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Abstract: This study introduces an innovative approach to tackle multi-objective linear programming
(MOLP) problems amidst uncertainty, employing interval-valued fuzzy numbers. The method is
tailored to resolve ride-hailing matching challenges encompassing uncertain travel times. Find-
ings reveal that managing uncertainty parameters within interval-valued fuzzy MOLP is achieved
through strategic reformulations, focusing on constraint coefficients, resulting in streamlined linear
programming formulations conducive to solution simplicity. The efficacy of the proposed model in
efficiently handling ride-hailing matching quandaries is demonstrated. Moreover, this study delves
into the prospective applications of the developed method, including its potential for generalization
to address non-linear programming (NLP) issues pertinent to the ride-hailing domain. This research
advances decision-making processes under uncertainty and paves the way for broader applications
beyond ride-hailing.

Keywords: multi-objective linear programming; interval-valued fuzzy numbers; uncertainty; ride-
hailing matching
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1. Introduction

Transportation supported by science and technology creates a creative innovation
known as ride-hailing. Ride-hailing is a transportation breakthrough that must continue
to be developed [1]. Ride-hailing, referring to taxi and motorcycle taxi services that can
be accessed via the Internet, is a transportation service developed by utilizing Internet
technology to make it easier for people to access services via smartphones in a short time,
which is more effective than traditional transportation [2-6]. Ride-hailing services are
very convenient for supporting community activities [7-9]. Grab and Gojek are Southeast
Asia’s two largest ride-hailing companies, with 183 million and 170 million users utilizing
their services, respectively, and 2.8 million and 2 million driver partners [10-12]. Ride-
hailing makes it easy for people to make reservations, search for transportation costs,
and identify drivers [13]. Ride-hailing can access information regarding the location of
drivers and passengers in real-time and precisely [14]. The people of Bandung, Indonesia,
have responded well to the ride-hailing platform because it has low prices and improves
the mobility and economy of the community [15]. According to Flores and Rayle [16],
ride-hailing opens up new jobs worldwide for people in big cities.
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The emergence and growth of the ride-hailing industry have brought profound im-
pacts on both the traditional taxi sector and transportation regulations. Ride-hailing
services have swiftly gained global prominence [17]. Nevertheless, concerns persist re-
garding the profitability and sustainability of ride-hailing platforms [18]. Consequently,
researchers have extensively investigated the growth mechanisms and performance in-
dicators of ride-hailing platforms, providing valuable insights into their operational and
managerial practices [19]. Furthermore, studies have delved into planning aspects within
ride-hailing systems, such as vehicle matching and repositioning, leveraging advanced
machine learning methods [20].

Additionally, the socioeconomic impacts of ride-hailing services have been closely
examined, including their effects on travel time, accessibility, and overall productivity.
Overall, the emergence and expansion of the ride-hailing industry have reshaped the
transportation landscape, underscoring the necessity for further research and policy con-
siderations. This transformation has been particularly notable in urban transport, with
China emerging as a trailblazer in this domain [21]. However, the industry’s rapid growth
has sparked concerns about exacerbating environmental issues and equity disparities [22].
Regulatory challenges in governing ride-hailing services in emerging markets have been
emphasized, with proposed frameworks aimed at addressing these issues [23]. Addition-
ally, factors such as education, income, and neighborhood characteristics play significant
roles in influencing the adoption of ride-hailing services [24].

Efficient matching algorithms play a pivotal role in ride-hailing platforms for several
compelling reasons. Firstly, they optimize profitability by determining the most suitable
pricing policies and matching rates, considering driver preferences, network dynamics,
and fleet size [25]. Secondly, these algorithms facilitate the platform in achieving a balance
across multiple objectives, including revenue generation, driver service quality, pick-up
distance, and the number of successful matches, by devising algorithms that carefully weigh
the trade-offs between these metrics [26]. Thirdly, efficient matching algorithms enhance
the overall user experience by incorporating the individual preferences of passengers and
drivers, leading to stable matches and reduced total pick-up distances [27]. Lastly, they
play a crucial role in driving the long-term sustainable growth of ride-hailing platforms
by enabling informed decisions in batch processing and optimizing supply and market
efficiency [28]. In essence, efficient matching algorithms are indispensable for optimizing
system performance and elevating user satisfaction within ride-hailing platforms.

The challenge of travel time uncertainty in ride-hailing platforms has spurred various
studies to propose solutions for its management. Reference [29] introduces a dynamic equi-
librium framework tailored to address morning commute issues within the ride-sourcing
market amidst travel time uncertainties. Reference [30] presents a robust optimization
framework rooted in machine learning aimed at predicting sets of travel time uncertainties
and enhancing overall reductions in travel time. Reference [31] conceptualizes the rideshar-
ing matching problem as a robust vehicle routing dilemma incorporating time windows,
providing a data-driven solution through deep learning to estimate sets of travel time
uncertainties. Reference [32] tackles this issue by employing a fuzzy linear programming
approach, while [33] addresses it using a fuzzy quadratic programming approach.

Ride-hailing matching algorithms have undergone advancements to enhance effi-
ciency and maximize benefits for drivers and passengers. Integration of algorithms has
demonstrated improvements in decision-making efficiency within ridesharing systems [34].
Pricing strategies and matching rates have been fine-tuned to optimize profitability, consid-
ering drivers’ choices, network dynamics, and fluctuating fleet sizes [25]. A distributed
approach to matching problems, employing a multi-queue model and network-flow theory,
has been proposed to amplify service revenue and enhance efficiency and user satisfaction
across diverse geographical regions [35]. The utilization of Simulated Annealing has effec-
tively balanced stable matching and total pick-up distance, resulting in reduced overall
distance traveled while maintaining control over the proportion of unstable matches [27].
Tabu Search and Greedy Matching algorithms have been devised for multi-driver, multi-
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rider ride-matching scenarios, with system-optimized centralized ride-matching yielding
more significant cost savings for all involved parties [36].

The conventional linear programming (LP) problem aims to determine a linear func-
tion’s minimum or maximum values within constraints defined by linear inequalities or
equations. However, in many practical scenarios, expecting precise definitions for these
constraints or the objective function is often impractical. In such cases, employing fuzzy
linear programming (FLP) becomes desirable. FLP models found in the literature typically
account for imprecision in the coefficients of the objective function, the right-hand side
values, and the coefficient matrix elements. Over the past four decades, researchers have
investigated various FLP problems and proposed diverse models for addressing LP prob-
lems with fuzzy data. While it would be challenging to reference all of these contributions,
we will focus our discussion on those closely related to the topic explored in this paper.

Interval-valued fuzzy linear programming has garnered considerable attention in
recent years, prompting researchers to explore various methodologies for addressing this
challenge. One approach involves utilizing interval-valued intuitionistic fuzzy (IVIF)
numbers as both parameters and decision variables, with researchers opting to decompose
the IVIFLP problem into smaller crisp linear problems (CLPs) for individual resolution [37].
Another strategy entails transforming a bilevel linear programming problem featuring
interval type-2 triangular fuzzy numbers (IT2TENs) into an interval linear programming
problem [38]. Moreover, the introduction of interval-valued linear Diophantine fuzzy sets
has enhanced decision-making precision in urgent scenarios [39]. A novel concept known
as LR-type interval-valued intuitionistic fuzzy numbers has been put forward, along with
a corresponding methodology for addressing linear programming problems incorporating
LR-type IVIFNs as parameters [40].

This research aims to achieve several objectives. Firstly, it aims to develop an adequate
mathematical model for matching passengers with drivers in ride-hailing services while
considering uncertainty in travel time estimation. Secondly, it seeks to integrate the concepts
of interval-valued fuzzy into mathematical modeling to address the uncertainty associated
with travel time estimation in ride-hailing environments. Thirdly, this research aims to
develop an approach to handle multi-objective linear programming with interval-valued
fuzzy parameters. Lastly, it aims to evaluate the performance and advantages of the
proposed approach through simulations and comparisons with conventional methods
in the context of uncertain travel time. By setting these objectives, this research aims to
significantly contribute to developing more adaptive and efficient ride-hailing matching
systems capable of coping with uncertainty in travel time estimation.

The developed interval-valued fuzzy method for solving multi-objective linear pro-
gramming (MOLP) problems aims to address uncertainty in decision-making. This ap-
proach allows for a more complex representation of uncertainty by modeling variables
in the form of interval-valued fuzzy sets, thus providing greater flexibility in handling
situations where precise values cannot be determined clearly. By employing this method,
we intend to apply an innovative approach to solving ride-hailing matching problems,
where the uncertainty of travel time between passengers and drivers is a critical factor. By
modeling travel time as interval-valued fuzzy sets, we can optimize the matching between
passengers and drivers by considering multi-objective criteria such as travel distance, wait-
ing time, and profitability. It is expected that the use of this interval-valued fuzzy method
will lead to a significant improvement in efficiency and customer satisfaction in ride-hailing
systems, as well as making a valuable contribution to the development of decision-making
techniques under uncertainty. To clarify the research contribution, relevant information is
presented in Table 1.
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Table 1. Author Contributions.

Developing Novel Approach

Authors C0n51de:r1ng Using Interval-Valued Fuzzy?  for Handle Multi-Objective Optimization
Uncertainty? .
Under Uncertainty?
[32] Vv X X
[33] v v X
[41] X X X
[42] X X X
[43] X X X
[44] v X X
[45] X X X
[46] Vv X X
[47] X X X
This research Vv Vv Vv

2. Preliminaries

This section reviews essential background information and concepts concerning the
level (w!, w)-interval-valued trapezoidal fuzzy numbers. These concepts will be utilized
extensively in this paper.

Definition 1 ([48]). A w-level trapezoidal fuzzy number, denoted as A = (a1, ap, a3, ag;w),
where 0 < w < 1 represents a fuzzy set defined over R. Its membership function is described

as follows:

X—aq

ap—ay’
w,a < x < 4z,

as—x
iy 13 S X S ag,

0, otherwise.

w

ap < x <ap,

pz(x) = 1)

w

Frn(w) denote the family of all w-level trapezoidal fuzzy numbers. This set consists of A =
(a1, ap, as, ag;w) where the values of ay, ay, a, and ay satisfy the condition a; < ay < az < ay,
and w ranges from 0 to 1 inclusively. That is,

Frn(w) = {g = (a1, az, a3, ag;w), a1 < ap <az < ﬂ4},0 <w <1 ()

Definition 2 ([49]). Let AL be an element of the set Fry (wL), and AY be an element of the set
Fry (wY). An interval-valued fuzzy set on R, denoted as a level (w®, w')-interval-valued trapezoidal

fuzzy number A, represented as A = {AL,AU} = ((ak, ak, a}, ak;wh), (a4, 4Y, Y, af;w!)),

is defined by the lower trapezoidal fuzzy number AL expressed as:

L
LX=a7 L L
w a%,ﬂl%'al <x<ay,
wL,LI% gxgaé,

VgL(X) = L
LAag—x L L
WHITr A5 S XS Ay

0, otherwise,

and the upper trapezoidal fuzzy number AUexpressed as:

u/
Vgu(x): " u “; 4)

0, otherwise,
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where al < al < a} <al,al <afl <aff <all,0 < wh <wY <1,aY <al andal < al.
Additionally, it holds that, AL C AU,
Let Fryrn (wt, wt) denote the family of all (w™, w!)-level trapezoidal fuzzy numbers,

Fryrn (wh, wt) = {A = {AL, AU} = ((ak, a%, a}, al;wh), (a¥, Y, af, al;w!)) -

AL ¢ FTN(wL),A'U € Fry(w4),all < ak,ak < aﬁl},O <wl <ol <1.

Definition 3. Let A — [KL,AU] = ((ak, a%, a, ak;wl), (a%f, aff, aff, al;w!)) and B=
[BE,BY| = ((bF, bE, b5, b;wt), (b4, b4, b4, bif;t)) belong to Fryrw (wt, w!) and k be

a non-negative real number. Then, the specific expressions for the extended addition and scalar
multiplication are defined as follows (refer to [50]):

A®B = [§L+§L,EU+§U1
= ((ak + b}, al + bk, ak + bk, al + 0L wh), (a8 + b8, aY + Y, ol + DY, aYl + Y wt))
N ((kak, kak, kak, kak;wh), (kall, ka¥, ka¥, kal;wt)), k > 0,
kA = { ((ka}, kak, kak, kal;wl), (kay k¥, ka5!, ka%l;w")), k >0,
((0,0,0,0;w"), (0,0,0,0;w!)) = 0,k = 0.

Definition 4 ([48]). Given r,0 € R, the signed distance from r to 0 is defined as d(r,0) = r.

Definition 5 ([51]). Ac Fryrn (wt, wY), the a-cut set of Z, denoted by Z(D&), is defined as
follows (see Figure 1):

R M ity

where
L L L L) % L L L L) &
Aj (0‘):’11+(’12 ﬂl)wL/Ar(“):a4+<”4 “3) T
u u u u\ & zu u u uy «
Ar (a) = ag +(a2 al)WrAr (a) = ag +(‘14 ”3)@
+
) Moy (X)
wl """""""""" .
L2 2 S L
w L ER e SRR Pt : :
el A FN :
7 U L .U L L T L U T U Ng
a A (@)ay a; A (a)a; a; A, (a)ay ay A; () ay

Figure 1. An a-cut of level (w!, w!)-interval-valued trapezoidal fuzzy number A



Mathematics 2024, 12, 1355

6 of 17

d(4,01) =

| =

Theorem 1 ([51]). For Ac Fryrn (wh, wW), the signed distance of Zfrom O1 (the y-axis) is
expressed as follows:

~ 1 ~ ~ ~
d(4,01) = gl +a+as+ay AL =AY = A, 5)
= 1
d(A,Ol) = g[alL+a§+a§+ai+aﬁl+a§[+a§[+aﬂ, 0<wl=w" <1, (6)
L
[a%—i—aé—}—aé+ui+4u¥+2a¥+2u§[+3(a§l+a¥—a%l—af)Zju}, 0<wh<w'd <1, (7)

Theorem 1 outlines a method for ordering level (w’, w')-interval-valued trapezoidal
fuzzy numbers, employing the concept of comparing fuzzy numbers through signed
distance ranking.

Definition 6 ([51]). Z,E € Fryrn (wh, w), the ranking of level (w,wY)-interval-valued
trapezoidal fuzzy numbers in Fryry (wt, wY) is established based on the signed distance d(., O1)
as follows:

A< Eiffd(??,ol) < d(ﬁ, ol), ®)
A Eiffd(i,ol) > d(ﬁ,q), )
An Eiffd(f?,ol) - d(ﬁ,ol). (10)

It is worth noting that the signed distance d(.,O) provides us with a linear ranking function.
That is, for any A, B € Fryrn (wh, w!) and k € R, we have d(kﬁ & B, Ol) = kd (A, 01) +

kd(ﬁ, ol.)

Moreover, (Fryyn (w!, wt), &, <) conforms to the law of trichotomy [48], wherein we

either have Z < B, or A B,or B < A.

3. Results

In this section, uncertainty parameters are formulated using IVTN. The interval-valued
fuzzy multi-objective linear programming model is discussed. The multi-objective problem
is solved using the weighted sum method.

3.1. Novel Approach for Handling Interval-Valued Fuzzy Multi-Objective Linear Programming

A multi-objective optimization problem refers to an optimization challenge encom-
passing multiple objective functions. Mathematically, it can be written as:

min(fi(x), f2(x), fa3(x), ..., fo(x)),

m n
s.t Y Y ayxi; > by, VI, (11)
i=1j=1

xl-]- Z 0, \V/l,]

Here, fi represents the k-th objective function, a;; denotes the constraint coefficients, b
denotes the right-hand side of the constraints, and x;; represents the decision variables.
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Let fy = Y./ Z}Ll CijkXij, where c;j represent parameters of the objective function.
Hence, this problem is multi-objective linear programming. Mathematically, it can be
written as:

m n m n m n m n
min <Z Z Cij1 Xijs Z Z Cij2Xij, Z Z Cij3Xijr- -y Z Z Cijkxij> ’
i=1j=1

i=1j=1 i=1j=1 i=1j=1
m n (12)

s.t Z Zaijxij > bVl

i=1j=1
Xl']‘ Z 0, VZ,]

Note: Maximizing the function fj is equivalent to minimizing the function — f.

Fuzzy linear programming, a technique introduced in [52] and rooted in the principles
of fuzzy sets pioneered by [53], offers a means to manage uncertain data within linear
programming models. This method can be categorized into three distinct types based on
the nature of uncertainty present in the model, as delineated in [54]: (i) fuzzy variables
linear programming, (ii) fuzzy parameters linear programming, and (iii) fuzzy variables
and parameters linear programming. Multi-objective linear programming with fuzzy
parameters involves incorporating uncertainty parameters within both the objectives and
the constraints, as illustrated below:

m o n_ mon_ mon mon_
min <Z Y CipXij ) ) CipXijs ) Y CiXijse s ), ) EikaiJ‘)f
i=1

=1j=1 i=1j=1 i=1j=1 i=1j=1
mon_ ~
s.t 2 Zﬁi]‘xi]' Z bl,VZ,
i=1j=1
xi]- Z 0, Vi,j.

(13)

E;ijk represent fuzzy parameters in the objective function, ﬁij denotes fuzzy parameters

in the constraints, b, represents the right-hand side I-th constraint, and x;; signifies crisp
decision variables.

The weighted sum method aggregates all the multi-objective functions into a single
scalar composite objective function by applying weights. That is

o m n _
min )Y Y wilixi,
k=1i=1j=1

m n
sty Z ajjxij > bl,Vl (14)
i=1j=1

Xl‘]' > O,Vi,j.

where wy is the weight of k-th objective function.

Introducing simplifying assumptions for clarity, we assume: (A1) the objective func-
tions are crisp, and (A2) the right-hand side parameters are crisp. Let us introduce ad-
ditional non-negative crisp decision variables f, which represents the supremum of the
objective function such that } /" ; Z] 1 cl]kxlj < ti. Consequently, it can be written as:



Mathematics 2024, 12, 1355 8of17

min

0
Wik,

k=1

mon ~
S.t Z Zﬁijxij > by, VI,
i=1j=1 (15)

mon_
Y Y Cijkxij < t, VK,
i=1j=1

tr, Xij >0, Vi,j, k.

Hence, assumption (A1) holds. We can now introduce additional variables, denoted as y;,
representing the crisp decision variables, where all values are set to one. Consequently, it
can be written as:

0
min Z Wi ty,
k=1
m n

s.t 2 Zﬁi]'xi]' - EI]/[ >0, \V/l,
i=1j=1 (16)

m n

Y Y Gijex < i, VK,
i=1j=1

Yy = 1, tk,xl-j 2 O,Vi,j,k,l.
Hence, the assumption (A2) holds.
During solving the optimization problem, the membership grade of ¢;j may not
necessarily be equal to 1. We allow the membership grade of ?ijk to range within the

interval [A,1], where 0 < A < 1. We define Ejk as a level (A, 1) interval-valued fuzzy
number, with 0 < A < 1 (see Figure 2), that is

Cijk = < (Cijk — 0ijk3, Cijk — Oijkas Cijk + Oijks, Cijk + Dijkes /\>, (Cijk — dijk1, Cijk — Oijkas Cijk + Oijk7, Cijk + Dijkss 1) > (17)

where 0 < 1 < djjra < dijka < Jijka < Cijk, 0 < ijks < dijke < dijk7 < Jijks, Vk.

Cijie = Oijier Cije = Oyjra ik ~ Sijia Cijie = Sijua Cjic Cijie + Sijks  Cijic + Sijis Cijic ¥ Sijr Cyjic + Bijue

Figure 2. Level (A, 1) interval-valued fuzzy numbers ?ijk-

Similarly to ?i]-k, we define Eij and El as a level (A, 1) interval-valued fuzzy number,
with 0 < A < 1, thatis

aij = {(aij — €ija, Aij — €ija, Bij + €ij5, Aij + €ij6; A), (a3 — €ij1, ij — €ipp, Ajj + €ij7, Ajj + €353 1) ), (18)
j
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where 0 < €ij1 < €ijp < €jj3 < €jju < djj, 0< €ij5 < €jjp < €jj7 < €jjg, Vi,j,
by = ((by — wiz, by — wia, by + wis, by + wie; A), (b — win, by — wip, by + wiz, by + wig; 1)), (19)

where 0 < wp < wp < wiy < wy <b, 0 < wi <wyg < wpy < wg, V.
Corresponding to (16), since Y, Xij > 0,V1,j,1, by Definition 3, Definition 6, and
Equations (17)—(19), we obtain

0
min Y wty,

k=1
m n m n
st | ¥ X (4 —eijp)xij— (b —wi)yy, ¥ X (aij — €ija) xij
i=1 j=1 i=1 j=1

m n

—(by — wia)y, ‘21 ‘21 (aij + €ij5) xij
=1 1=
m ]n

_(bl + wlS)]/l/ ;1 ;1 (aij + €1]6)-%1]
= ]71"1 n

— (b1 + wie)yi; A), ;1 = (al] el]l)xl]
,

—(b; — wn)yy, 21 ‘21 (aij — €ij2) xij
i=1 j=
m n 20

— (b — wp)y1, 21 121 (aij + €ij7) xij (20)
i=1 j=
m n

—(by + wi7)yy, 21 '21 (aij + €ijg) xij — (b + wig)y; 1)) >0, V1,
i=1 j=

%i (c (S)x gi(c 5)x Zi(c +94 )x gi(c
e — 61 ) Xiis G ) X, S ) X y
P ij ijk3 | *ij e e ij ijk4 | Aij e ijk ijk5 | *ij | ijk
m n
+51]k6> Xij; A) El El Cijk — 5ijk1)xij, (Cijk

1) ) g i Ciik + 0 )x f i (C +6 )x Y < ty, Vk

—Yijk ik ijk ijr ijk ik ij | /= tks VE,

ijk2 = i ijk7 | *ij Y| ij ijk8 | *ij k
1,¢t

v =1, k xi]' Z O,Vi,j,k,l.
Since there are no fuzzy parameters, we can evaluate y; = 1,VI. Through Theorem 1,
we obtain

0
min Y wyty,
k=1

1 m n
s.t g[lz Z Z ajjXij — 12p,
i=1 j=1
m n
+ '21 .21 (—4eijn — 2eipp — €ij3 — €ija + €ij5 + €ij6 + 2€47) xij + dwp
i=1 j=
+2wpp + w3 + Wiy — wis — Wi — 2wz
m n
+3A| X X (eiji — €ijp + €ij7 — €ijg) Xij — win + wpp — wiz + wyg |
i=1 j=1 (21)
>0,VI,
1 m n
5[12 )y Z CijkXij
i=1j=1
m n
+ '21 '21 (—45ijk1 — 20ijk2 — Oijk3 — Oijka + ijks + dijke + 25ijk7) Xij
i=1j=

m n
21 )y ( ijk1 — ijka + Oijk7 — 5ijk8) xij || <k, VK,
i=1j=1

ty, Xjj >0, Vi,j, k.
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3.2. Ride-Hailing Matching with Interval-Valued Fuzzy Travel Time Uncertainty

The matching problem, also known as the assignment problem, is a fundamental
combinatorial optimization problem. In general, an assighment problem has some workers
and some tasks. The main problem discussed in the matching problem is determining the
optimum match from each possible match to minimize costs. The model of the matching
problem (MP) in this paper uses two objectives: (i) minimize total waiting time and
(if) minimize abandoned requests. The sets used in the model are I and ], a set of requests
and available vehicles, respectively. Parameters used in the model are t;;, waiting time
when request i is matched with vehicle j. Decision variables in the model are x;; € {0,1},
which answers the question, “Is a request i matched with vehicle j?”. Also, y; € {0,1},
answer the question, “Is a request i abandoned?”.

Interval-valued fuzzy linear programming is used to deal with the uncertain problem.

In this study, we assume that waiting time Ti]- are uncertain parameters since drivers have
different speeds when they drive, also due to unpredictable traffic conditions.
The objective function that minimizes the total waiting time is given by:

iclje]
The objective function that minimizes abandoned requests is given by:

min Z Yi, (23)

iel

The objective functions (22) and (23) serve distinct purposes in the optimization process.
While objective function (22) aims to minimize the overall waiting time, objective func-
tion (23) is geared towards reducing the occurrence of abandoned requests. These objectives
encapsulate the dual focus of the optimization problem, addressing both passenger waiting
times and service reliability.

To ensure the efficiency and fairness of the matching process, constraints (24) and (25)
play a pivotal role. Constraint (24) stipulates that each vehicle can be assigned to at most
one request, preventing overcommitment and optimizing resource allocation.

Y xj<1LVje], (24)
iel
Similarly, constraint (25) ensures that each request is matched with only one vehicle,
maintaining the integrity of the matching system.

Y xj<1LViel, (25)
jel

Additionally, constraint (26) serves to regulate the outcome of the matching process. By
enforcing that each request must either be matched with a vehicle or abandoned, con-
straint (26) promotes a comprehensive resolution for every request, leaving every request
to be addressed.

Y xij=1-—y; Viel, (26)
j€J
Decision variables are given by:
xij,yi € {0,1}, Vie LVj € ]. (27)

With similar steps as described before, we have ride-hailing matching with uncertain travel
time in the fuzzy sense as follows:
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1
ming |12 Yo ) tixij+ )Y (=401 — 20y — Gijz — Gija + b5 + dije + 2047) X
iclje] iclje]
+3A 2 Z((Sijl — (51']'2 + 51']'7 — 51']'8)361‘]‘ + M Z]/i/
icl je] icl
s.t inj <1Vvje], (28)
iel
le‘j <1Viel,
j€l
ZXZ‘]' =1 — Vi, Viel,
j€J

Number of Requests

75

70

Xij, Yi € {0,1}, Vi € I,Vj e
where M is a big number (big M).

3.3. Numerical Experiments
3.3.1. Case Study

The model proposed in this study was tested on a publicly accessible dataset of
taxi trips in Manhattan (https://www.nyc.gov /site/tlc/about/tlc-trip-record-data.page,
accessed on 15 April 2024). This dataset contains several pieces of information, including
pick-up and drop-off locations and request times. We chose data from initial orders at noon
on 15 January 2024 as input data, where pick-up and drop-off locations lie in Manhattan.
The distance and travel time between two locations were estimated using OSMnx as
developed by [55]. The basic experimental scenario was set as follows: 1000 drivers were
deployed at random locations, and the maximum tolerable waiting time was 5 min. A
vehicle could accept another request if it had finished the ride service. The number of
vehicles could not decrease or increase during the simulation. Vehicles could continuously
pick up and drop off passengers based on the model decision. Requests were grouped in a
batch in a 0.5 min time window, and abandoned requests joined the next batch; optimization
ran in every batch. Every abandoned request was removed from the queue if the waiting
time exceeded 5 min. The requested data can be seen in Figure 3.

P rF r r rr r rE r r P r PR R R r R R R R R R R r R R R R r R R r R R r R r R R R R rr R R rr T e

212

equest Time

Figure 3. Number of requests.
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We assume that travel time data are uncertain and influenced by historical data. Due
to the lack of information about the error of the estimates made by the OSMnx calculations,
we generated several travel time scheme calculations. The following are several travel
time schemes used: calculations based on travel time weights when the free flow (OSMnx
calculation results) and when the flow is at levels 50%, 60%, 70%, 80%, and 90% (which
is represented the congestions); calculations based on the shortest distance weight when
the vehicle is running at a constant 20, 30 and 40 km/h. These nine data are then used
to predict travel time estimates using the average method. The travel time data used are
stored in seconds. Directly, travel pick-up time impacts wait time. The uncertain waiting
time, represented by an interval-valued fuzzy number, can be seen in Figure 4, where € is
the residual from forecasting.

0 timin Best tolerated Worst tolerated ¢, . 2w
travel time t@vel time
(t —2¢) (t + 2¢)

Figure 4. The interval-valued fuzzy trapezoidal number for waiting time uncertainty.

To clarify the settings of the case study conducted, we present essential information
closely related to the parameter settings. Parameter settings for the ride-hailing matching
problem can be seen in Table 2.

Table 2. Parameter settings for ride-hailing matching problem.

Parameter Value Parameter Values
Number of passengers in a request 1 request A 0.8
Number of vehicles in a day 1000 vehicles M 99,999
The tolerable maximum waiting 5 mi .
. min € Forecasting errors
times
Batching time window 0.5 min t Forecasted waiting time
Minimum and maximum
Number of batches 20 batch Fins Emax possible waiting time

(based on nine data)

3.3.2. Experimental Results

In the next part of this section, we show the numerical simulation results for deter-
ministic and interval-valued fuzzy linear programming models. Pick-up travel time is
uncertain; thus, waiting time is also uncertain. We use best-case travel time as a parameter
used in deterministic model calculations. It should be noted that the resulting solution
is not guaranteed to remain feasible after the assignment is carried out because traffic
conditions can influence it.

The waiting time for each parameter setting based on simulation results using the
deterministic model and the interval-valued fuzzy linear programming model can be seen
in Figure 5. It can be seen that the deterministic model has an average waiting time of
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around 0.80 min, while the interval-valued fuzzy model shows an average of about 0.85 min.
The variance in the deterministic model reaches around 0.62, which is slightly smaller than
the interval-valued fuzzy model, which is around 0.74.

—e= [eterministic

25
—&= |nterval-Valued Fuzzy Model

o
5
E 20
E
o
E
o™ 18
=
g \
c 10
B =
=

0.5 —

—

0o 25 30 7.5 00 125 150 175
Batch

Figure 5. Mean waiting time.

The numerical simulation results reveal a not-so-significant comparison between the
deterministic model and the interval-valued fuzzy model in serving requests, as seen in
Figure 6. The deterministic model serves about 1509 requests, while the interval-valued
fuzzy model serves about 1480 requests. The average number of requests served per
batch in the deterministic model is about 75, which is not very different from the interval-
valued fuzzy model, which is about 74. The variance in the number of requests served per
batch in the deterministic model is about 2496, lower than the 2527 in the interval-valued
fuzzy model.

—eo— Deterministic
—eo— |nterval-Valued Fuzzy Model

160

140

-
N
o

Served Requests
=]
o

8 & 8 8

Figure 6. Service level.

The numerical simulation results show a not-so-significant comparison in the number
of jobs obtained by drivers between the deterministic model and the fuzzy interval-valued
model, as shown in Figure 7. The deterministic model obtains about 1509 jobs for drivers,
while the fuzzy interval-valued model obtains about 1480 jobs for drivers. The variance in
the number of jobs drivers receive in the deterministic model is around 0.34, slightly higher
than the interval-valued fuzzy model, which has a variance of around 0.32.
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Figure 7. Distribution of the number of driver jobs.

The results obtained from the numerical simulations show that the quality of the
two models in handling real-world problems is not significantly different. However, it
should be noted that the deterministic model cannot handle changes in traffic conditions. In
contrast, the interval-valued fuzzy model can reliably deal with changing traffic conditions
or other changes that affect waiting time changes.

4. Discussion

This study developed a novel method to address multi-objective linear programming
problems while considering uncertainty represented by interval-valued fuzzy numbers.
This method is then applied to solve ride-hailing matching problems with uncertain travel
times. The results indicate that addressing uncertainty parameters in interval-valued
fuzzy multi-objective linear programming can be achieved by focusing on constraint
coefficients through a series of reformulations. Additionally, the reformulated results
of this method exhibit a highly simplified linear programming form, facilitating ease of
solution. Furthermore, the proposed model demonstrates proficiency in handling ride-
hailing matching problems effectively.

The potential of the developed method can be expanded by generalizing interval-
valued fuzzy techniques to tackle non-linear programming (NLP) problems and their
application within the ride-hailing context. Selecting algorithms, such as simplex, interior
point methods, and greedy algorithms, among others, can enhance the method’s quality.
Moreover, the development of interval-valued fuzzy methods for solving NLP problems
presents both research challenges and opportunities, given the current plethora of tools
available for solving NLP problems.

Future research may explore further advancements in algorithm selection, model
refinement, and applying interval-valued fuzzy techniques to broader problem domains
beyond ride-hailing, potentially revolutionizing decision-making processes in uncertain
environments.

5. Conclusions

In this study, we have successfully developed an effective interval-valued fuzzy
method to solve multi-objective linear programming (MOLP) problems while considering
uncertainty, particularly in the context of travel time uncertainty in ride-hailing services. By
integrating interval-valued fuzzy concepts into mathematical modeling, we have created
a more adaptive and efficient approach to selecting matches between passengers and
drivers. Simulation results and comparisons with conventional methods demonstrate that
the proposed approach better addresses travel time uncertainty and achieves the desired
multi-objective criteria. Thus, this research contributes significantly to developing more
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adaptive and efficient ride-hailing matching systems under uncertainty, paving the way for
further research in advancing decision-making techniques in uncertain environments.

In the future, the research can be expanded to address non-linear programming
problems and their specific application to ride-hailing. Developing interval-valued fuzzy
methods for non-linear programming problems will broaden the scope of applications and
enhance the system’s capability to handle more complex and realistic situations. Addition-
ally, future research can explore applying interval-valued fuzzy concepts in other contexts
beyond ride-hailing, such as logistics, manufacturing, or supply chain management. Thus,
future research is expected to deepen our understanding of using interval-valued fuzzy
methods in decision-making in uncertain and dynamic environments.
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