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Abstract: Currently, 30% of the global population is overweight or obese, with projections from
the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue
dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of
metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed
metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and
is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by
adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance,
thereby rendering them key players in alleviating metabolic diseases and potentially extending
health span. In this review, we elucidated the role of adipokines in the development of obesity and
related metabolic disorders while also exploring the potential of certain adipokines as candidates for
longevity interventions.
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1. Introduction

Obesity is characterized by an excessive accumulation of adipose tissue, and the major
causes of metabolic diseases are a disproportionate increase in adipose tissue and insulin
resistance. Adequate amounts of adipose tissue are crucial in mammals, serving not only
as an energy storage depot but also as an endocrine organ that regulates metabolic function
through the secretion of numerous adipokines. However, excessive accumulation of adi-
pose tissue is associated with metabolic dysfunction and increased susceptibility to obesity,
diabetes, and cancer [1]. Adipose tissue, commonly known as fat tissue, comprises two
main types: white adipose tissue (WAT) and brown adipose tissue (BAT). White adipose
tissue acts as an energy reservoir for other organs, whereas brown adipose tissue functions
in cold-induced adaptive thermogenesis. Histologically, white adipose tissue is subdivided
into two forms, visceral and subcutaneous. The enlargement of visceral adipose tissue,
often termed visceral obesity, is strongly linked to inflammation and insulin resistance [2,3].
The expansion of adipose tissue triggers adipocyte death through mechanical and oxidative
stresses, as well as hypoxic conditions, leading to the recruitment of proinflammatory
macrophages to adipose tissues [4-6]. The infiltration of macrophages contributes to adi-
pose tissue dysfunction, inducing inflammation and insulin resistance in individuals with
obesity [7]. Obesity-induced cell inflammation accelerates adipose tissue dysfunction, dis-
rupting overall energy homeostasis and increasing susceptibility to age-related diseases [8].
Uncontrolled secretion of adipokines and the senescence-associated secretory phenotype
(SASP) resulting from adipose tissue dysfunction are well-recognized features of aging and
metabolic diseases [9] (Figure 1). Several epidemiological cohort studies have shown that
obesity increases all-cause mortality and reduces life expectancy in humans [10-12]. This
has been demonstrated by studies using rodents, which show that suppression of obesity
through the removal of visceral adipose tissue results in improved insulin action and
prolongs lifespan [13,14]. As a depot of energy storage, adipose tissue is now recognized as
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an endocrine tissue that regulates metabolic diseases, including obesity, and aging through
the regulation of various hormones known as adipokines [15]. Since the identification of
adiponectin and leptin as representative adipokines that regulate obesity, numerous types
of adipokines have been discovered, prompting extensive research into their roles in health
and metabolic diseases [16].
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Figure 1. Adipokines in healthy and obese fat tissue. The secretion of beneficial adipokines
(adiponectin, FGF21, adipsin, omentin, neuregulin) from healthy fat tissue and detrimental adipokines
(leptin, resistin, chemerin, FetA, visfatin, RBP4) from obese fat tissue plays important roles in inflam-
mation, insulin sensitivity, and obesity. Obese-related secretion of other adipokines, such as apelin,
annexin, vaspin, and LCN2, plays compensatory roles in inhibiting inflammation, insulin sensitivity,
and obesity.

Aging is a process in which tissue function gradually deteriorates as the ability to
maintain metabolic homeostasis decreases over time, rendering the body vulnerable to
external stress and increasing susceptibility to metabolic diseases, such as obesity, type
2 diabetes, and cardiovascular disease [17]. Although the exact mechanism remains un-
clear, caloric-restriction-induced suppression of oxidative stress and improvement in energy
metabolism contribute to lifespan extension and the reduction of age-related metabolic
diseases. Furthermore, the enhancement of adipose tissue function through the modula-
tion of adiponectin and fibroblast growth factor 21 (FGF21), a caloric-restriction-induced
adipokine, promotes an extension of health span [18,19].

In this review, we elucidate the role of adipokines in regulating metabolic function
and discuss their implications for metabolic diseases and health (Table 1).

Table 1. Biological effects of adipokines on health and diseases.

Adipokines Roles

Improves glucose homeostasis; has antidiabetic, anti-inflammatory, and

Adiponectin antiatherogenic effects
Improves age-related tissue dysfunctions; extends lifespan;
FGF21 oo . . :
positively associated with longevity
Improves glucose tolerance and beta-cell functions;
stimulates triacylglycerol synthesis and storage in adipose tissue;
Adipsin Y&y ¥ 8 P

positively associated with longevity; increases cell survival and SIRT1
activity and has neuroprotective effects
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Table 1. Cont.

Adipokines Roles
Apelin Regulates food intake; improves glucose disposal
Omentin Improves insulin sensitivity; has an anti-inflammatory effect
Annexin Regulates inflammation, lipolysis, lipogenesis, and adiposity

Regulates cell proliferation, survival, migration, and differentiation;
Neuregulin reduces hepatic glucose production and lipogenesis;
stimulates thermogenesis in brown adipose tissue

Regulates appetite and energy expenditure;

Lepti
eptin negatively associated with longevity

Positively associated with obesity and insulin resistance;
Resistin accelerates inflammation;
positively correlated with cellular senescence and aging

Stimulates triacylglycerol synthesis and storage in adipose tissue;

Visfatin positively associated with longevity; increases cell survival and SIRT1
activity and has neuroprotective effects
Ch . Regulates cell proliferation, differentiation, and energy metabolism;
emerm negatively associated with longevity
. Regulates insulin sensitivity, adipocyte differentiation, and angiogenesis;
Vaspin ST .
inhibits inflammation
Lipocalin-2 Regulates dyslipidemia and insulin resistance; inhibits inflammation
Positively associated with obesity and insulin resistance;
RBP4 . . . . . -
impairs mitochondrial fatty acid 3-oxidation
Fetuin A Positively associated with insulin resistance and inflammation

The adipokines discussed in this review are summarized in this table.

2. Adipokines in the Regulation of Health and Diseases
2.1. Adiponectin

Adiponectin, predominantly secreted by adipocytes, is the most abundant adipokine in
plasma [20,21]. Adiponectin is associated with insulin secretion and energy expenditure and
is negatively correlated with metabolic disease parameters such as body mass index (BMI),
as well as glucose, insulin, triglyceride, and visceral fat levels [22]. Adiponectin exhibits
antiatherogenic, antidiabetic, anti-inflammatory, and anti-apoptotic effects by inhibiting
monocyte adhesion to endothelial cells and suppressing macrophage transformation into
foam cells by suppressing the tumor necrosis factor alpha (TNF«)—nuclear factor kappa
B (NF-«B) signaling pathway [23]. Circulating adiponectin and TNF« levels are inversely
correlated in both lean and obese individuals [24]. Adiponectin was also shown to increase
tissue inhibitor of metalloproteinases (TIMP-1) in human monocyte-derived macrophages
through IL-10 induction, which plays an important role in the regulation of vascular inflam-
mation [25]. Recently, protective characteristics of adiponectin that preserve (3-cell function
have also been reported [26]. Additionally, studies using adiponectin transgenic mice
identify it as a longevity gene, demonstrating resistance to metabolic effects, improvement
in glucose homeostasis, and amelioration of age-related tissue dysfunctions with extension
of health span [4]. Elevated adiponectin level is detected in many longevity model mice,
such as fat-specific insulin receptor knockout mice, the Ames dwarf mice (df/df), and
GHRKO mice [27,28]. Studies in humans also indicate that higher adiponectin levels are
considered crucial parameters in caloric-restricted humans and centenarians [29-31]. Thus,
adiponectin and its related pathways are promising targets for the treatment of metabolic
diseases and aging.
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2.2. Fiboblast Growth Factor 21 (Fgf21)

FGF21, a subfamily of FGF, is produced by the liver, adipose tissue, and skeletal mus-
cle [32]. FGF21 can diffuse away from the tissue of expression and function as an endocrine
hormone due to a lack of the FGF heparin-binding domain [33]. FGF21 is predominantly
induced in the liver under fasting conditions through peroxisome proliferator-activated
receptor alpha (PPARa) [34]. Fgf21 exhibits suppressive effects on hyperglycemia and
atherogenic activity [35]. It reduces plasma triglyceride levels by accelerating lipopro-
tein lipase (LPL)- and cluster of differentiation 36 (CD36)-mediated triglyceride disposal
processes in the liver and adipose tissue, along with the thermogenesis-mediated lipid
catabolic process in brown adipose tissue [36]. The metabolic effects of FGF21 require
co-expression of fibroblast growth factor receptor 1c (FGFR1c) and b-klotho [37,38]. The
growth reduction by FGF21 has also been demonstrated by several studies using genetically
modified mouse models, in which transgenic mice overexpressing FGF21 are smaller than
wild-type mice, and FGF21-knockout mice grow more than wild-type mice under food-
restricted conditions [39,40]. Furthermore, the longevity-related effects of FGF21 have been
indicated by findings related to the increased lifespan of transgenic Fgf21-overexpressing
mice [5]. The specific mechanisms underlying the beneficial effects of FGF21 are unclear
but may involve the suppression of the growth hormone (GH)/insulin-like growth factor 1
(IGF-1) signaling axis in the liver, along with adiponectin [5,41,42].

2.3. Adipsin

Adipsin, the first adipokine discovered in 1987 [43], is predominantly expressed in
white adipose tissue, especially in subcutaneous adipose tissue, and is implicated in the
development of obesity and type 2 diabetes [44]. Adipsin is mainly produced by adipocytes
via PPARYy [45,46], and its circulating levels are decreased in obese mice [44]. Depletion of
adipsin induces glucose intolerance resulting from beta-cell failure, whereas replenishment
of adipsin decreases blood glucose levels through appropriate insulin secretion in obese
mice, highlighting its crucial role in maintaining glucose homeostasis and beta-cell func-
tion [47]. However, a recent study showed that mice lacking adipsin suppress the expansion
of marrow adipose tissue (MAT), thereby inhibiting bone loss during obesity and aging [48],
indicating that adipsin has a positive association with glucose-insulin homeostasis but has
a negative association with bone remodeling.

2.4. Apelin

Apelin, a regulatory peptide identified as an endogenous ligand of the G protein-
coupled receptor (APJ) [49], is widely distributed in the body, including adipose tissue
(mainly adipocytes), the central nervous system, the heart, skeletal muscle, and the stom-
ach [50]. Apelin is cleaved by the cells to produce endogenous peptides such as apelin-12,
-13,-17, and -36 [51]. Apelin levels in the serum and adipose tissue are upregulated in obese
and insulin-resistant mice, and apelin contributes to the regulation of food intake, cell prolif-
eration, blood pressure, lipolysis, and glucose metabolism [49,52,53]. Apelin was shown to
suppress insulin resistance by increasing AMP-activated protein kinase (AMPK)-mediated
glucose utilization and stimulating glucose transporter (Glut) 4, involved in the PI3K and
Akt signaling pathways. Comprehensive research using apelin-knockout mice has shown it
to induce hyperinsulinemia and insulin resistance [54,55], while studies using apelin treat-
ment mice have shown beneficial functions in obesity and insulin resistance, indicating that
apelin could serve as a therapeutic target for treating obesity and related diseases [56,57].
Additionally, apelin has been shown to exert protective effects against bone metabolism
through proliferation of osteoblasts via the APJ/PI3k/Akt pathway. Apelin and APJ are
also expressed in vascular smooth muscle cells, endothelial cells, and myocardial cells,
and low apelin levels are reported in patients with heart failure, suggesting that they are
involved in the myocardial response to infarction and ischemia [58—60]. The function of
apelin in aging has been reported to be that it regulates inflammation, apoptosis, and
oxidative stress, which increases during the aging process [61].
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2.5. Omentin

Omentin, also known as intelectin-1, is primarily produced by visceral adipose tissue
and is another potential regulator of insulin sensitivity [62,63]. Encoded by omentin-1
and omentin-2 genes, particularly omentin-1, the main circulating form is positively cor-
related with adiponectin and high-density lipoprotein levels and negatively correlated
with BMI, insulin resistance, triglycerides, and leptin levels [64,65]. Omentin exerts anti-
inflammatory effects by inhibiting TNF-a-induced cyclooxygenase-2 (COX-2) expression
and Jun N-terminal kinase signaling via activation of AMPK and endothelial nitric oxide
synthase [66,67]. Omentin also enhances the stability of atherosclerotic plaque by mod-
ulating macrophage viability and inflammation [68]. Furthermore, several studies have
indicated a decrease in omentin levels in obesity, cancer, and various cardiovascular dis-
eases, including carotid atherosclerosis, coronary artery disease, heart failure, and dilated
cardiomyopathy [64,69,70].

2.6. Annexin

Annexins constitute 12 structurally related Ca%*- and membrane-binding proteins
(AnxA1-AnxA111 and AnxA13) [71,72]. ANXAL, the first identified and extensively studied
member of the annexin family, is abundantly expressed in macrophages and neutrophils,
and its expression is increased in obesity [73,74]. ANXA1 has been proposed as an anti-
inflammatory protein that regulates peripheral leukocyte migration and is a promoter of
macrophage phagocytosis in apoptotic neutrophils [75]. Furthermore, ANXAT1 is involved
in protecting hepatic function, as well as regulating various adipose tissue functions,
including those related to inflammation, lipolysis, lipogenesis, and adiposity [76,77]. A
study employing ANXA1-knockout mice revealed accelerated hepatic inflammation and
fibrosis, elevated glucose and insulin levels, increased adiposity, and decreased insulin
sensitivity, emphasizing the significance of ANXA1 in these processes [73,76]. ANXA1 has
also been reported to exert a protective effect in resolving inflammation and maintaining
vascular homeostasis [78].

Overall, the studies on annexin 1 mentioned above show that annexin 1 alleviates
metabolic and vascular diseases by regulating adipose tissue metabolism and inflammation.

2.7. Neuregulin (Nrg)

Neuregulin, a member of the epidermal growth factor (EGF) family of extracellular
ligands, comprises four isoforms, namely Nrgl—4 [79]. Nrgl, an extensively studied and
ubiquitously expressed protein in endothelial and mesenchymal cells, is implicated in cell
proliferation, survival, migration, and differentiation [80]. Rodent studies have shown
that Nrgl reduces hepatic glucose production via the ErbB3/ Akt signaling pathway [81],
indicating its involvement in the regulation of glucose homeostasis. Research across various
rodent species and naked mole rats, characterized by longevity, has demonstrated higher
Nrgl levels in longer-lived rodents, suggesting a potential link between Nrgl and the
longevity pathway.

Nrg4, secreted by white and brown adipose tissues, is involved in the regulation of
tissue development and tumorigenesis and has been recently discovered in comparison
to other adipokines [82]. Nrg4 expression in adipose tissue is lower in obese individ-
uals but increases upon exposure to cold temperatures or epinephrine, suggesting that
Nrg4 is involved in the regulation of adipose tissue innervation. However, a study using
Nrg4-knockout mice showed insulin resistance under a high-fat diet, but the rectal tem-
perature and expression of the representative thermogenic genes UCP1 and Dio2 did not
change under cold stimulation, indicating that Nrg4 is not directly linked to thermogen-
esis in brown adipose tissue [82]. A binding assay to identify the target of Nrg4 showed
that Nrg4 specifically binds to the liver and improves diet-induced fatty liver disease by
attenuating the hepatic lipogenic pathway [82], suggesting that circulating Nrg4 from
adipose tissue ameliorates the severity of fatty liver and insulin resistance by modulating
hepatic lipogenesis.
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2.8. Leptin

Leptin, a 16 kDa adipocyte-derived adipokine, is considered a potential marker for
obesity-related complications such as atherosclerosis [83] and neuropathy [84]. The obese
phenotype observed in ob/ob mice, characterized by leptin deletion, is associated with
hyperglycemia and insulin resistance [85]. Circulating leptin levels are positively corre-
lated with BMI and adiposity, and their levels are significantly higher in obesity [86,87].
Leptin regulates appetite and energy expenditure by inhibiting neuropeptide Y (NPY),
pro-opiomelanocortin (POMC), and corticoliberin (CRH) [88,89] and enhances insulin sen-
sitivity by increasing glucose uptake and oxidation in skeletal muscle and free fatty acid
oxidation [90]. However, leptin fails to inhibit appetite and body weight in obese people
due to leptin resistance, suggesting that improvement of leptin sensitivity is important
for clinical treatment [91]. Owing to the opposing effects of leptin and adiponectin on
inflammation and insulin resistance, their ratio has been proposed as a marker of adipose
tissue dysfunction [92]. Furthermore, leptin plays a pivotal role in the regulation of satiety,
fertility, puberty, activity, and fetal growth [93,94]. The function of leptin in aging has been
reported to be that it enhances the vascular aging by calcification of vascular cells [95].

2.9. Resistin

Resistin was originally discovered as an adipocyte-specific hormone in rodents and
was named for its ability to resist insulin action [96]. This leads to the development
of obesity and type 2 diabetes mellitus [96]. Unlike rodents, human resistin is mainly
expressed in peripheral blood mononuclear cells, bone marrow cells, and macrophages
other than adipocytes, and it accelerates the inflammatory response via NF-kB-mediated
activation of TNFa, IL16, and MCP1, classifying it as a proinflammatory molecule [97-100].
The functional variabilities between mice and human resistin may result from the difference
in the 3’ introns. Mouse resistin carries a very large intron in the 3' UTR, which has a number
of regulatory sequences, including the PPAR/RXR binding element [101]. Moreover,
resistin levels increase in patients with metabolic syndrome, including obese individuals,
and positively correlate with BMI and white adipose tissue mass [102,103]. Resistin has
also been involved in age and age-related diseases [104] and is a risk factor for all-cause
mortality in elderly people, based on the Finnish cohort study [105]. The inhibition of
AMPK and SIRT1, which are crucial in cellular senescence and metabolic regulation, by
resistin has been proposed as a conserved mechanism underlying cellular senescence and
aging in both humans and mice, despite species diversity [106,107]. These observations
suggest that resistin plays a central role not only in the development of insulin resistance
and inflammation but also in age and age-related diseases.

2.10. Visfatin/NAMPT

Visfatin, also known as nicotinamide phosphate ribosyltransferase (NAMPT), is a prod-
uct of the pancreatic beta-cell growth factor (PBEF) gene and is predominantly produced
by adipocytes and macrophages in visceral adipose tissue [108,109]. The insulin-mimetic
activity of visfatin by binding to the insulin receptor, but in a distinct site from insulin,
was first demonstrated by Fukuhara et al. [109]. Elevated in obesity, insulin resistance,
and type 2 diabetes, visfatin stimulates triacylglycerol synthesis and storage in adipose
tissue through activation of glucose uptake and lipogenesis [109,110]. Additionally, vis-
fatin induces the expression of proinflammatory cytokines, such as TNFa, IL1b, and IL6,
thereby increasing monocyte—endothelial cell adhesion [111]. The role of visfatin in health
is controversial and remains unclear. Despite its positive association with obesity under
calorie excess [111], visfatin reportedly improves longevity by enhancing cell survival and
SIRT1 activity, as well as through its neuroprotective effects [112,113]. This discrepancy
may be attributed to the existence of two distinct forms of visfatin: intravisfatin (iNAMPT),
which is positively correlated with obesity under caloric excess, and circulating extravis-
fatin (eNAMPT), which is associated with anti-aging and longevity effects induced by the
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suppression of age-related physiological decline through SIRT1-mediated deacetylation of
iNAMPT [114,115]. Further studies are required to clarify these controversial findings.

2.11. Chemerin

Chemerin, also known as tazarotene-induced gene (TIG)2 and retinoic acid receptor
responder (RARRES)2, is primarily secreted by adipose tissue, liver, and immune cells.
Chemerin regulates biological processes, such as cell proliferation and differentiation, an-
giogenesis, and energy metabolism [116-118]. Pro-chemerin is produced by the N-terminal
cleavage of pre-pro-chemerin, and chemerin is formed by the C-terminal processing of
pro-chemerin [119-121]. It was initially reported as a chemotactic factor for immune cells,
including dendritic cells and macrophages [119]. Subsequently, chemerin was reported to
function as an adipokine related to obesity and inflammation [116]. Chemerin was reported
to be elevated in the blood, adipose tissue, and liver from obese rodents [122,123], and it is
necessary for adipogenesis due to its interaction with PPARy [118]. The angiogenic action
of chemerin supports the notion that chemerin enhances adipose tissue growth by inducing
angiogenesis and vascularization [124]. Although chemerin is positively correlated with
inflammation and obesity [116], its role, including processing, isoforms, and biological
activity in obesity, remains unclear [125]. Furthermore, chemerin acts as a ligand activator
of chemokine-like receptor (CMKLR)-1 and as an initiator of innate and adaptive immune
responses [126]. Human studies involving obesity and centenarians have suggested that
serum chemerin levels are negatively associated with successful aging and health [127,128].

2.12. Vaspin

Visceral adipose tissue-derived serpin (vaspin), a member of the serine protease in-
hibitor family, is highly expressed in adipose tissue [129]. Elevated vaspin levels in rodents
and humans are correlated with obesity [129-131]. Vaspin regulates insulin sensitivity,
preadipocyte differentiation, and angiogenesis [132]. The role of vaspin in suppressing
inflammation and insulin resistance was also demonstrated by a study in which adminis-
tration of vaspin improved glucose tolerance and insulin sensitivity, inhibited proinflam-
matory cytokines, such as TNFa, resistin, and leptin, and increased levels of adiponectin
and GLUT4 in the white adipose tissue of obese mice [129]. The elevated adipocytes differ-
entiation by vaspin was also proven by a study using 3T3-L1 adipocytes in which treatment
with vaspin increased expression of PPARg, CEBPa, and CEBPb [133]. Furthermore, vaspin
promotes glucose uptake to skeletal muscle through GLTU4 in obese humans [134]. These
findings indicate that vaspin appears to be a useful therapeutic candidate for metabolic
diseases, including obesity and type 2 diabetes mellitus.

2.13. Lipocalin-2

Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin, was
initially identified as a secretory protein mainly produced by activated astrocytes and
microglia [135]. LCN2 is considered an important regulator of the immune response caused
by high expression during infection [136]. Recently, LCN2 has been reported as a new
adipokine that is upregulated in obese mice and humans [137,138]. The critical role of
LCN2 in metabolic disorders has been demonstrated by studies using LCN2-knockout mice
that gained more weight and developed dyslipidemia and insulin resistance [139-141].
LCN2 is also involved in the regulation of TNF-mediated inflammatory signaling [142,143]
and thermogenesis [144]. Furthermore, LCN2 is secreted by the bone marrow, inhibits
food intake in a melanocortin 4 receptor (MC4R)-dependent manner, maintains glucose
homeostasis by increasing insulin secretion, and improves glucose tolerance [145]. LCN2 is
increased in aging-related brain diseases such as Alzheimer’s disease, Parkinson’s disease,
and vascular dementia and is reported to play a role in suppressing neurodegenerative
processes [146]. These data demonstrate that Lcn2 is regulated by metabolic stress and in-
flammatory and nutrient signals, suggesting a pivotal role for LCN2 in metabolic disorders
and inflammatory diseases.
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2.14. RBP4

Retinol-binding protein 4 (RBP4), a member of the lipocalin protein family, is the
only known specific transport protein responsible for delivering retinol (vitamin A) in
the circulatory system [147-149]. RBP4 is primarily produced by the liver and adipose
tissue, and its expression is elevated in insulin-resistant mice and humans with obesity
and type 2 diabetes [150-152]. A study using genetically modified mice showed that
transgenic overexpression of RBP4 caused insulin resistance, whereas genetic deletion of
RBP4 enhanced insulin sensitivity [152]. The mechanisms of RBP4 involved in insulin
sensitization have been demonstrated to be that it alters insulin sensitivity by affecting
insulin signaling in muscles through modulation of tyrosine phosphorylation of IRS1 and
PI3K activation [152]. The effects of RBP4 on whole-body glucose metabolism were further
proven by studies using muscle-specific RBP4 transgenic mice with glucose intolerance and
insulin resistance [153]. Furthermore, the proinflammatory effects of RBP4 have shown
that RBP4 primes the NLRP3 inflammasome partially through toll-like receptor 4 (TLR4)
and TLR2 in macrophages, which impairs insulin signaling in adipocytes [154,155]. The
elevated circulating RBP4 level is also associated with hepatic lipid accumulation and liver
steatosis in humans [151,156], The study using the NAFLD model mice further showed
that the acceleration of NAFLD in RBP4 transgenic mice was mainly attributed to reduced
mitochondrial content and impaired mitochondrial fatty acid 3-oxidation [157]. Thus, RBP4
contributes to the development of obesity and its associated diseases, including NAFLD.

Overall, the regulation of RBP4 is a novel therapeutic approach for the deterioration
of lipid metabolism.

2.15. Fetuin A

Fetuin A (FetA), also known as alpha-2-Heremans-Schmid glycoprotein, is mainly
produced by the liver, but it is extensively expressed by multiple tissues, such as adipose
tissue, kidneys, the brain, and skin [158,159]. FetA was initially identified as an inhibitor of
insulin receptor tyrosine kinase in the muscles and liver [160,161]. As such, FetA, which is
involved in the formation of insulin receptors, induces insulin resistance with inflammation,
causing metabolic disorders, including type 2 diabetes mellitus and nonalcoholic fatty liver
disease [162,163]. The FetA /adiponectin ratio has been proposed as a sensitive indicator for
evaluating metabolic syndrome in the elderly [164]. FetA also plays a role in anti-apoptotic
action by inhibiting proteolytic cleavage and caspase activity [165]. Furthermore, FetA
has been reported to regulate PPARy phosphorylation at serine 273 through the RAas-
MEK-ERK pathway, which inhibits the insulin-sensitizing and anti-inflammatory effects of
adiponectin [166,167]. Inhibitory phosphorylation of PPARy by FetA has been shown to
inhibit adipogenesis and impair adipocyte function through crosstalk with CD36 [168,169].
The effects of FetA on brain function, including brain development, neuroprotection,
and innate immunity, have also been reported [170,171]. Taken together, FetA may have
therapeutic and diagnostic roles in the treatment of metabolic diseases.

3. Age-Related Changes in Adipose Tissue and Adipokines

The redistribution of adipose tissue in aging with increased visceral adipose tissue
and decreased subcutaneous adipose tissue [172] results in an increase in inflammatory
cytokines, which trigger metabolic disorders, such as obesity and type 2 diabetes melli-
tus [15]. Age-related accumulation of visceral adipose tissue also negatively affects cardiac
and brain functions [173,174]. The dysregulation of adipokines caused by abnormal accu-
mulation of visceral fat has been shown in the phenotypes of metabolic diseases, as well as
aging. An age-related increase in adipokines (adiponectin, leptin, adipsin, vaspin, resistin,
and chemerin) [31,175-179] and age-related decrease in adipokines (FGF21, annexin Al,
and visfatin) [78,180,181] have been reported in humans. The construction of an aging
adipokine profile based on these human studies of adipokines that changed with aging will
contribute to extending health span through regulation of adipose tissue function.
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4. Adipokines Viewed from Caloric Restriction and Centenarian Studies

Caloric restriction (CR), a decreased calorie intake with maintenance of adequate
nutrition, not only reduces the risk of metabolic syndrome, including obesity and diabetes,
but also extends the lifespan of numerous species, ranging from yeast to primates [182-184].
These beneficial functions of CR have also been gradually proven by human caloric re-
striction and centenarian studies [185-187]. It is known that the beneficial functions of CR
in metabolic homeostasis and lifespan extension are due to increased insulin sensitivity
and improved adipose tissue function; however, several studies place greater emphasis
on the importance of adipose tissue function because even in mTORC2-knockout mice
with induced insulin resistance, the beneficial functions of CR are maintained, and some
long-lived mice do not show an increase in insulin sensitivity [188,189].

CR improves energy efficiency by increasing the utilization of fat, which has higher
calories per gram than carbohydrates, leading to metabolic homeostasis being maintained and
lifespan being extended by suppressing adiposity and maintaining adipose tissue function. It
has been reported that adipokines secreted by adipose tissue, in particular adiponectin, which
positively correlates with CR, and leptin and resistin, which negatively correlate with CR, play
an important role in adipose tissue function and other health benefits including maintenance
of glucose homeostasis [190-192] in humans. Furthermore, in studies of centenarians, CR is
established as an eating habit of the majority centenarians, and increased adiponectin levels
were considered as their common phenotype [31,193]. Although the detailed mechanism of
how improved fat regulation contributes to lifespan extension has not yet been accurately
reported, adipokine regulation is likely to be at least partially involved.

5. Conclusions

Since the discovery of leptin in 1994, numerous bioactive molecules have been discov-
ered in adipose tissue. Adipokines play crucial roles in glucose homeostasis, fat metabolism,
and inflammation. Their discovery emphasized the significance of adipose tissue as a rep-
resentative endocrine organ that regulates obesity and obesity-related metabolic diseases.
In particular, adiponectin and FGF21, which are induced by fasting or caloric restriction,
have diverse roles in various tissues controlling metabolic diseases, as well as in delaying
aging and promoting longevity (Figure 2). They are anticipated to act as vital mediators for
extending health span, which has consistently been a focus area of global research. Notably,
studies on centenarians have revealed high adiponectin levels and decreased adiposity,
indicating the existence of protective phenotypes associated with longevity and healthy
aging in humans. Establishing in-depth research and profiling of adipokines through
human studies of caloric restriction and centenarians will help uncover new mechanisms
for obesity and anti-aging and develop treatments for them.
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i B-cell protection and insulin secretion i
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i o 0 ‘ Inflammation Inflammation and apoptosis in heart
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Figure 2. Regulation of physiological functions by adiponectin and FGF21. Adiponectin and FGF21,
which are induced by fasting or caloric restriction (CR), have diverse roles in various tissues control-
ling metabolic diseases and promoting longevity.
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