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Abstract: Organic pollutants, distinguished by their persistence and bioaccumulation in the envi-
ronment, pose significant ecological and health threats that surpass those of traditional pollutants.
Crucial to understanding their environmental behavior, health risks, and mitigation strategies, is the
screening and identification of these pollutants. This process indispensably employs functional mate-
rials, among which molecularly imprinted polymers (MIPs) prove to be particularly advantageous
because of their specific recognition capabilities and extensive application range. This review presents
cutting-edge techniques and strategies for the fabrication of MIPs, including surface imprinting
techniques and dummy molecular strategies. It encapsulates the last five years’ advancements in MIP
research within the domains of sample pretreatment, as well as optical and electrochemical sensing
analysis. The objective of this discourse is to potentially foster the evolution of MIP technology and
establish the groundwork for its transition from lab-scale to commercial production.

Keywords: organic pollutants; screening and identification; molecular imprinting; sample pretreatment;
optical sensor; electrochemical sensor

1. Introduction

Anthropogenic activities have resulted in the release of a vast array of organic pollu-
tants into the natural environment. These pollutants, particularly unstable organic matter
with high degradability, contaminate surface waters, leading to an overgrowth of aer-
obic and anaerobic microorganisms. Overgrowth, such as that observed in black and
smelly urban rivers and algal blooms in eutrophic waters, contributes to the production
of greenhouse gases [1,2]. For instance, approximately 48% of the 3.59 × 1011 m3/year of
wastewater produced globally is discharged untreated into the environment, with South
and Southeast Asia being the major contributors. This untreated discharge correlates with
the high prevalence of black and smelly surface water in these regions [3]. Persistent
organic pollutants (POPs), such as polychlorinated biphenyls and chlorinated paraffins, are
resistant to degradation and are often toxic or harmful. They can bioaccumulate through
the food web, posing threats to human health and ecological balance [4,5].

Polluted water contains numerous contaminants, including antibiotics, dyes, phenols,
and antioxidants. A study by He [6] highlighted the widespread use of sulfonamides
because of their low toxicity and high antibacterial performance. However, the residual
effects of these compounds have raised significant concerns. Long-term use of sulfonamides
can cause side effects such as hematopoietic turbulence, allergies, and hypothyroidism [7,8].
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As a kind of drug that can inhibit and kill bacteria, antibiotics have been widely used
in medical and health, livestock and poultry breeding, agricultural production, and other
industries. However, antibiotics can accumulate in the human body through the food chain,
causing organ damage and hearing loss even at low doses [9]. In addition, the abuse of
tetracycline antibiotics can increase bacterial resistance, reducing the efficacy of bacterial
infection treatments [10]. Rhodamine B (RhB), an organic dye commonly used in the leather,
textile, and printing industries, can cause chronic toxic symptoms when inhaled by humans,
thus leading to its classification as a Group III carcinogen by the International Agency for
Research on Cancer (IARC) [11].

Phenolic pollutants, often originating from industrial and agricultural activities, are
highly toxic. For example, Bisphenol A (BPA), used in the manufacture of various food
cans, baby bottles, and plastic containers, can interfere with the human endocrine system
and cause DNA damage. Most nitrophenols have mutagenic effects [12,13]. Other POPs,
such as per- and polyfluoroalkyl substances, polychlorinated biphenyls, dioxins, and
furans, are characterized by their high toxicity, persistence, bioaccumulation, and long-
distance migration. These pollutants pose immeasurable threats to ecosystems and human
health [14].

Environmental substrates affected by organic pollutants include water, soil, atmo-
sphere, plants, and animals, which are the focus of environmental studies [15,16]. Sev-
eral analytical methods, such as high-performance liquid chromatography (HPLC), gas
chromatography (GC), and liquid chromatography–mass spectrometry (LC-MS), have
been used to quantitatively analyze organic pollutants in different substrates [17,18].
Kaykhaii et al. [19] synthesized a thorium metal–organic skeleton as an adsorbent to
carry out trace solid-phase extraction of BPA in bottled drinking water samples for de-
tection by HPLC and revealed accurate detection of very low concentrations of BPA
(0.002–0.456 ng mL−1). The detection limit was reported to be as low as 0.001 ng mL−1.
Similarly, Desmarchelier et al. [20] used LC-MS to screen tetracycline and its isomers in
meat, fish, and seafood products and various dairy products. The results of this method
were verified by European laboratory residue guidelines, with the false negative and false
positive rates of compounds in 93 samples being 0%, indicating high accuracy. Although
chromatographic methods exhibit high accuracy, they involve bulky instruments and skilled
operators and have strict requirements for sample pretreatment and concentration [21,22].
Therefore, the development of simpler, faster, cheaper, and more reliable techniques for the
analysis and detection of emerging organic pollutants in the environment is crucial. In this
regard, molecularly imprinted polymers (MIPs), which offer structure–activity predetermi-
nation and specific recognition, have garnered significant attention in recent years.

2. The principle of MIPs
2.1. Concept of Molecular Imprinting Technology

Molecular Imprinting Technology (MIT) leverages MIPs to discern specifically im-
printed molecules, also known as template molecules. Owing to their exceptional selectivity,
recognition, and practicability, MIPs have found extensive applications in areas such as
chromatographic separation, solid-phase extraction, bionic sensing, and simulated enzyme
catalysis [23].

The fundamental principle of MIT bears similarity to the antigen–antibody-specific
binding theory. The process of creating MIPs encompasses the following three stages: pre-
assembly, polymerization, and template elution (Figure 1). Preassembly of the functional
monomer and the template molecule is performed through covalent or non-covalent bonds
to form host–guest complexes, facilitated by the selection of an appropriate solvent. Subse-
quently, the polymerization system is supplemented with a suitable quantity of crosslinking
agents and initiators, leading to the formation of a highly crosslinked polymer with robust
mechanical properties under optimal temperature or light conditions [24]. The ultimate
step entails the removal of template molecules from the polymer through the employment
of suitable eluents, culminating in the creation of pores that align with the size and shape
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of the template molecules. These pores house functional groups that can interact with the
template molecules, thereby bestowing the imprinted polymer with a specific recognition
function and creating a bionic recognition system akin to the antigen–antibody system.
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2.2. Synthesis Mechanism of MIPs

MIPs are synthesized through a process that involves embedding template molecules
during the copolymerization of functional monomers and crosslinkers. The initiation of
polymerization is typically facilitated by thermal activation or ultraviolet activation of the
initiator. Following elution, cavities are generated that mirror the shape and binding capac-
ity of the template molecule. The process of polymerization consists of the following five
components: template molecule, monomer, crosslinking agent, initiator, and solvent [26].

The interaction between the template molecule and the functional monomer can be
categorized into three types as follows: covalent bonding, non-covalent bonding, and
semi-covalent bonding. In covalent bonding, reversible covalent bonds are formed between
the target molecule and the functional monomer. However, the covalent force between
MIPs and the analyte presents challenges in achieving thermodynamic equilibrium and
issues such as slow binding and difficult dissociation. Non-covalent bonding, on the other
hand, involves electrostatic attraction, charge transfer, hydrophobic action, and van der
Waals forces. This type of bonding offers more flexibility in the selection of template
and monomer types. Because of its ease of bonding and template removal, non-covalent
bonding is more commonly used. Mehdinia et al. [27] synthesized MIP using methacrylic
acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as
a crosslinking agent. The template molecule p-Nitrophenol (4-NP) was bound through
hydrogen bonding. The MIP, when combined with magnetic nanoparticles, was used for
selective extraction and detection of 4-NP, demonstrating high adsorption capacity, good
selectivity, and rapid analysis.

Semi-covalent blot hybridization can reduce non-selective binding. In this method, the
template molecule is covalently bound to the functional monomer before polymerization,
and the analyte is recombined through non-covalent interactions to improve selectivity
and shorten the equilibrium time. Wang et al. [28] synthesized MIP using EGDMA as a
crosslinking agent and MAA monomer. The template (dichlorodiphenyltrichloroethane)
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was removed by hydrolysis under acidic conditions, leaving an active site cavity in the
MIP because of the non-covalent interaction of hydrogen bonds. This polymer was able to
quickly absorb dicofol in aquatic products with high specificity.

2.3. Preparation of MIPs

The choice of polymerization technique plays a vital role in the synthesis of MIPs with
specific size and shape. A variety of polymerization methods are routinely employed, en-
compassing bulk polymerization, suspension polymerization, precipitation polymerization,
and electro-polymerization. These methodologies each possess their own unique advan-
tages and drawbacks, which are succinctly summarized in Table 1. Table 2 summarizes
different categories of MIPs for the identification of emerging pollutants. The selection of
an appropriate polymerization method, therefore, requires careful consideration and is
contingent on the desired properties of the resultant MIPs.

Table 1. The summary of commonly used polymerization methods.

Method Principle Advantages Disadvantages Reference

Bulk polymerization

The template, functional monomer,
crosslinking agent, and initiator are
uniformly mixed in a solvent and

sealed in a vacuum environment for
crosslinking polymerization.

• Convenient operation;
• Single system.

• Irregular shape;
• Complex post-processing

process;
• Long adsorption time;
• Difficult template elution.

[29,30]

Suspension
polymerization

The organic phase composed of the
template, functional monomer,

crosslinking agent, and pore-making
agent is dissolved in a solvent. After
adding a dispersant, the solvent is
sealed and stirred at high speed.

• Uniform particle size;
• Stable polymer;
• Easy to operate.

• Complex operation;
• Difficult preparation process;
• Susceptible to material

properties.

[31]

Precipitation
polymerization

The template, monomer, crosslinker
and initiator are dissolved in the

reaction medium for polymerization,
and an insoluble molecularly

imprinted microsphere (MIM) is
formed in the reaction medium.

• Simple operation;
• Large specific surface

area.

• Need to use a lot of solvents;
• High viscosity requirements

for solvents.
[32,33]

Sol-gel method

In the presence of the template
molecule, the inorganic precursor is
dissolved in a low-molecular-weight

solvent medium and then formed
into a gel by hydrolysis and

polycondensation.

• Mild operating
conditions;

• Convenient
preparation;

• Good thermal stability;
• Strong chemical

stability.

• The material is brittle;
• The requirement for pH

is high.
[34,35]

Electrochemical
polymerization

The polymerization of monomers on
the electrode is due to oxidation or

reduction or decomposition into free
radicals or ions by electrochemical

electrolysis in an appropriate
electrolyte cell.

• Simple device;
• Adjustable polymer

structure;
• Uniform surface

impress.

• Electrodes require
modification materials to
increase sensitivity.

[31,36]

Table 2. Different categories of MIPs for the identification of emerging pollutants.

Pollution Polymerization Method Linear Range LOD Reference

Fluoroquinolones bulk polymerization 0.023–0.033 µg L−1 - [37]
Norfloxacin precipitation polymerization 1–200 µg L−1 0.67 µg L−1 [38]

Sertraline antidepressant drug suspension polymerization 5.0 × 10−9–7.5 × 10−7 M 1.99 × 10−9 M [39]
Amoxicillin sol-gel method - 73 pM [40]
Bisphenol A sol-gel method - 0.015 ng µL−1 [41]
Chlorpyrifos electro-polymerization 1–218.92 µg L−1 0.36 µg L−1 [42]

2,4,6-Trinitrophenol electro-polymerization - 21.5 nM [43]
Perfluorooctanesulfonate electro-polymerization 0.1–4.9 nM 9.5 nM [44]
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Depending on the location of the recognition sites, molecularly imprinted polymers are
mainly prepared by the embedding method and surface molecular imprinting method. The
recognition sites of molecularly imprinted polymers prepared by the embedding method
are mostly distributed in the interior of the polymer, and the sites on the surface of the
polymer are less distributed. In practice, molecularly imprinted polymers prepared by the
embedding method have problems such as the difficulty of removing template molecules,
the high mass transfer resistance inside the imprinted polymer, and the small effective
size. At present, the embedding method mainly refers to precipitation polymerization,
suspension polymerization, and bulk polymerization.

2.3.1. Embedding Method

Bulk polymerization is recognized as the predominant method for MIP aggrega-
tion. This technique involves the pre-arrangement of functional monomers (e.g., MAA)
around the template molecule within an organic solvent. Subsequently, copolymeriza-
tion is performed with an excess crosslinking agent (e.g., EGDMA) under photochemical
or thermochemical conditions or in the presence of a free radical initiator. A study by
Mirzajani et al. [37] synthesized MIP fiber on a stainless-steel wire using ciprofloxacin as a
template. This method was used for solid-phase microextraction of Fluoroquinolones (FQs)
in biological fluids and drug samples. Detection limits for the four FQs ranged from 0.023
to 0.033 µg L−1 (S/N = 5), with concentration ranges from 0.1 to 40 µg L−1. The sample pre-
treatment system exhibited high thermal stability (300 ◦C), robust reproducibility, and long
service life. It was successfully applied to the quantitative analysis of FQs in serum, plasma,
and tablet formulations of actual samples, with a recovery rate between 97% and 102%.

However, MIPs prepared by bulk polymerization present certain limitations, such
as a complex and time-consuming preparation process, limited recognition sites, and
subpar binding ability. To circumvent these challenges, precipitation polymerization has
been extensively studied. The principle of this method is that once the polymer chain
grown in the solution reaches a certain mass, it precipitates out of the solution, forming
a highly cross-linked polymer microgel. MIP is then obtained after centrifugation [45].
Lu et al. [38] developed a novel type of Enrofloxacin and norfloxacin double-template
molecular-imprinted polymer (dt-MIPs) using precipitation polymerization (Figure 2).
When combined with high-performance liquid chromatography–diode array detector
(HPLC-DAD), two FQ drugs were detected in actual water samples. The recoveries ranged
from 80.9% to 101.0%, with relative standard deviations of 0.9–6.9%. Their study not only
demonstrates immense potential in the determination of FQs but also contributes to the
research on double/multi-template imprinting methods. A.T. Mohd Din et al. [46] showed
that SiO2 core–shell MIP particles prepared by precipitation polymerization (Si@MIPs-CAP)
demonstrated a higher affinity for CAP than their unimprinted counterparts (NIPs-CAP
and Si@NIPs-CAP). Hence, Si@MIPs-CAP, as an effective water-compatible adsorbent, can
be used to remove CAP in the aqueous phase.
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permission from [38].

Suspension polymerization is a type of heterogeneous polymerization in which
droplets of the pre-polymerized mixture are suspended in a continuous phase, such as
water, mineral oil, or perfluorocarbons. This method can produce spherical beads that
range in size from a few microns to millimeters. Owing to its superior heat dissipation
performance, suspension polymerization is particularly suited for industrial applications
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where heat transfer limitations are not a concern. Using ethylene glycol maleic acid acrylate
as a crosslinking agent, acrylic acid as a functional monomer, and Camptothecin (CPT) as
a template molecule, Wang et al. [47] prepared CPT MIP microspheres using membrane
emulsification–suspension polymerization. The resulting MIPs exhibited a regular spher-
ical surface with a porous surface, with particle size primarily ranging between 3 and
5 µm. A HPLC column prepared with MIPs as the stationary phase demonstrated high
separation efficiency. Moreover, the MIP column was effectively applied to the separation
and purification of CPT from the extract of Camptotheca acuminata fruit.

Although traditional covalent and non-covalent MIP preparation methods offer certain
advantages, they also have notable limitations, including easy template leaching, poor
thermal stability, and suboptimal repeatability. The sol-gel method is an effective means of
compensating for these limitations, as it produces MIPs with high chemical and mechanical
stability. This method uses a catalyst (acid, base, or ion) to dissolve the inorganic precursor
in a low-molecular-weight solvent medium for hydrolysis and polycondensation. The use
of strong and stable silicon-based materials in the sol-gel method enables the production of
longer-lasting imprinted selective cavities, thereby increasing service life. Wang et al. [48]
used 3-aminopropyl triethoxysilane as a functional monomer to synthesize an efficient MIP
on carbon quantum dots (MIP@CQDs) using the sol-gel method, as shown in Figure 3.
The study found that MIP@CQDs could be utilized for the quantitative detection of trace
4-NP in tap water, wastewater, and seawater, with recovery rates ranging from 95.1% to
107.8%. The detection range was 0–144 µmol L−1, and the detection limit was as low as
0.41 µmol L−1.
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2.3.2. Surface Molecular Imprinting Method

With the development of molecularly imprinted polymer preparation methods, it
has been realized that there are drawbacks such as the large particle size of the prepared
imprinted polymer, uneven distribution, and low imprinting efficiency of the bulk poly-
merization method. Although suspension polymerization, precipitation polymerization,
and other methods of preparing polymer microspheres have a greater improvement than
the method of bulk polymerization and can obtain a uniform distribution of particles and a
large specific surface area of the imprinted polymer, there are still shortcomings such as
the template molecules are difficult to elute and there are few effective recognition sites.
Therefore, surface molecular imprinting preparation technology has emerged and become
a research hotspot.

Surface imprinting refers to the technique of preparing imprinted polymers by car-
rying out polymerization reactions on the surface of specific carriers and controlling the
distribution of imprint recognition sites on the polymer surface or the carrier surface. The
preparation methods of surface molecularly imprinted polymers mainly include the car-
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rier sacrifice method, the electropolymerization method, and the carrier method. Among
them, the electropolymerization method is a method of directly generating an imprinted
polymer film by using electrochemical methods to make the functional monomers un-
dergo a condensation reaction on the surface of the electrode in the presence of a template
molecule and a functional monomer. The imprinted polymerized membrane prepared
by this method is thin, and when the imprinted molecules are removed, the binding sites
are uniformly distributed on the surface of the polymerized membrane, which can ef-
fectively improve the mass transfer rate of the responding molecules. In addition, the
method can reduce the non-specific adsorption and the phenomenon of template molecule
encapsulation. The thickness, pore size, and morphology of molecularly imprinted mem-
branes prepared by electropolymerization can be achieved by controlling the experimental
parameters (e.g., polymerization substrate, solution pH, supporting electrolyte, and func-
tional monomers). Therefore, electrochemical polymerization is a simple, convenient, and
controllable method for the preparation of imprinted membranes.

Willner et al. [49] successfully prepared a surface plasmon resonance sensor using the
method of electropolymerization, which can successfully detect organic trinitrotoluene. For
the detection of thiophenol, the detection limit of nano-gold electropolymerization is one
order of magnitude lower than that of direct polymerization. Liu et al. [50] polymerized
dopamine on the surface of a gold electrode to prepare a capacitive sensor of a molecularly
imprinted polymer, which has excellent selectivity and recognition performance for nico-
tine, and its detection range is from 1.0 to 25.1 µmol L−1. Although many scholars have
successfully prepared molecule-imprinted polymers in the field of electropolymerization,
the properties of the polymers are not ideal, and their crosslinking degree is low and
relatively unstable. In addition, there are relatively few functional monomers that can
be used for electropolymerization, including a few substances such as phenol, thiophene,
aniline, dopamine, and pyrrole.

3. Application of MIPs in the Screening and Identification of Emerging Pollutants

In recent years, the application of MIT in the analysis of organic pollutants such as
phenolic compounds, antibiotics, triazines, organic dyes, and synthetic hormones has
gained significant traction. Figure 4 introduces prevalent techniques employed for the
detection of organic pollutants based on MIT, including four methods for the pretreatment
and quantification of organic pollutants [51]. Among them, MIP–Solid-Phase Extraction
(MIP-SPE), Magnetic MIP (MMIP), and Dummy MIP (DMIP) are primarily used for sample
pre-processing and concentration. On the other hand, the MIP sensor represents a detection
method that amalgamates MIP with a variety of sensors. This technique serves as a
testament to the versatility and adaptability of MIT in the field of organic pollutant sensing
(Table 3).

Table 3. Application for detecting emerging organic pollutants based on MIPs.

Analytes Used Technologies Detection
Techniques Linear Range LOD Sample Reference

Pentazolol,
triazolone,
triazolol

SPE UPLC-MS/MS 0.0005–0.1 mg/L - Tobacco leaf [52]

Polychlorinated
biphenyls SPE GC-MS/MS - 0.003–2.705 µg/kg - [53]

Polycyclic
aromatic

hydrocarbons
SPE GC-MS/MS - 1–100 pg/mL Tap water [54]

Diazinon MMIPs GC 0.02–20,000 ng/mL 0.005 ng/mL Urine [55]

Organophosphate
pesticide MMIPs HPLC 0.5–2000 mg/L 0.062–0.195 mg/L Vegetables and

fruits [56]

Triazine
pesticides MMIPs UPLC-MS/MS 0.05–50 ng/g 0.005–0.02 ng/g Corn [57]
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Table 3. Cont.

Analytes Used Technologies Detection
Techniques Linear Range LOD Sample Reference

Nonyl phenol MMIPs HPLC 0.1–50 mg/L 0.1–0.3 µg/L Lake water, milk [58]

Bisphenol A DMIP - 0.1–5 µg/mL 0.03 µg/mL Tap water [59]

Disinfection
by-product DMIP HPLC - 2.3 ng/mL Tap water [60]

Bisphenol A MIP electrochemical
sensor CV 0.05–50 nmol/L 0.015 nmol/L Tap water, lake

water [61]

POPs MIP electrochemical
sensor CV 0.21–300 nmol/L 0.07 nmol/L lake water [62]

PFAS MIP electrochemical
sensor CV 0.025–2.5 µg/L 0.0075 µg/L Potable water [63]

Erythromycin MIP electrochemical
sensor DPV - 0.1 nM Tap water [64]

Cefixime MIP electrochemical
sensor EIS 20.0–950.0 nM 7.1 nM Urine, serum [65]

Bisphenol A MIP optional sensor Fluorescence - 12 µg/L Beverage [66]

Simazine MIP optional sensor PEC 0.1–500 µg/L 0.06 µg/L Lake water [34]

PFAS MIP optional sensor PEC - 0.01 µg/L Potable water [67]
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3.1. Sample Pretreatment
3.1.1. SPE

SPE is recognized as an efficient method for sample pretreatment. It includes the
extraction of analyte, enrichment, and elimination of matrix interference, thereby enhancing
the sensitivity and selectivity of the analysis. The purification analysis technique and
preconcentration are crucial for analyzing samples of low concentration [68]. A combination
of effective sample pretreatment technology and an appropriate instrumental analysis
method can facilitate the identification of virtually all compounds within a sample.

SPE is often chosen as a sample preparation method because of its time efficiency
and reduced solvent requirement compared with traditional liquid phase extraction. It
also offers superior reproducibility and selectivity when analyzing multiple groups. For
optimal results, the choice of SPE adsorbents becomes critical. Traditional SPE adsorbents
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such as C8 and C18 have disadvantages such as poor selectivity, a narrow application
range, small adsorption capacity, and low extraction efficiency [64]. To say the least,
molecularly imprinted solid-phase extraction (MISPE) can not only improve the selectivity
and enrichment capability of target molecules but also greatly improve the accuracy of
quantitative analysis and lower the detection limit [69]. Jing et al. [52] prepared MIPs
using pentazolol (TBZ) and triazolone (TDF) as template molecules by a multi-template
imprinting strategy and used them as SPE fillers for the pretreatment of tobacco leaves.
A method was established for the simultaneous detection of TBZ, TDF, nitrazole, and
triazolol residues in tobacco leaves. The method is simple, highly selective, and can achieve
accurate analysis of triazole fungicide residues in tobacco leaves. Azizi et al. [54] prepared
MMIPs for SPE by polymerization on a magnetic Fe3O4@SiO2 NP surface and successfully
enriched 16 kinds of polycyclic aromatic hydrocarbons (PAHs) in water samples. This
method is suitable for screening PAHs of various concentrations in water samples in
complex environments. Combined with instrumental analysis, it can provide a highly
selective and sensitive monitoring method.

3.1.2. Magnetic MIPs

Magnetic MIPs (MMIPs) have emerged as a highly efficient and rapid material for
sample pretreatment in separation processes, primarily because of their ability to be ef-
fortlessly separated from the sample using an external magnet [70]. This characteristic
places them at an advantage over traditional MIPs, as MMIPs can interact with the target
analyte more effectively and swiftly. Additionally, they exhibit high magnetic sensitivity,
require shorter pretreatment time, and enable the recovery of magnetic nanomaterials via
applied magnetic fields, thus qualifying as superior adsorbents for Dispersive Solid-Phase
Extraction (DSPE).

The fabrication of MMIPs involves the incorporation of magnetic nanoparticles (MNPs),
typically Fe3O4, into imprinted polymers. The popularity of Fe3O4 as the magnetic material
of choice can be attributed to the abundance of -OH groups on its surface, which easily
facilitate further modifications. The polymer shell is then coated on the magnetic Fe3O4 by
chelating various functional groups in the polymer, such as hydroxyl and amino groups,
with iron ions [71].

MMIPs overcome the challenge of separating traditional MIPs from matrix samples
and increase the number of imprinting sites via surface polymerization. Given their
simplicity, convenience, and speed, MMIPs have become a prevalent sample pretreatment
material and method for preconcentration and extraction of organic pollutants [72].

The solvothermal method and co-precipitation method are used to synthesize Fe3O4,
with the latter being more widely used because of its simplicity, low equipment require-
ments, and mild reaction conditions. For instance, as shown in Figure 5, Fe3O4@SiO2
magnetic nanoparticles have been prepared using TEOS and 3-methylpropenoxy propyl
trimethoxysilane and subsequently polymerized to form MMIPs. Electrodes employing
MMIPs have demonstrated lower detection limits (LOD = 10 nM) in river water and
industrial wastewater samples [73].

Fe3O4-SiO2 core–shell MMIPs were synthesized using a surface imprinting technique
for bisphenol-A with 4-VP at a magneto-actuated electrode, providing its rapid detection
in a variety of environmental samples [74]. In an aqueous solution, water-compatible
MMIPs were developed using 3-aminophenylboronic acid (APBA), a water-soluble FM,
and hexadecyl trimethyl ammonium bromide (CTABr) surfactant for Diethylstilbestrol
(DES). A composite of chitosan and MWCNTs (MWCNTs@CS) was applied to the surface of
a magnetic GCE to enhance the electron transfer rate and electrode surface area. The coating
of MIPs on a magneto-actuated GCE resulted in MIPs/MWCNTs@CS/CTABr/MGCE. The
MWCNT@CS provided a larger surface area for loading a substantial quantity of MIPs,
while the CTABr surfactant solubilized DES, thus enhancing sensitivity. The sensor demon-
strated excellent selectivity with a faster response time in lake water samples [75]. The
MMIP-based sensor exhibited decent LODs in the nM range and benefits of easy separation
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and reusability, which are important for cost-effectiveness. High surface functionalization
can enhance binding capacity and signal response, but it can also create a thick layer that
interferes with magnetism. Therefore, it is necessary to develop robust methods that allow
for strong magnetism and better surface group coverage. The stability of the sensor is a
critical function that can reduce the cost of MMIP-based sensors.
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3.1.3. Dummy MIPs

As can be seen, MIPs have garnered significant interest because of their exceptional
selectivity. However, a notable drawback associated with MIPs is the leakage of template
molecules. During the synthesis of MIPs, a considerable amount of template molecules
becomes embedded within the imprinted polymers, and these cannot be entirely eluted [76].
Instead, they are gradually released into the sample, leading to sample contamination and
a compromise in analytical accuracy. Dummy MIPs (DMIPs) are used to substitute the
target molecule in the synthesis of MIPs. DMIPs not only retain the selective recognition of
target molecule characteristics of MIPS, but they can also differentiate between dummy tem-
plates and target molecules through distinct chromatographic behaviors (chromatographic
retention time), thereby avoiding interference from template leakage [77].

A dummy template becomes necessary when the target analyte (i) is found in low
quantities in the sample; (ii) is extremely unstable and sensitive to light, temperature,
oxygen, and other factors; (iii) is highly toxic, with low safety levels, making experimental
operations challenging; (iv) contains unstable functional groups in its structure during
imprinting polymerization; (v) is prone to template leakage during the imprinting process
because of incomplete elution and dissociation of compounds.

Xu et al. [78] employed a DMIP-coated barbell stir bar adsorption extraction method
to analyze BPA in water. The DMIP-coated stir bar was prepared by in situ capillary
polymerization using 2,2-bis (4-hydroxyphenyl) butane (BPB), 4,4′-dihydroxydiphenyl
methane (BPF), 4-tert-butylphenol (PTBP), and tetrabrombisphenol A (TBBA) as dummy
templates. The method is simple, user-friendly, and repeatable. The new DMIP-coated
stir bar showed excellent selectivity for the target analyte BPA. The detection limit of BPA
was 0.003 µg L−1. The DMIP-coated stir bar is suitable for trace BPA analysis in real-
environment water samples without template leakage and can be used at least 100 times.

Micro disinfection byproducts (DBPs) produced during the disinfection of drink-
ing water have potential carcinogenicity, teratogenicity, and mutagenicity. Li et al. [60]
prepared a molecularly imprinted solid-phase microextraction (MIP-SPME) fiber coating
through in situ polymerization of dummy template molecules for the analysis of trace 2,
6-dichloindole-1, 4-benzoquinone (2,6-DCBQ) (Figure 6). The results indicated that the
single SPME fiber prepared under optimized conditions possesses a porous structure, a
large surface area, and good thermal stability. Given the strong structural recognition ability
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and molecular interaction with target molecules of the MIP-SPME, its imprinting factor
for 2,6-DCBQ was 4.7, and it exhibited excellent extraction selectivity. A sensitive method
for the determination of trace 2, 6-DCBQ in water samples by HPLC and UV detection
was established, with the detection limit reduced to 2.3 ng mL−1. Their recoveries were
reported to be 84.4–122%, and the relative standard deviations were 1.0–13% (n = 3).
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3.2. Molecularly Imprinted Electrochemical Sensor

The burgeoning interest in molecularly imprinted electrochemical (MIEC) sensors
is attributable to their inherent advantages, including high sensitivity, high selectivity,
low cost, ease of miniaturization, and automation [71–73]. These attributes make them
particularly effective in the detection of organic pollutants. At present, the field of MIEC
sensing is primarily focused on the design and development of new MIT for electrochemical
sensors [79]. The aim is to enhance the electron transmission rate and improve the sensitivity
and selectivity of these sensors.

MIEC sensors have found extensive application in the screening and identification
of phenolic compounds [75–77]. Kaya et al. [80] successfully prepared a porous MIEC
for the selective determination of bisphenol S (BPS). This was achieved by introducing
N-methylacrylyl-L-tyrosine functional monomer. The sensor exhibited high sensitivity and
excellent selectivity in the concentration range of 1–10 fM. The current peak of the sensor
decreased significantly with an increase in BPS concentration, demonstrating a detection
limit of 0.171 fmol L−1.

Sarpong et al. [81] used surface imprinting technology and a bifunctional monomer
imprinting strategy to imprint tetrabromobisphenol S (TBBPS) in the presence of MAA
and 4-aminophenthiophenol bifunctional monomers. The resulting MIEC sensor success-
fully determined TBBPS in tap water, drinking water, and lake water, with an LOD of
0.029 nmol L−1. As shown in Figure 7, Xu et al. [82] modified MIPs on the surface of
functionalized carbon felt (CF) electrodes using simple I situ thermal polymerization and
surface imprinting techniques. They developed a flexible electrochemical sensor based
on the synthetic receptor of BPA, With a linear range of 0.5–8.0 nmol L−1 and a LOD of
0.36 nmol L−1. The sensor demonstrated stable detection performance even after repeated
bending and stretching, indicating its adaptability for installation on both flat and curved
surfaces for field detection. The MIEC sensor was successfully used for the identification of
BPA in milk, yielding satisfactory results. Their work provides a promising platform for
the design of implantable, portable, and miniaturized sensors.

In the realm of sensor development, the predominant reliance on plasticized polyvinyl
chloride (PVC) film has been observed. However, this material is not without its drawbacks,
the most significant of which is the issue of plasticizer leaching. This problem prompted
researchers to seek alternatives. A noteworthy development in this regard is the work of
Liu et al. [83], who have pioneered the use of a copolymer of methyl methacrylate and
2-ethylhexyl acrylate as the sensing film (Figure 8). This has enabled the construction of a
molecular-imprinted potential sensor that does not require a plasticizer. The sensor has
demonstrated commendable sensitivity and selectivity, with an LOD of 32 nmol L−1. This
innovation has the potential to supersede the traditional PVC membrane sensor and offers
a promising approach for the development of membrane-based MIEC.
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In another seminal work, Huang et al. [61] prepared MIPs through the process of
grafting carboxylated quantum dots onto aminated multi-wall carbon nanotubes. These
modified nanotubes serve as the carrier, while BPA was utilized as the template and
3-aminopropyl triethoxysilane (APTES) as the monomer. The resulting MIEC sensor
demonstrated successful application in detecting BPA in various water sources. The
electrode exhibited high selectivity and robust anti-interference ability towards BPA.
The current response demonstrated a linear range of 0.05–50 nmol L−1, with a LOD of
0.015 nmol L−1. This sensor holds the potential for advancing research in the detection of
trace pollutants.
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Furthermore, MIEC sensors are widely used in detecting POP residues, including
pesticides and insecticides [62]. In a related study, Maria et al. [62] prepared an imprinted
polymer film for 2,4-dichlorophenol (2,4-DCP) detection. This was achieved by electropoly-
merizing 3,4-ethylenedioxythiophene onto a carbon fiber paper electrode. A highly selective
MIEC sensor was produced and achieved high selectivity in determining 2, 4-DCP in dif-
ferent water sources. The sensor response range was noted to be 0.21–300 nmol L−1, with
an LOD of 0.07 nmol L−1. Ayankojo et al. [64] prepared an electrochemical sensor based
on MIP for detecting erythromycin in water-based media. The sensor could be used to
monitor this antibiotic as well as other macrolides in environmental water. The sensor
was prepared by direct synthesis of erythromycin-selective MIP using the electrochemical
polymerization of m-phenylenediamine on a screen-printed electrode. The resulting MIP
sensor could successfully distinguish erythromycin in tap water and PBS from its very
close analogs (azithromycin and clarithromycin) with an LOD of 0.1 nM. In another work,
Dehghani et al. [65] used an MIP-based electrochemical sensor to determine cefixime in
biological samples (urine and serum). They modified the surface of the GCE with gold
nanowires and expanded graphene oxide, and then electropolymerized the polyaniline-
based MIP layer. CV, DPV, and EIS technologies were used to analyze and characterize the
sensor, and a linear response was obtained at a concentration range of 20.0–950.0 nM and a
LOD of 7.1 nM.

3.3. Molecularly Imprinted Optical Sensor

Optical sensors are designed to measure the optical properties of various materials
and transform alterations in light into electronic signals. A key component of this process is
the detection of change in the optical signal and its subsequent conversion. In recent years,
fluorescence detection has emerged as a widely utilized technology, largely because of its
simplicity and sensitivity [84]. One of the most promising applications of this technology is
the use of semiconductor quantum dots (QDs) as probes of fluorescence sensors. This is
because of their unique optical properties, particularly their narrow emission and resistance
to fluorescence quenching.

The integration of MIT, QDs, and fluorescence detection significantly enhances the
potential applications of a sensor [76,85]. An important study by Li et al. [86] introduced
a novel method for the preparation of ratio-fluorescent MIPs (Figure 9). The researchers
grafted a green fluorescently labeled 2,4-dichloropphenoxyacetic acid MIP layer onto
the pre-formed red CdTe QD-labeled SiO2 microspheres, leading to the production of
ratio-fluorescent MIPs. This innovative strategy lays a solid foundation for the effective
development of a broad spectrum of complex biological sample-compatible proportional
fluorescent MIPs. Such advancements hold significant promise in biological analysis
and diagnosis.
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In their study, Fan et al. [85] employed Mn:Zn QDs as a fluorescence source to fabricate
a core–shell molecularly imprinted phosphorescence sensor on the ZIF-8 surface. This
was performed to attain high sensitivity and selectivity in the detection of chlorpyrifos
(CPF). The phosphorescence intensity at room temperature showed a rapid response to CPF
within 5 min, with an LOD of 0.89 mmol L−1. This method amalgamates the benefits of
phosphorescence emission and MIT, paving a new path for the identification and detection
of water contaminants with high sensitivity and selectivity.

However, it is important to note that traditional QDs pose certain limitations, such
as biological toxicity and environmental pollution. This has led to a growing interest in
carbon points (CDs), which exhibit great characteristics like stable photoluminescence,
green synthesis, and biocompatibility. Considering the challenges in preparing the MIP
layer on CDs, such as time consumption and low controllability of the imprinting layer,
mussel-inspired dopamine (DA) self-polymerization may be considered as an alternative
approach. DA, as a functional monomer in molecular imprinting techniques, can be
efficiently polymerized under mildly alkaline conditions to form polydopamine.

Bhogal et al. [87] developed a self-polymerizing molecularly imprinted sensor (MIS)
based on DA on fluorescent CDs to suppress the fluorescence intensity of CDs through
photoinduced electron transfer (Figure 10), achieving an LOD for 17β-estradiol (E2) of
0.34 ng mL−1 with a linear range of 1–50 ng mL−1. The sensor was successfully applied to
tap water, river water, and milk samples, yielding high recovery (96.4–102%). This provides
a new avenue for the simple detection of E2 in complex substrates.

Chemosensors 2024, 12, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 10. Schematic of the synthesis procedures for polydopamine-imprinted coatings over CDs 
(CDs@MI-PDA) for the selective fluorescence detection of 17β-oestradiol. Reproduced with per-
mission from [87]. 

Wang et al. [66] proposed a one-pot synthesis strategy based on magnetic covalent 
organic skeleton support (MCOF) and CDs embedded in MIPs (Figure 11). The con-
structed MCOF@CDs@MIPs sensor, characterized by its high sensitivity and selectivity, 
was efficaciously used for the detection of BPA in canned food and boxed beverages, 
boasting an LOD of 12 μg L−1. In their study, MCOFs were synthesized via a facile in situ 
growth of COF crystals on Fe3O4 nanoparticles. This was subsequently supported by a sol-
gel molecular imprinting process carried out at ambient temperature, thereby providing 
a large surface area for the deposition of CDs embedded in the MIP layer. The fluorescence 
sensing platform, constructed with renewable magnetic COF@MIP composite material, 
integrates the magnetism of Fe3O4, the signal transduction functionality of CDs, the signal 
amplification effect of COFs and MIP, and the specific recognition behavior of MIP for the 
template molecule BPA. This innovation provides a simplistic, economical, and reliable 
method for the screening, identification, and detection of new contaminants in food or the 
environment. 

 
Figure 11. The fabrication of the MCOF@CD@MIP sensor for BPA. Reproduced with permission 
from [66]. 

Figure 10. Schematic of the synthesis procedures for polydopamine-imprinted coatings over CDs
(CDs@MI-PDA) for the selective fluorescence detection of 17β-oestradiol. Reproduced with permis-
sion from [87].

Wang et al. [66] proposed a one-pot synthesis strategy based on magnetic covalent
organic skeleton support (MCOF) and CDs embedded in MIPs (Figure 11). The constructed
MCOF@CDs@MIPs sensor, characterized by its high sensitivity and selectivity, was effi-
caciously used for the detection of BPA in canned food and boxed beverages, boasting
an LOD of 12 µg L−1. In their study, MCOFs were synthesized via a facile in situ growth
of COF crystals on Fe3O4 nanoparticles. This was subsequently supported by a sol-gel
molecular imprinting process carried out at ambient temperature, thereby providing a
large surface area for the deposition of CDs embedded in the MIP layer. The fluorescence
sensing platform, constructed with renewable magnetic COF@MIP composite material,
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integrates the magnetism of Fe3O4, the signal transduction functionality of CDs, the signal
amplification effect of COFs and MIP, and the specific recognition behavior of MIP for the
template molecule BPA. This innovation provides a simplistic, economical, and reliable
method for the screening, identification, and detection of new contaminants in food or
the environment.
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The speed of detection is a key consideration when searching for methods to screen
and identify new pollutants. The advent of portable paper-based MIS presents a viable
solution to the challenges associated with rapid field detection. Dolai et al. [88] pioneered
the development of a nanocomposite material derived from paper (Figure 12). The unique
feature of this material lies in the molecular imprinting within a materialist structure, which
facilitates the selective capture of dibutyl phthalate (DBP). Moreover, the incorporation of
graphene oxide into the material design enabled fluorescent “on” detection of DBP. This
was achieved through competitive binding interactions with fluorescein. The paper-based
nanocomposite material, underpinned by MIPs, can realize the rapid detection of DBP in
sewage. This approach holds significant potential for broad applications, particularly in the
identification and screening of other environmental pollutants. These findings underscore
the transformative potential of paper-based MIS in addressing contemporary challenges.
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The electrochemical luminescence (ECL) detection method transmutes electrochemical
signals into optical ones, which further advances the field of sensing technology. The inte-
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gration of photoelectric characteristics into this method has been found to enhance sensing
performance. A groundbreaking research study by Pan et al. [89] led to the development of
a unique molecularly imprinted electrochemical luminescence (MIECL) sensor. This sensor
was designed based on the luminescent properties of an MIP perovskite (MIP-CSPBBR 3)
layer, and Ru(bpy)3

2+ and was specifically tailored for the detection of simazine. As de-
picted in Figure 13, the MIP-CsPbBr 3 layer was firmly affixed to the surface of a GCE,
serving as a signal capture probe Ru(bpy)3

2+. The coreactant tripropylamine exhibited
a strong ECL. Under optimal conditions, the MIECL sensor demonstrated a detection
range of 0.1–500 µg L−1, with an LOD of 0.6 µg L−1. The MIECL sensor outperformed
traditional detection methods in terms of sensitivity and detection speed. Moreover, it
showed excellent selectivity, sensitivity, and reproducibility in the real-world analysis of
aquatic products, further underscoring its potential for practical applications.
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The detection mechanism of photoelectrochemical (PEC) sensors is predicated on
the conversion of photons into electricity during illumination, resulting in light-induced
charge separation. The molecularly imprinted PEC (MIPEC) sensor is a promising detec-
tion method as it combines the benefits of optics, electrochemistry, and MIT [71,90]. A
study conducted by Wang et al. [90] resulted in the development of a highly sensitive and
selective PEC sensor. This was achieved by integrating TiO2/CdS heterostructures with
inorganic frame MIT (Figure 14). The molecularly imprinted TiO2/CdS (MI-TiO2/CdS)
heterostructures were synthesized using a continuous ion layer adsorption process com-
bined with inorganic skeleton molecular imprinting. The formation of the heterojunction,
facilitated by the energy distribution compatibility of TiO2 and CdS, promoted photogenic
charge separation and enhanced PEC transformation. The fabricated PEC sensor exhibited
a high photocurrent response and good selectivity towards BPA under simulated sunlight
irradiation. This unique heterostructure and specific recognition ability of MI-TiO2/CdS
resulted in a linear relationship between the photocurrent and the concentration of BPA
(1–100 pmol L−1) and the minimum detection limit of 0.5 pmol L−1.
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permission from [90].

Xu et al. [91] prepared a PEC sensor by modifying an indium tin oxide (ITO) pho-
tosensitive electrode with MIPs based on In2S3/Cd2+-sensitized flower-like AgBiS2. The
detailed preparation process of the PEC sensor is illustrated in Figure 15. The photosensi-
tive electrode was sequentially modified on an ITO electrode, and the MIM was fabricated
by electrodeposition of pyrrole solution onto the electrode surface. The synthesized AgBiS2
exhibited a three-dimensional flower-like structure, which was assembled from nanosheets.
This distinct structure provides a favorable surface topography for anchoring other pho-
toactive nanomaterials. The photosensitizer demonstrated an enhanced PEC response
due to the synergistic effect of the matching band gap and electron transport. The PEC
sensor was effectively used for the detection of BPA in real water samples, achieving
an LOD of 0.18 nmol L−1. Their study provides a new strategy for sensing technology
and opens up more possibilities for improving the detection sensitivity of electrochemical
sensing analysis.
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Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been used in firefighting
foams, non-stick cookware, and waterproof and stain-resistant clothing [92,93]. PFAS pose
a risk to human health, particularly because of their ability to act as endocrine disruptors
and their environmental safety as persistent and biocumulative. They are currently classi-
fied as persistent organic pollutants by the Stockholm Convention and the United States
Environmental Protection Agency [94]. In PFAS sensors based on PEC, AgI nanoparti-



Chemosensors 2024, 12, 72 18 of 23

cles and BiOI nanosheet arrays (AGI-BioINFS) fixed on fluorine-doped tin oxide (FTO)
are used as photosensitive electrodes, and the array is subsequently grafted with PFOA
MIP. The LOD for PFOA is estimated to be 0.01 µg L−1, which is comparable to what can
be achieved with LC-MS/MS. Ultrathin graphite carbon nitride nanosheets (utg-C3N4)
modified with MIP were used to detect PFOA [67,95], in which 5 mM pyrrole and 1 mM
PFOA were electropolymerized by cyclic voltammetry at pH 6. The results showed that
the ECL signal intensity decreased linearly with the increase in PFOA concentration. The
LOD was estimated at 0.01 ng mL−1, significantly lower than the 25 ng L−1 reported using
chromatographic methods [96].

4. Summary and Outlook

The development of molecularly imprinted polymers (MIPs) has made significant
progress in both binding properties and selectivity, and they can be used as solid-phase ex-
traction materials for the separation and enrichment of chemical pollutants during sample
pretreatment. In addition, MIPs have excellent high-temperature resistance, acid and alkali
resistance, and easy storage characteristics, so they are suitable as sensor-sensitive materials
for the analysis and detection of actual samples. So far, MIPs have been developed from
a single template to a composite template, and the preparation process is constantly opti-
mized to improve its application in various fields such as environmental pollutant analysis,
food quality and safety, and biological sample separation and enrichment. However, there
are still some problems that need to be explored and solved as follows:

(1) Real samples often contain complex media, including solid particles and high ion
concentrations, which can potentially interfere with the pollutant screening and identi-
fication process facilitated by MIPs. The presence of both hydrophobic and hydrophilic
structures in MIPs allows for a variety of adsorption mechanisms, with the hydrophilicity
of the particle core binding site enhancing its selective interaction with the target molecules.
However, surface contamination from outer layer adsorption can compromise the selectiv-
ity of MIPs, necessitating future research to enhance the applicability and anti-interference
capabilities of MIPs in practical samples.

(2) Strategies to improve MIP performance include enhancing binding ability, increas-
ing hydrophilicity, and minimizing template leakage. The preparation of high-performance
MIPs with controllable structures can mitigate the matrix effect and offer an innovative
approach for detecting low-content pollutants in complex matrix samples.

(3) Finally, the use of non-degradable micro- and nanomaterials in MIPs preparation
should be minimized. In the context of pollutant screening and identification, the syn-
thesis of environmentally friendly micro–nano MIP materials should be prioritized, and
comprehensive research on green imprinting techniques should be undertaken.

Efforts to solve these problems have never stopped. In the future, the combination of
MIPs and different analytical instruments to realize the artificial detection system is also an
ideal goal that people continue to pursue.
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