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and Giulia Rotundo

Received: 19 April 2024

Revised: 30 April 2024

Accepted: 7 May 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Multi-Objective Pigeon-Inspired Optimization Algorithm for
Community Detection in Complex Networks
Lin Yu 1,† , Xiaodan Guo 2, Dongdong Zhou 2 and Jie Zhang 1,*,†

1 School of Automation, Nanjing University of Science and Technology, Xiaolingwei Street,
Nanjing 210094, China; yulin@njust.edu.cn

2 Northern Information Control Research Institute Group Co., Jiangjun Street, Nanjing 211153, China
* Correspondence: jiezhangnjust@163.com
† These authors contributed equally to this work.

Abstract: Community structure is a very interesting attribute and feature in complex networks,
which has attracted scholars’ attention and research on community detection. Many single-objective
optimization algorithms have been migrated and modified to serve community detection problems.
Due to the limitation of resolution, the final algorithm implementation effect is not ideal. In this paper,
a multi-objective community detection method based on a pigeon-inspired optimization algorithm,
MOPIO-Net, is proposed. Firstly, the PIO algorithm is discretized in terms of the solution space
representation, position, and velocity-updating strategies to adapt to discrete community detection
scenarios. Secondly, by minimizing the two objective functions of community score and community
fitness at the same time, the community structure with a tight interior and sparse exterior is obtained.
Finally, for the misclassification caused by boundary nodes, a mutation strategy is added to improve
the accuracy of the final community recognition. Experiments on synthetic and real networks verify
that the proposed algorithm is more accurate in community recognition compared to 11 benchmark
algorithms, confirming the effectiveness of the proposed method.

Keywords: complex networks; community detection; heuristic algorithm; pigeon-inspired optimization;
multi-objective optimization

MSC: 05C82

1. Introduction

Networks are used to represent various types of complex systems in many fields such
as computer science, physics and mathematics [1]. Several common complex systems
include biological networks [2], social networks [3], information networks [4], and so on.
Complex networks can reveal some potential rules and features, such as the community
structure. In the social field, community detection of social networks can discover friends
with common hobbies and interests. In the biological protein networks, community de-
tection can uncover proteins with the same function, which is of great significance for
biological gene repair.

From the perspective of graph theory, a network is a graph that can be infinitely large
or infinitely small, where the vertices in the graph represent the objects in the network,
and the edges represent the direct relationships between the objects. A community is
defined as a subset of nodes in the graph that are closely connected to each other, while
the nodes between communities are sparsely connected. This characteristic of community
structure drives scholars in various fields to conduct research. Community detection has
been widely used in social relationship analysis [5], recommendation systems [6,7], link
prediction [8], and virus transmission [9,10].

In recent years, many community detection methods have been proposed. In 2002,
Girvan et al. proposed the GN algorithm [11] to obtain the community structure in the net-
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work by continuously removing the edges with the highest edge mediators. Newman [12]
introduced the concept of modularity, which allows community detection to be modeled
as an NP-hard optimization problem. Subsequently, more and more metrics have been
proposed to assess the quality of community detection, such as community fitness [13] and
community score [14]. Benefiting from these metrics, a great number of algorithms based
on intelligent optimization are used to solve the community detection problem. Pizzuti [14]
proposed a genetic algorithm for community detection to obtain the best division results by
optimizing the objective function community score; Li [15] designed an extended compact
genetic algorithm using modularity as the optimization objective for community detection;
Gong et al. proposed a memetic algorithm based on community detection, called Meme-
Net, using module density as an optimization criterion [16]. All the above-mentioned
papers are optimized for only one metric criterion, and satisfactory results are achieved
over the GN algorithm and the FN algorithm. However, the literature [17] suggested
that solving the community detection problem based on single-objective optimization is
flawed, which is the resolution problem. Single-objective optimization attempts to find
the larger communities in the network, ignoring the small communities that really exist in
the network. In addition, the metrics do not fully reveal this characteristic of community
structure. There are metrics that attempt to strengthen intra-community connections and
metrics that attempt to weaken inter-community connections. Single-objective optimization
does not allow for trade-offs between multiple metrics [18].

In response to the above reasons, scholars have started to try to use multi-objective
optimization to weigh multiple conflicting metrics to improve the accuracy of community
delineation. Pizzuti proposed a multi-objective genetic algorithm for solving community
detection, which is known as the MOGA-Net algorithm [19]. Rahimi employed a dis-
crete particle swarm algorithm to optimize the community structure using multi-objective
optimization as a framework [20]. Messaoudi proposed a multi-objective bat-based opti-
mization algorithm for the dynamic community detection problem [21]. Li designed an
adaptive evolutionary algorithm to extract communities in the network [22]. Chen [23]
proposed the MODTLBO/D algorithm for community detection based on a multi-objective
teaching–learning-based optimization algorithm combined with a decomposition mech-
anism. Ji [24] integrated the weighted simulated annealing local search operator into
multi-objective ant colony optimization to expand the search range and introduce decom-
position mechanisms to enhance the accuracy of community detection. Li [25] designed a
decomposition-based multi-objective chemical reaction optimization algorithm to improve
the efficiency of community mining with the help of dynamic changes in the population
of the algorithm. The authors of [26] proposed a metaheuristic approach based on a vari-
able neighborhood search, which leverages the combination of quality and diversity of
a constructive procedure inspired by a greedy randomized adaptation procedure for de-
tecting communities. Meanwhile, there are many scholars who have made outstanding
contributions in the field of multi-objective community detection. Ma [27] proposed a two-
stage multi-objective community detection algorithm with local search and global search
to merge local communities through a boundary control strategy. In the literature [28],
a new optimization objective, namely “balanced modularity”, is introduced. Liu [29] intro-
duced network embedding to map nodes to a low-dimensional space, which effectively
reduces the search space through a consensus propagation strategy. Pizzuti [30] proposed
a multi-objective genetic framework, which integrates the topological and compositional
dimensions to uncover community structure in attributed networks. The approach allows
for the experimentation of different structural measures to search for densely connected
communities and similarity measures between attributes to obtain high intracommunity
feature homogeneity. In the literature [31], the Grey Wolf optimization algorithm and the
Label Propagation algorithm were improved and combined for better performance.

A community detection algorithm based on the multi-objective pigeon-inspired op-
timization algorithm was proposed, and the contribution of our work consists of three
main aspects:
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(1) We utilize the excellent optimization capabilities of the pigeon-inspired optimization
algorithm and combine it with a multi-objective optimization strategy to form a novel
algorithm for community detection problems in a complex network.

(2) We have re-discretized the pigeon-inspired optimization algorithm for the community
detection problem. The velocity and position update formulas applicable to the
community structure representation are redefined.

(3) We provide the definition of a boundary node. The misclassification of boundary
nodes is a key factor affecting community detection. The corresponding variation
strategies are proposed for boundary nodes and non-boundary nodes to improve the
accuracy of community partitioning.

2. Background and Related Works
2.1. Community Definition

The definition of community is unclear [32]. There is a generally accepted consensus
that a community is a subset of different nodes, with tightly connected nodes within the
set and sparsely connected nodes between the sets [33]. Nodes form communities among
themselves based on functional or other shared characteristics.

A network is usually represented in the form of an undirected graph:

G = (V, E) (1)

where V represents the vertices in the network and E is described as the connection
between two vertices in the network. From a mathematical point of view, a network can
be represented in terms of an adjacency matrix A =

{
Vi, Vj

}
, i, j = 1, 2, · · · , N. N denotes

the number of nodes in the network. Where there is a real connection between Vi and Vj,
Aij = 1. Vi and Vj are neighbor nodes to each other, otherwise Aij = 0. Ki is described as
the sum of all valid connected edges of Vi.

Ki =
n

∑
j=1

Aij (2)

Accordingly, Vi belongs to a community S(S ⊂ G), the degree of Vi with respect to S is
Ki(S) = Kin

i (S) + Kout
i (S), where Kin

i (S) is the number of edges connecting Vi to the other
vertices in S, and Kout

i (S) is the number of edges connecting Vi to the other vertices not in
S. When Kin

i (S) > Kout
i (S), ∀i ∈ S, S is seen as a community in a strong sense. Conversely,

when ∑i∈S Kin
i (S) >∑i∈S Kout

i (S), S is a weak community. A strong community is more
connected within the community than a weak community.

2.2. Multi-Objective Optimization

The multi-objective optimization problem returns a set of solutions by balancing a
set of conflicting objective functions. In mathematics, taking minimization as an example,
a multi-objective optimization problem can be described as follows:

min : F(x) = [ f1(x), f2(x), · · · fm(x)]T (3)

where fi(x) is the ith objective function; x is the decision variable; m represents the number
of objective functions. Solution x1 dominates solution x2, if the condition is met:

∀ fi(x1) ≤ fi(x2)and ∃ fi(x1) < fi(x2)(i = 1, 2, · · ·m) (4)

Multi-objective optimization returns a set of trade-off non-dominated solutions, rather
than an optimal solution. This non-dominated solution set is called the Pareto optimal
solution of multi-objective optimization problems. If there is no solution x dominating x∗,
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then x∗ is referred to as a Pareto optimal solution or non-dominated solution. A Pareto
optimal set or set of non-dominated solutions is defined as:

P∗ = {x∗ ∈ X|/∃x ∈ X, x dominate x∗} (5)

Reference [19] illustrates that the Pareto optimal solution set corresponds to different
partitions of a network composed of different numbers of communities. This provides
better opportunities for analyzing several communities at different levels. In the multi-
objective solution space, the Pareto optimal front (POF) is obtained by mapping these
non-dominated solutions [20].

POF = { f1(x∗), f1(x∗), · · · fm(x∗)T |x∗ ∈ P∗} (6)

Due to the general applicability of multi-objective optimization, many excellent multi-
objective methods have been proposed recently. Leung [34] proposed a collaborative
neurodynamic approach for multi-objective optimization that uses weighted Chebyshev
to scalarize multiple objectives. In the reconstruction, the multi-projective neural network
searches the POF with the help of the PSO algorithm and achieves good performance.
Xu [35] designed a fuzzy decision variable framework for large-scale multi-objective opti-
mization to alleviate the problem of too many decision variables hindering the convergence
speed of evolutionary algorithms. The framework improves the performance and com-
putational efficiency of the algorithm in large-scale multi-objective optimization through
two steps of fuzzy evolution as well as exact evolution; Liu [36] proposed an accelerated
evolutionary search strategy for the inefficient decision space of existing multi-objective
evolutionary algorithms for dealing with large-scale multi-objective optimization problems.
The main idea is to learn a gradient descent direction vector, i.e., the fastest possible conver-
gence direction, for each solution through a specially trained feed-forward neural network
to efficiently reconstruct the solution. Experimental results demonstrate that the strategy
has obvious advantages in dealing with large-scale multi-objective optimization problems
with 1000–10,000 dimensions. These methods perform very well but cannot be applied to
the discrete community detection problem

2.3. The Pigeon-Inspired Optimization Algorithm

The pigeon-inspired optimization algorithm (PIO) [37] is a heuristic biomimetic intelli-
gent optimization algorithm proposed by Duan in 2014. This algorithm simulates the flight
behavior of pigeons and summarizes two search operations: map and compass operator,
as well as landmark operator. In map and compass operators, pigeons move toward the
best-positioned pigeon in the group and toward the individual’s cognitive direction toward
the destination. In the landmark operator, pigeons abandon half of the lost individuals,
and the remaining pigeons move toward their destination under the leadership of the elite.

In the PIO algorithm, the position of a virtual pigeon in the solution space is deter-
mined by xi(i = 1, 2, · · · , n); vi(i = 1, 2, · · · , n) denotes the flight speed of the pigeon,
where n denotes the number of pigeons. In the early stages of the algorithm, the pigeons
rely on the sun as well as the earth’s magnetic field for navigation. Each pigeon moves
according to the following rules:

vi(t + 1) = e−Rt × vi(t) + rand ×
(

xgbest(t)− xi(t)
)

(7)

xi(t + 1) = xi(t) + vi(t + 1) (8)

where t denotes the number of current iterations. R is a positive real number, which is the
map and compass operator. R normally assumes a value of 0.2. rand denotes a 0–1 random
number that satisfies a normal distribution. xgbest denotes the global optimal solution.



Mathematics 2024, 12, 1486 5 of 20

The map and compass operators attempt to exploit the exploratory power of the
pigeon to prevent the algorithm from falling into a local optimal solution. The landmark
operator attempts to accelerate the convergence of the algorithm near the optimal solution.

The landmark operator is determined by the position of the center of the current
pigeon group:

xcenter =
1

N(t)

N(t)

∑
i=1

Wi

∑
N(t)
i=1 Wi

xj(t) (9)

where N(t) denotes the number of pigeons in the current population; Wi represents the
weight coefficient of the ith pigeon, calculated according to the following equation:

Wi =
1

f (xi(t)) + ε
(10)

ε is a positive real number. The formula for updating the pigeon position in the landmark
operator is as follows:

xi(t + 1) = xi(t) + rand ×
(

xcenter(t)− xj(t)
)

(11)

Pigeons who are not familiar with the surrounding environment will gradually be
eliminated by the group, according to their fitness value. The number of pigeons in the
population after each iteration elimination is:

N(t + 1) =
N(t)

2
(12)

The basic process of the PIO algorithm (see in Figure 1) is summarized as follows:
Step 1: Initialize the position information x and velocity information v of the popula-

tion, as well as other parameters;
Step 2: Calculate the fitness value of each pigeon;
Step 3: Select the global optimal solution xgbest;
Step 4: If the termination condition is not met, skip to step 5, otherwise skip to step 6;
Step 5: Update individual position and velocity information according to Formulas (7)

and (8);
Step 6: Eliminate pigeons and update the position information of the remaining

pigeons according to Formula (9);
Step 7: If the termination condition is met, output the position information of the

pigeon; otherwise, t = t + 1, jump to step 2.
At this stage, there is less research on community detection based on the PIO algo-

rithms, and only literature [38] has conducted related studies. However, the algorithm
exhibits a very disappointing performance. Compared with most multi-objective algo-
rithms for community detection, both the accuracy and stability of community partitioning
lag far behind the mainstream community detection algorithms. The superior optimization
power of the PIO algorithm is not properly used, which is the starting point of our research
in this paper.
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Figure 1. The flowchart of the PIO algorithm.

3. Proposed Method

Traditional community detection algorithms are mainly based on clustering methods,
which have been tested and found to have the disadvantages of both accuracy and com-
plexity. Thanks to the proposal of numerous community structure evaluation functions,
intelligent optimization algorithms began to be applied to the field of community detection.
Since single-objective optimization algorithms suffer from resolution limitations when
optimizing modularity, multi-objective optimization was used. The PIO algorithm is one
of the intelligent optimization algorithms with the advantage of high search capability.
In this section, the proposed multi-objective pigeon-inspired optimization community
detection method called MOPIO-Net is described in detail. The framework of the MOPIO-
Net algorithm can be explained in three main steps, including initialization, search, and
mutation. During the initialization stage, a specific representation is used to construct the
solution, which illustrates a community structure of a network, to clearly and easily display
and update the community structure. Thereupon, using this representation, the solutions
are initialized by the PGLG method [39]. Then, for each pigeon, two objective functions,
including the Negative Ratio Association (NRA) [40] and Ratio Cut (RC) [41] are calculated.
In the search phase, inspired by the search strategy in the PIO algorithm, we developed a
discretization map and compass operator search process. We try to obtain the local optimal
and global optimal solutions by computing the Normalized Mutual Information (NMI)
value of each pigeon. In the mutation phase, like the landmark operator in the PIO algo-
rithm, it moves toward the best community structure led by the globally optimal pigeon.
This is reflected in the genetic learning of each pigeon with the best global individual.
If the community labels on the same gene locus are inconsistent, the mutation will be
carried out based on the neighbor’s community label. Finally, considering that suboptimal
community partitioning is often caused by misclassification of those nodes that are at the
community boundaries, we performed a realignment strategy for these boundary nodes
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in anticipation of reducing misclassification. The flowchart of the proposed method is
illustrated in Figure 2 and additional details are described in the following subsections.

Figure 2. The flowchart of the MOPIO-Net algorithm.

3.1. Solution Representation and Initialization

A complex network is essentially a graph structure, and mining its community struc-
ture based on intelligent optimization algorithms requires a reasonable representation.
To accommodate the discrete optimization problem, the position and velocity of the pigeon
swarm are redefined.

3.1.1. Location Representation

Label-based representation and locus-based adjacency representation [42] are two
common encoding methods. Both two methods consider each solution as a combination
of genes, each of which belongs to a node in the graph. Each gene locus in the locus-
based adjacency method is randomly linked to a neighbor node, where Genei = j denotes
the existence of linking edges between nodei and nodej. This method can automatically
obtain the number of communities by decoding, but frequent encoding and decoding
operations need to be performed. In the label-based representation method, each gene locus
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is generated by tag propagation. Genei = j denotes the nodei belonging to the Communityi.
If Genei = Genek, it means nodei and nodek are members of the same community. However,
the label-based method has the drawbacks of redundant representation and blind search
space. The two representations are shown in Figure 3.

(a)

(b)

Figure 3. Two methods of representation. (a) The label-based representation. (b) The locus-based
adjacency representation.

From Figure 3a, although the representations of label 1 and label 2 are different, they
represent the same community structure. There are problems with expanding search
space, repeating searches, and damaging solution quality when searching. Therefore, we
perform redundant operations on the solution based on label-based representation. We
obtain the number of communities represented by the current individual based on the
community coding at the individual’s locus and recode the individual based on the number
of communities. As shown in Figure 3a, the label1 position codes only have 3 and 8, thus
indicating two communities. We force the community coded in front of the gene position in
the individual coding to be 0, 1 is added to the subsequent community coding, and finally,
label1 is recoded as label1 = [0, 0, 0, 0, 1, 1, 1, 1]. The specific algorithm process is shown in
Algorithm 1.

Algorithm 1 Location Representation
begin

1: for each Xi of solutions do
2: Count the number of clusters Cnum in the network
3: if Maxlabel > Cnum then
4: for each label in Xi do
5: Renumber according to the principle of smaller nodes and smaller numbers
6: end for
7: end if
8: end for

3.1.2. Velocity Representation

Velocity guides the flight of pigeons, and a suitable velocity determines whether the pi-
geons can reach their destination and how fast they can arrive. Excessive velocity can cause
pigeons to fly over their destination, while conversely, it can lead to a decrease in the range
of the pigeon’s activity. The velocity is discretized and expressed as Vi = {v1, v2, · · · , vn}.
If vi = 1, then it means the label of xi in the corresponding position will change; otherwise,
the element xi remains unchanged.
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3.2. Fitness Computation

The choice of fitness function is the key to improving the quality of solution opti-
mization, whether in multi-objective optimization problems or in community detection
problems. We optimize the objective functions with RA and RC. RA represents the average
number of edges that exist between nodes in all communities. The value of RA is inversely
proportional to the number of communities in the network. The larger the value of RA,
the smaller the number of large communities with a high density of internal connections
into which the network will be divided. The average values of connections between nodes
within a community and other communities represented by RC are summed. The value of
RC is proportional to the number of communities in the network. The smaller the value
of RC, the sparser the edges connected between communities, and the greater amount of
nodes within the community. This will divide the entire network into a smaller number of
community structures with high internal connection density. We chose these two metric
functions because, as we mentioned in the previous section, the tighter the intra-community
connections and the sparser the inter-community connections, the clearer the community
structure and the higher the algorithm recognition accuracy. From Equations (13) and (14),
we can observe that the RC denotes the ratio of the number of inter-community edges to the
number of communities. The RA denotes the ratio of the number of intra-community edges
to the number of communities. In order to obtain a clearer community structure, when
randomly grouping nodes, it is desired that the number of intra-community edges is as
high as possible (RA) and the number of inter-community edges is as low as possible (RC).
To formulate the problem as a minimum optimization problem, we take the opposite of the
objective function RA, called the negative ratio association (NRA). Both objective functions
are minimized simultaneously, allowing the community partitioning results to be explored
toward the community structure we expect to obtain (internally tight, externally sparse).

Assume an undirected acyclic graph G = (V, E) contains |V| nodes and |E| edges.
The corresponding adjacency matrix is A. A community structure C = {C1, C2, · · ·Cm}
denotes the division of the graph G into m communities. In the non-overlapping community
detection study, L(C1, C2) defines the number of edge connections that exist between two
communities. The two objective functions are formulated as follows:

RC =
m

∑
i=1

L(Ci, C̄i)

|Ci|
(13)

NRA = −RA = −
m

∑
i=1

L(Ci, Ci)

|Ci|
(14)

L
(
Ci, Cj

)
= ∑i∈Ci ,j∈Cj

Aij (15)

3.3. Search Strategy

In the PIO algorithm, the pigeons follow the global optimal solution at the map and
compass operator and the central solution at the landmark operator. In the community
detection problem, we utilize the mutation operation instead of the original search strategy
for the second stage.

In the discrete process, the update rule for redefining the pigeon’s velocity is:

Vt+1
i = sig(e−RtVt

i + rand(Xgbest ⊕ Xt
i )) (16)

where ⊕ denotes the XOR operator. The role of the sig() function is to map the velocity
into [0, 1] space, and y = sig(V) is defined as:{

yi = 0, i f rand(0, 1) ≥ sigmoid(vi)
yi = 1, i f rand(0, 1) < sigmoid(vi)

(17)
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where the sigmoid function rule is:

sigmoid(x) =
1

1 + e−x (18)

Based on the redefined velocity update rule, we now represent the pigeon’s position
update rule in the following discrete form:

Xt+1
i = Xt

i ⊗ Vt
i (19)

The above equation indicates that during the tth iteration, Xi generates new posi-
tion information Xt+1

i =
{

xt+1
i1 , xt+1

i2 , · · · , xt+1
in

}
guided by the velocity Vi. The specific

computation rules for the ⊗ operator are:{
xt+1

ij = xt
ij, i f vt

ij = 0
xt+1

ij = MaxNj, i f vt
ij = 1

(20)

Among them, MaxNj is a positive integer that represents the label with the highest fre-
quency in the neighbor set of nodej. We choose this method to update location information
because the more neighbors a node joins in the community, the closer the community struc-
ture is internally and the sparser it is externally. This is exactly the community structure we
expect to detect. The schematic diagram of the overall search process in the first stage can
be found in Figure 4.

Figure 4. The first phase of the search update strategy.

Boundary nodes connect multiple communities, and their neighbors belong to different
communities. Compared to non-boundary nodes, boundary nodes are more prone to
misclassification. The misclassification of boundary nodes is one of the main factors
leading to poor community structure. Therefore, to improve the quality of the partitioning
results, we conducted different strategy mutation operations on boundary nodes and non-
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boundary nodes. Set the mutation probability to Pm. If the node belongs to a boundary node,
the probability of mutation is increased accordingly to the number of types of community
labels that the neighbors belong to. The specific mutation rules are as follows, where k is
the count of the different communities to which nodei’s neighbor nodes belong. The second
phase of the search update strategy can be summarized as shown in Figure 5.

Figure 5. Schematic diagram of boundary node strategy.

In the second search phase, the algorithm pseudo-code is shown in Algorithm 2.

Algorithm 2 Mutation
begin

1: for each node in Xi do
2: for each neighbor of node do
3: count the number of different labels (knode)
4: end for
5: if rand < knode × Pm then
6: labelnode = MaxNnode
7: end if
8: if Xnew dominate Xi then
9: Xi = Xnew

10: else
11: rollback
12: end if
13: end for

The MOPIO-Net algorithm has three main processes: initialization, search and muta-
tion. The first process complexity is analyzed according to Algorithm 1 as O(popsize ∗ n);
the second process complexity is mainly calculated by the fitness as well as the position
update, and the complexity is O(2 ∗ popsize). The complexity of the third process of muta-
tion is analyzed according to Algorithm 2 as O(popsize ∗ n). Therefore, the complexity of
MOPIO-Net is O(Gen ∗ popsize ∗ n), where popsize denotes the population size, n denotes
the number of nodes in the network, and Gen denotes the number of iterations.

4. Experiment

In this section, we evaluate the performance of the proposed MOPIO-Net algorithm
against 10 outstanding community detection methods on an extended Girvan Network
benchmark. The algorithmic community detection results were then compared across
several real-world networks, such as the Zachary Karate Club Network, the American
College Football Network, and the Dolphin Network. The baseline community detection
methods that we compared are shown in Table 1 below.
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Table 1. A brief introduction to eleven baseline algorithms, and the corresponding literature.

Method Description In Ref

GA-Net Single objective optimization method
Fitness function: Modularity [14]

BGLL Single objective optimization method
Fitness function: Modularity [43]

Meme-Net Single objective optimization method
Fitness function: module density mass function. [16]

MOGA-Net Multi-objective optimization method
Fitness function: Community score, community fitness [19]

MOEA/D-Net Multi-objective optimization method
Fitness function: RC, NRA [44]

MOPSO-Net Multi-objective optimization method
Fitness function: Kernel K-Means, RC [20]

MODPSO Multi-objective optimization method
Fitness function: Kernel K-Means, RC [39]

MOPIO Multi-objective optimization method
Fitness function: NRA, RC [38]

MOCD-ACO Multi-objective optimization method
Fitness function: NRA, RC [45]

MODCRO Multi-objective optimization method
Fitness function: Kernel K-Means, RC [25]

4.1. Parameter Setting

The MOPIO-Net algorithm was implemented on PyCharm 2022. The algorithm
relies on a computer with an Intel CoreTM i5 CPU 2.67 GHz and 16 GB (14 GB usable) of
memory configuration. The parameters of all the above algorithms were set according to
the corresponding papers, the population size was set to 100, and the maximum number
of iterations was set to 100; the map and compass operators’ iteration was set to 80; the
landmark operators’ iteration was set to 20 and the mutation operator Pm = 0.2.

4.2. Evaluation Metric

To evaluate the performance of the MOPIO-Net algorithm with other baseline al-
gorithms in the community detection problem, we chose NMI as the evaluation metric.
The NMI measures the similarity between the real community structure of the network
and the community structure identified by the algorithm. The more similar the community
structure identified by the algorithm is to the real community structure, the closer the value
of NMI is to 1; on the contrary, the value of NMI is close to 0. The value of NMI ∈ [0, 1].
Suppose, the real community structure partition is D =

{
D1, D2, · · · Dq

}
and the commu-

nity structure partition identified by the algorithm is E =
{

E1, E2, · · · , Ep
}

, where q and p
denote the number of communities in the real partition D and the algorithm’s partition E,
respectively. By introducing the confusion matrix C and calculating the similarity of the
two partitions, the NMI can be defined as:

NMI =
−2 ∑CD

i=1 ∑CE
j=1 Cij log

(
CijN

/
Ci.C.j

)
∑CD

i=1 Ci. log(Ci./N) + ∑CE
j=1 C.j log

(
C.j

/
N
) (21)

where CD(E) denotes the number of communities in partition D(E), Ci.(.j) denotes the sum
of the elements in row i (column j) of the confusion matrix, and N denotes the number of
nodes in the network.
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4.3. Experimental Results of the GN Extended Benchmark Network

The nodes in the GN extended benchmark network form four communities, each
containing 32 nodes, totaling 128 nodes. The average degree of nodes in the network is 16.
The GN extended benchmark network is an overt synthetic network with the complexity
controlled by the parameter µ. Each node within the same community is connected to other
nodes in the community with probability 1 − µ. We expect tightly connected nodes within
a community and sparse connections between communities (µ → 0), such that the network
has low-performance requirements for the algorithm. Increasing the value of µ, the more
ambiguous the network structure is, which is the opposite of our desired network topology.
When µ = 0.5, the proportion of edge connections within a community is the same as the
proportion of edge connections between communities, which is a great challenge for the
community detection algorithm. We performed 11 sets of comparison experiments of the
GN extended benchmark networks, corresponding to networks generated with parameters
µ from 0 to 0.5 at 0.05 intervals.

Figure 6 shows the average NMI values obtained for 10 independent runs of each
algorithm on the GN extended network. All algorithms detect the true community structure
when µ takes the values of 0, 0.05, and 0.1. The GA-Net algorithm is unable to identify
the true community structure at µ = 0.15, which is far below the maximum upper limit of
µ when other algorithms can identify the true community. As the parameter µ increases,
our proposed MOPIO-Net algorithm exhibits the best performance results. When µ = 0.5,
the community structure identified by MOPIO-Net has only a few node misclassifications
from the real situation, and the NMI value is close to 1. In addition, the MOPSO-Net and the
MODCRO exhibit accuracy rates second only to the MOPIO-Net algorithm. The MOPIO-
Net algorithm can identify the real community structure more accurately when the network
community structure is ambiguous.

Figure 6. The value of NMI obtained by 10 baseline algorithms and the MOPIO-Net algorithm on the
extension of the classical GN extended benchmark network.
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4.4. Experimental Results on the Real Networks

Three classical real networks, the Karate Network [45], the Dolphin Network [46],
and the American College Football Network [11], were chosen to test the performance of
all algorithms.

The Karate Network was established by Zachary in 1977. The karate network mainly
recorded the social network of 34 karate members over a 2-year period due to disagreements
between coaches and administrators. The real karate network community structure is
shown in Figure 7.

Figure 7. The Zachary’s karate club network.

The Bottlenose Dolphin Network is a network established by David Lusseau in 2003.
The Bottlenose Dolphin Network focuses on how often the 62 bottlenose dolphins living
in New Zealand’s Doubtful Sound are counted by humans, with higher count frequency
indicating a more likely connection between two bottlenose dolphins. The real partition of
the bottlenose dolphin network is shown in Figure 8.

The American College Football Network was statistically completed by Girvan and
Newman in 2000. The American College Football Network simulates the regular season
schedule of teams in the NCAA Division I football league for the 2000 season. The real
community structure of the American College Football Network is shown in Figure 9.
The details of each network are shown in Table 2.

Table 2. The number of nodes, the number of edges and the number of communities in the real network.

Networks Number of Nodes Number of Edges Number of Communities

Zackary’s karate club 34 78 2
Dolphin network 62 159 2

American College Football Network 115 613 12
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Figure 8. The Bottlenose Dolphins network.

Figure 9. The American College Football network.

Table 3 shows the NMI values of the detection results of all algorithms under the three
real networks. The final partitioning results of MOPIO-Net under three real networks are
shown in the following Figure 10. The karate network and the Dolphin network were
consistently consistent with the true results in 20 independent runs. In the American
College Football network, we have just one node, No.90, with the wrong partition. At this
point, the NMI value of the partitioning result is 0.932. The recognition accuracy exhib-
ited by the single-objective optimization algorithm is clearly unsatisfactory. The GA-Net
algorithm and BGLL algorithm have lower NMI values, where BGLL is mainly oriented
to large-scale network recognition and does perform well in US college football network
recognition, and has higher NMI values compared to several multi-objective optimization
algorithms such as the Meme-Net algorithm, MOGA-Net algorithm and MOPIO algo-
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rithm. The multi-objective optimization algorithm has more stable recognition and a higher
NMIavg value when dealing with the community detection problem. Using a set of conflict-
ing optimization objective functions does improve the average accuracy of recognition. Our
proposed algorithm MOPIO-Net shows the best partitioning in both the Karate network,
the Dolphin network and the American College Football network with high values of
NMIavg. The higher accuracy compared to other multi-objective optimization algorithms
(MOGA-Net, MOPIO and Meme-Net) is because our algorithm includes not only crossover
and mutation but also the search strategy of the underlying algorithm. The reason for the
higher accuracy compared to multi-objective optimization algorithms such as MOPSO-Net
and MODPSO is our treatment of boundary nodes, which reduces the interference factor
of identification from the error source. This indicates that the enhancement of community
detection partitioning accuracy by crossover and mutation alone is limited. In terms of
stability, MOPIO-Net is analyzed from the values in the table and performs better on the
basis of guaranteed accuracy. On the one hand, MOPIO-Net stability is affected by the ran-
domized algorithm itself. On the other hand, it is also affected by the update strategy that
is affected by the update strategy. Each node may be randomly selected when approaching
its neighbors, which affects the stability of the algorithm.

(a) (b)

(c)

Figure 10. (a) The detected clusters of the best result of the MOPIO-Net on Zachary’s karate network.
(b) The detected communities of the best result of the MOPIO-Net on the Bottlenose Dolphin network.
(c) The detected community structure of the MOPIO-Net on the American Football network.
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Table 3. Results obtained by the eleven methods on three real networks.

Karate Dolphin Football

Method N MImax N MIavg N MIstd N MImax N MIavg N MIstd N MImax N MIavg N MIstd

GA-Net 1 0.6654 0.3221 0.6267 0.6264 0.0001 0.9104 0.8977 0.0253
BGLL 1 0.7076 0.2912 0.6956 0.5144 0.1451 0.8358 08358 0
Meme-Net 1 0.8644 0.1221 1 0.7889 0.3103 0.8616 0.7669 0.0897
MOGA-Net 1 1 0 1 0.9389 0.0057 0.8045 0.7950 0.0015
MOEA/D-Net 1 1 0 1 1 0 0.9296 0.9294 0.0001
MOPSO-Net 1 1 0 1 1 0 0.9325 0.9316 0.0004
MODPSO 1 1 0 1 1 0 0.9298 0.9278 0.0008
MOPIO 1 0.860 0.2242 1 0.8022 0.2442 0.8160 0.7542 0.0606
MOCD-ACO 1 1 0 1 1 0 0.9374 0.9286 0.0117
MODCRO 1 0.9673 0.0197 1 0.9495 0.0377 0.9000 0.8674 0.0412
MOPIO-Net 1 1 0 1 1 0 0.9423 0.9336 0.0091

Bold represents the best results by default in the experimental data.
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5. Conclusions

In this paper, a novel multi-objective community detection algorithm based on a
discrete PIO named MOPIO-Net has been proposed. The proposed method uses a multi-
objective optimization strategy to solve the community detection problem. Our proposed
method minimizes the set of conflicting objective functions, NRA and RC, to obtain a
partition structure with tight intra-community connectivity and sparse inter-community
connectivity. We changed the movement strategy of the pigeon in the PIO algorithm. In the
new strategy, a similar crossover operation is performed by the pigeon to move closer to the
optimal solution. For the community detection misclassification problem due to boundary
nodes, we implemented different strategies for the community classification of boundary
nodes. To verify the performance of the MOPIO-Net algorithm, a synthetic network and
three real networks were tested. The results were compared with 11 excellent community
detection algorithms. The experimental results show that MOPIO-Net detects partitions
closer to the real community structure under all networks. It is verified that our discretiza-
tion strategy is feasible, the algorithm avoids the resolution limitation problem, and the
proposed boundary node variation strategy further improves the recognition accuracy.

The work in this paper validates the effectiveness of the MOPIO-Net algorithm
in static network community detection. We hope to further explore the possibilities of
MOPIO-Net in overlapping networks and dynamic networks in the future. We also con-
sider how MOPIO-Net should deal with special networks such as signed networks and
weighted networks.
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