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Abstract: Li–Fraumeni syndrome (LFS) is an autosomal dominant hereditary cancer syndrome
associated with germline pathogenic variants in the tumor protein p53 (TP53) gene and elevated
risk of a broad range of early-onset malignancies. Patients with LFS are at risk of a second and third
primary tumor. A 15-month-old girl consulted for clitoromegaly and pubic hair. Adrenal ultrasound
detected a large left adrenal tumor. Left total adrenalectomy confirmed adrenocortical carcinoma.
Family history revealed multiple highly malignant neoplasms at an early age across five generations,
and a genetic dominant trait seemed probable. Whole-genome sequencing was performed. Multiple
members of the family were found positive for a novel likely pathogenic variant (c. 892delGinsTTT,
p. Glu298PhefsX48, NM_000546.6) in the TP53 gene, causing the loss of normal protein function
through non-sense-mediated mRNA decay. According to the PSV1 supporting criteria and the Auto
PVS1 online tool this frameshift variant: hg19/17-7577045-TC-TAAA:NM_000546.6 has a very strong,
definitive clinical validity for LFS with autosomal dominant inheritance. Proper guidance resulted
in timely diagnosis of a second tumor (primary osteosarcoma) in the index case and in the early
detection of breast and cervical cancer in her young mother. Patients with cancer predisposition
syndromes like LFS require close multidisciplinary cancer surveillance and appropriate referral to
expert centers.

Keywords: TP53 gene; Li–Fraumeni syndrome; adrenocortical tumor; breast cancer; cervical cancer;
osteosarcoma

1. Introduction

Li–Fraumeni syndrome (LFS) is an autosomal dominant hereditary cancer syndrome
associated with germline pathogenic variants in the tumor protein p53 (TP53) gene [1]
and high risk of a broad range of early-onset malignancies [2]. The majority (70–77%) of
LFS-associated tumors are breast cancer, soft-tissue sarcoma, brain tumors, osteosarcoma,
and adrenocortical carcinoma [3]. Of note is that close to 50% of children with adreno-
cortical carcinoma have a TP53 pathogenic variant. However, ovarian, pancreatic, and
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gastrointestinal tract tumors are also LFS-related [4]. Patients with LFS are not only at
risk of a second and third primary tumor [5] but are also at substantial risk of developing
radiation-related second and third cancers [6]. Members of families with Li–Fraumeni
syndrome have an exceptionally high risk of developing multiple primary cancers, with the
highest risk observed for survivors of childhood cancers [7], the latter needing particularly
close monitoring for timely diagnosis of new cancers. In this report, we present how clinical
awareness together with detailed family history resulted in the timely diagnosis of an
adrenocortical tumor in a child with clitoromegaly, in early detection and radical treatment
of breast and then cervical cancer in her young mother, and the subsequent early diagnosis
of osteosarcoma in our patient seven years later owing to rigorous follow-up.

2. Case Report
2.1. Presentation

A 15-month-old girl (generation V, Figure 1) consulted because of a marked change in
clitoris size and pubarche. She had normal blood pressure, no signs of acne, an enlarged
clitoris of 1.8 cm, and pubic hair Tanner II. Her bone age maturation was 2 years according
to the Atlas of Greulich and Pyle, her length was 83 cm (+1.16 SD, target height −0.15 SD)
presenting constant acceleration since the age of 6 months with a height velocity of
22 cm/yr (+5.22 SD), while her BMI had a smooth evolution around +0.5 SD.
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Figure 1. Family tree. #1–7: subjects genetically tested, •: subjects found or presumed to be carrying
one copy of the new TP53 variant.

2.2. Hormonal Profile

Hormonal evaluation at 8:00 h revealed elevated dehydroepiandrosterone sulfate
(DHEA-S), ∆4-androstenedione (∆4), and testosterone, practically 7–10 times higher than
the upper normal limit for her age (given in parenthesis): testosterone (T) 1.36 ng/mL
(<0.15 ng/mL), ∆4 3.68 ng/mL (<0.5), DHEA-S 145 µg/dL (<15), with a normal corticotropic
axis: adrenocorticotropic hormone (ACTH) 27.1 pg/mL, cortisol (F)18 µg/dL), normal
serum Na+ and K+, with normal vanillylmandelic acid (VMA) and homovanillic acid
(HVA) in a random urine spot and only slightly elevated 17-hydroxyprogesterone (17OHP)
1.98 ng/mL (<1.5 ng/mL), practically excluding congenital adrenal hyperplasia (CAH) as
a potential cause. Adrenal ultrasound detected a large tumor 5 cm in diameter at the left
side, and a low-dose thoracic computerized tomography (CT) scan returned normal.

2.3. Surgical Treatment

Open left total adrenalectomy was performed. Histology confirmed adrenocortical
carcinoma. The tumor size was 4.8 × 4.5 × 4.6 cm with large cells with eosinophilic and
clear cytoplasm and nuclear atypia with multinuclear structures (grade IV according to
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Fuhrman) with a high mitosis index. Overall, the surgical margins were clear, and the
lymph nodes were negative for tumor metastases. The staining and cell markers were
vimentin+, melan A+, inhibin+, B-cell leukemia/lymphoma 2 protein (BCL2)+, neuron
specific enolase (NSE) + locally, synaptophysin + locally, low-molecular-weight calcium-
binding proteins (S100)−, epithelial membrane antigen (EMA)−, carcinoembryonic antigen
(CEA)−, chromogranin−, p53+ in 30–35% of the nucleus, and marker of proliferation
(Ki67)+ in 15–20%. Her postoperative biology 32 h after surgery showed complete normal-
ization of adrenal androgens: T 0.02 ng/mL, ∆4 0.22 ng/mL, DHEA-S 0.06 µg/dL, and
17OHP 0.83 ng/mL.

2.4. Family History—Ordering Whole-Exome Sequencing

Considering the nature of the tumor and the family history (Figure 1): (a) of a maternal
cousin aged 15 years who was operated on for an adrenocortical tumor at the age of
5 months and (b) of the maternal grandmother diagnosed of bilateral breast cancer at the
age of 35 years, we performed genetic testing. Written informed consent was provided
by several family members (#1 our patient, #2 her brother, #3 her father, #4 her mother,
#5 her maternal aunt, and #6 her cousin—not the one with the adrenocortical tumor in the
past, as her mother refused—and #7 her maternal grandmother), as a genetic dominant
trait of maternal descent seemed probable. Our hypothesis was also supported by the fact
that other members of the maternal family were diagnosed with osteosarcoma (generation
III), tumors of the cervical spine (generation I, II, and III), pancreas (generation III), uterus
(generation II), and stomach and colon (generation III), the latter dying at the age of
25 years. Interestingly, three members of the paternal family of our patient’s mother had a
history of two highly malignant neoplasms cases: a male subject aged 20 years deceased
from lung cancer (generation II) and a female with sarcoma deceased at 24 years (generation
III), but no clear transmission pattern to our patient’s mother could be detected (Figure 1).
Samples for whole-genome sequencing (WES) and next-generation sequencing (NGS)
were collected.

2.5. Whole-Exome Sequencing (WES)

In view of the phenotype information, WES analysis in our patient specifically included
review of variants in genes associated with adrenal tumors, clitoromegaly, and precocious
puberty. No responsible secondary findings were identified in coding regions covered by
the XomeDx test for 56 genes, recommended to be reported by the American College of
Medical Genetics and Genomics (ACMG) [8].

The index case was found positive (on 22 August 2016) for a novel variant (c. 892del-
GinsTTT, p. Glu298PhefsX48, NM_000546.6) in the TP53 gene as a result of a frameshift
mutation: 17-7577045-TC-TAAA, which was subsequently found with next-generation
sequencing (NGS) in her mother and her maternal grandmother (Table 1). Our patient #1,
her mother #4, and her maternal grandmother #7 were positive for the tested variant while
her brother #2 and father #3 as well as the maternal aunt #5 and one maternal cousin #6
were assessed and found negative for the variant—all with a free history for malignancies.

Table 1. Results of targeted whole exome sequencing: causative variants in the disease genes
associated with the reported phenotype.

Gene Disease Mode of
Inheritance Variant Coding DNA Zygosity Inherited from Classification

TP53 Li–Fraumeni
Syndrome

Autosomal
Dominant p.E298FfsX48 c.892delGinsTIT Heterozygous Proband’s mother and

maternal grandmother

Likely
Pathogenic

Variant

The normal sequence with the bases that are deleted in braces and inserted in brackets
is: CCAC(G)[TTT]AGCT. The variant detected is predicted to cause the loss of normal
protein function through nonsense-mediated mRNA decay according to the AutoPVS1
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online tool (https://autopvs1.bgi.com/variant/hg19/17-7577045-TC-TAAA:NM_000546.6,
accessed on 25 June 2023) [9]). Considering the current data, the above-described genetic
results of targeted carrier testing for this variant and the clinical phenotypes encountered
in this family’s members designates this variant in the TP53 gene as likely pathogenic, in
complete accordance with the standards and guidelines for the interpretation of sequence
variants [10]. Moreover, according to PSV1 supporting criteria [11], this variant has a very
strong, definitive clinical validity for LFS with autosomal dominant inheritance.

WES was performed only on the child, and subsequent Sanger DNA sequencing of
the respective locus was performed in six more family members (Figure 1) by GeneDx
(www.geneDx.com, reported on 22 August 2016 for our patient and on 5 May 2017 for the
family members). Using genomic DNA from the submitted specimen, the Agilent Clinical
Research Exome kit was used to target the exonic regions and flanking splice junctions of
the genome. These targeted regions were sequenced simultaneously by massively parallel
(NextGen) sequencing on an Illumina HiSeq sequencing system with 100 bp paired end
reads. A bi-directional sequence was assembled, aligned to reference gene sequences
based on human genome build GRCh37/UCSC hgl9, and analyzed for sequence variants
using a custom-developed analysis tool (Xome Analyzer). Capillary sequencing was
used to confirm all potentially pathogenic variants identified in this patient. Sequence
alterations were reported according to the Human Genome Variation Society (HGVS)
nomenclature guidelines.

2.6. Detection of Breast Cancer in the Patient’s Mother

Even before obtaining the results of the WES, our multidisciplinary team clinically
examined the mother, aged 26 years, and ordered an extensive laboratory workup including,
initially, digital breast tomosynthesis combined with breast ultrasonography and then breast
magnetic resonance imaging which revealed unilateral in situ grade III ductal carcinoma of
the right breast. She had conventional right breast conservation surgery. The maximum
tumor diameter was 2.5 cm. The sentinel lymph node biopsy turned negative with a max
lymph node diameter of 0.8 cm. Histology reported a non-invasive ductal carcinoma in
situ (DCIS), 90% with extensive myofibroblast stromal reaction, grade III. The staining
and cell markers were human epidermal growth factor receptor 2 (HER2)+, cerb-B2 grade
III, estrogen receptor 30% weak positive, progesterone receptor <10% positivity, and Ki67
< 10% positivity. Overall, the surgical margins were clear. She received chemotherapy,
trastuzumab, and long-term tamoxifen treatment, but one year later, a local invasive tumor
in the same site was detected. In view of the incoming positive genetic results, right total
mastectomy together with prophylactic total left mastectomy with immediate bilateral
reconstruction was offered. The histological findings confirmed local recurrence of the
previously mentioned cancer but no signs of dysplasia of the left breast.

2.7. Detection of Cervical Cancer in the Patient’s Mother

Five years later, gynecological follow-up showed indices of cervical malignancy. Given
the genetic diagnosis and the personal and family history, laparoscopic total hysterectomy
with bilateral salpingo-oophorectomy was performed following an SEE FIM protocol
(sectioning and extensively examining the fimbriated end of the fallopian tube) with
immunochemistry showing positive malignant p53 signatures but negative for Ki67.

2.8. Detection of Osteosarcoma in Our Patient

The patient was referred for further follow-up to a center of expertise for cancer
predisposition syndromes. Further testing in other family members was performed, and
the patient was put under close cancer surveillance. Seven years after the initial diagnosis,
a lesion in the tibia was observed on whole-body magnetic resonance imaging (MRI).
A biopsy revealed osteosarcoma, and treatment according to the European and American
Osteosarcoma Studies (EURAMOS) protocol was initiated. As of the last observation, the
patient remains in remission.

https://autopvs1.bgi.com/variant/hg19/17-7577045-TC-TAAA:NM_000546.6
www.geneDx.com
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3. Discussion

The TP53 gene encodes a tumor suppressor protein that responds to cellular DNA
damage by causing cell cycle arrest, while transcriptionally activating downstream genes
to repair the DNA or induce apoptosis (OMIM®—Online Mendelian Inheritance in Man®

191170). Heterozygous germline pathogenic variants in TP53 cause autosomal dominant
LFS. LFS is characterized by an increased risk of a broad range of childhood and adult-
onset cancers. The following core cancer types account for 70–77% of LFS-associated
tumors: breast cancer, soft tissue sarcoma, brain tumors, osteosarcoma, and adrenocortical
carcinoma [12–14]. Many other cancer types have been reported in association with LFS
including ovarian, pancreatic, and gastrointestinal tumors [12]. Individuals with LFS who
are diagnosed with cancer have up to a 57% risk of a second primary cancer within 30 years
of the first diagnosis and up to a 38% risk of a third primary cancer [7]. Radiation-induced
second malignancies have also been reported in individuals with LFS, suggesting that
radiation may increase TP53 pathogenic variant carriers’ risk of subsequent cancers within
the radiation field [7,15]. Approximately 24% of LFS cases result from a de novo, rather
than inherited, pathogenic variant in the TP53 gene [16,17].

The likely pathogenic c.892de1GinsTIT variant in the TP53 gene had not been previ-
ously reported to the best of our knowledge at the time that the WES report was issued
(22 August 2016). Yet, almost a year later, in June and July 2017, a similar frameshift
mutation at this locus (p.E298Cfs*46) has been described in prostate cancers in two stud-
ies [18,19]. The c.892delGinsTIT variant causes a frameshift starting with codon glutamic
acid 298, changes this amino acid to a phenylalanine residue, and creates a premature
stop codon at position 48 of the new reading frame, denoted p.Glu298PhefsX48. This vari-
ant is predicted to cause the loss of normal protein function through nonsense-mediated
mRNA decay, and according to PSV1 supporting criteria and the report of the AutoPSV1
online tool, the c.892delGinsTTT variant has a very strong, definitive clinical validity for
LFS 1 with autosomal dominant inheritance, while it was not observed in approximately
6500 individuals of European and African American ancestry in the NHLBI Exome Sequenc-
ing Project, indicating that this variant is not a common benign variant in these populations.
While reports on germline variants around this region are found in the literature and
can be identified from the TP53-IARC database, ClinVar, no specific genotype–phenotype
correlation exists. However, based on the evidence presented here, c.892delGinsTTT is
a pathogenic variant, related to the adrenal tumor and the osteosarcoma reported in our
patient and the breast and cervical cancers in her mother as well as the breast cancer in her
maternal grandmother, with clear autosomal dominant inheritance.

The autosomal dominant effect of a heterozygous mutation in the TP53 gene is particu-
larly interesting. TP53 is a tumor suppressor gene located on the short arm of chromosome
17. It plays a crucial role in regulating cell division and preventing the formation of tumors,
as TP53 encodes the p53 protein, which acts as a transcription factor and regulates the
expression of genes involved in cell cycle arrest, DNA repair, and apoptosis (programmed
cell death). A single copy of the mutated TP53 gene is sufficient to cause an effect, as the
loss of function mutations often results in a loss of or reduction in the protein’s normal
function, reducing p53 protein’s ability to properly regulate cell division and prevent tumor
formation. Therefore, individuals who inherit a single copy of the TP53 mutation from one
parent (heterozygous) can develop the associated phenotype or disease. This dominant neg-
ative effect can be possibly explained by mutant p53 proteins interfering with the function
of the normal one, the wild-type p53 protein produced from the non-mutated allele. The
mutant protein may form non-functional complexes with the wild-type protein, impairing
its ability to regulate gene expression and carry out its tumor suppressor functions. Certain
TP53 mutations can also acquire new functions (oncogenic gain of function) or activities
that promote tumor development. These gain-of-function mutations may result in altered
interactions with other proteins, abnormal gene regulation, or enhanced survival and
proliferation of cancer cells [12,20–22].
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While recent advances in precision medicine show some future promise for feasible
use in pediatric oncology [23], this report firstly highlights the importance of analyzing
family history. If anything, the diagnosis made in the index case presented, which led
through precision medicine to the discovery of this novel deadly variant in the TP53 gene,
and the subsequent timely and hopefully lifesaving interventions in her mother as well
as the index case her-self with the early discovery of a new primary osteosarcoma several
years later—before any clinical symptoms or signs would appear—could literally have been
made to the maternal cousin with the adrenal tumor at the age of 5 months, 15 years ago,
meaning the exploitation of a detailed family medical history. Even if some people may
present more or less expected or unexpected behaviors expressing denial [24]—as in this
girl’s mother who refused genetic testing even when the whole picture was revealed to her
by our patient’s mother—our report also raises the issue of the physician’s responsibility to
assure the sharing of genetic information with relatives [25], who could possibly benefit if
not from preventive interventions at least from early screening, diagnosis, and treatment of
an otherwise devastating cancer, as was obviously the case in multiple members through
successive generations of this family (Figure 1).

Endocrinology has always been at the forefront of what is today called “precision
medicine”, incorporating personalized and genetic data into daily practice [26], playing
a critical role in developing and organizing holistic and multidisciplinary approaches for
rare diseases in childhood together with precision and personalized oncology [27]. With
the increasing availability and lower cost of WES, it has become clear that about 10% of
children and adolescents with tumors have germline genetic variants associated with cancer
predisposition [28]. Specifically regarding adrenocortical carcinoma, about 50% of affected
children present germline mutations in the TP53 gene, de novo in a quarter of them [29].
Models for integrative genomic analysis of pediatric cancers in clinical practice have been
proposed [30], and novel resources for cancer-related genes and potential therapeutic
targets in childhood malignancies have been developed [31]. Moreover, the added value
of WES beyond a cancer gene panel in selected patients has been proven most valuable in
recognizing predisposition in childhood cancer [32].

4. Conclusions

Clinical awareness together with detailed family history and a precision medicine ap-
proach resulted in timely diagnosis of an adrenocortical tumor in a girl with clitoromegaly
and in the early detection of breast and cervical cancer in her young mother and several
years later in the detection of a primary osteosarcoma in the same patient in a pediatric
oncology reference center. Thus, timely referral of selected patients to organized centers
of expertise, like the ones participating in the European Reference Networks, is essential
for the care of complex rare diseases like LFS. Thorough genetic analyses, proper and ex-
tended genetic counselling including family members with appropriate cancer surveillance
protocols are critical for optimal outcomes in cases of cancer predisposition syndromes.
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