤ ∈ Θ ⊂ Rq and the parameters
θ = (α0, · · · , αK, βl j, 0 ≤ l ≤ p, 1 ≤ j ≤ K)⊤ with q = 1 + K(p + 1).

For Assumption 2 and sigmoid map ψ(x) = tanh(x) = ex−e−x

ex+e−x , if for all θ are different
from θ0, there exists x ∈ Rp such that rθ(x) ̸= rθ0(x), E|εi|6+δ < ∞ for some δ > 0 and the
matrix I0 is regular, where

I0 = 2
∫
Rp

Mθ0(x)µθ0(dx), Mθ(x) = (
∂rθ(x)

∂θi
· ∂rθ(x)

∂θj
)1≤i,j≤q,



Mathematics 2024, 12, 1482 15 of 16

then by Theorem 5 of Yao [28], (5) holds for the least squares estimator θ̂. Therefore, we
have the following statement for multilayer perceptrons due to Theorem 1.

Theorem 5. Suppose {dk} is a sequence of positive numbers satisfying conditions (C1) and (C2).
For the univariate multilayer perceptrons progress with ψ(x) = tanh(x), if for all θ different from
θ0, there exists x ∈ Rp such that rθ(x) ̸= rθ0(x), E|εi|6+δ < ∞ for some δ > 0 and the matrix I0
is regular, then under Assumption 1, for any x ∈ R, one can obtain

lim
n→∞

1
Dn

n

∑
k=1

dk I


√

k√
Var(ε2

1)

(
σ̂2

k − σ2
)
≤ x

 = Φ(x) a.s.

6. Conclusions

In this paper, using Taylor’s expansion, the Borel–Cantelli lemma and the classical
almost sure central limit theorem for independent random variables, the authors establish
the almost sure central limit theorem for the error variance estimator for nonlinear autore-
gressive progresses with independent and identical distributed errors. The results extend
the almost sure central limit theorem for the error variance estimator to the nonlinear au-
toregressive progresses. Four examples, first-order autoregressive processes, self-exciting
threshold autoregressive processes, threshold-exponential AR progresses and multilayer
perceptrons progress, are given to verify the results. In the future, we will try to investigate
the almost sure central limit theorem for the error variance estimator for nonlinear autore-
gressive progresses with dependent errors and the moderate deviation principle for the
error variance estimator for nonlinear autoregressive progresses with independent errors.
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