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Abstract: As the proportion of renewable energy installations in modern power systems increases,
major weather events can easily trigger significant fluctuations in new energy generation and electric-
ity load, presenting the system with the dual challenges of ensuring power supply and renewable
energy consumption. Traditional dispatch models need more coordination and optimization of
flexible resources under major weather events and risk management of system operations. This study
focuses on provincial-level transmission systems, aiming to achieve the coordinated and optimized
dispatch of flexible resources across multiple time scales in response to the complex and variable
environments faced by the system. Firstly, by profoundly analyzing the response mechanisms of
power systems during major weather events, this study innovatively proposes an event-driven
day-ahead and intra-day optimal dispatch strategy for power systems. This strategy can sense and
respond to major weather events in the day-ahead phase and adjust dispatch decisions in real time
during the intra-day phase, thereby comprehensively enhancing the adaptability of power systems
to sudden weather changes. Secondly, by considering the variability of renewable energy sources
and electricity demand in the day-ahead and intra-day dispatch plans, the strategy ensures efficient
and reliable power system operation under normal and major weather event scenarios. Finally, the
method’s effectiveness is validated using actual data from a provincial-level power grid in China.
The proposed dispatch strategy enhances the resilience and adaptability of power systems to major
weather events, which are becoming increasingly frequent and severe due to climate change. The
research demonstrates that an event-driven day-ahead and intra-day optimal dispatch strategy can
enhance the economic efficiency and robustness of power system operations through the coordinated
dispatch of flexible resources during major weather events, thereby supporting the transition toward
sustainable energy systems that are resilient against the challenges of a changing climate.

Keywords: climate change; major weather event; event-driven; multi-time scale; flexible resources;
optimal dispatch

1. Introduction
1.1. Background

Promoting renewable energy is a strategic measure for sustainable development for
China to achieve its ‘dual carbon’ goals [1–3]. In the future, China’s renewable energy
installations will continue to increase. The characteristic of ‘large installations, small output’
of renewable energy poses higher requirements for system safety, power supply, and
renewable energy consumption. With a high proportion of renewable energy integrated
into the grid, the weather attributes on both the supply and demand sides of the new power
system become more pronounced.

Processes 2024, 12, 840. https://doi.org/10.3390/pr12040840 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12040840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr12040840
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12040840?type=check_update&version=1


Processes 2024, 12, 840 2 of 15

Recently, extreme weather events have become frequent and normalized in China
and worldwide [4,5]. The low probability of extreme weather events and the fact that
dispatch-level regulation alone is insufficient to cope with extreme weather events often
require consideration of post-event recovery. In contrast, major weather events, such as
cold waves, heatwaves, droughts, and heavy rains, have profoundly impacted renewable
energy generation and electricity load, which can easily lead to significant fluctuations
in renewable energy generation and electricity load, presenting the system with the dual
challenges of ‘ensuring power supply’ and ‘ensuring consumption’ [6].

In April 2022, a severe wind and dust storm in Shanxi Province, China, led to
widespread wind turbine (WT) disconnection and a sharp drop in photovoltaic (PV) output.
In July 2022, extremely hot and dry weather severely reduced the power supply capacity
in Sichuan Province, China, with the most significant daily power shortfall exceeding
17 million kilowatts and the electricity gap surpassing 370 million kilowatt-hours. In Febru-
ary 2023, a cold snap in northwest China caused a forecast deviation of nearly 12 million
kilowatts, leading to tension in the power system balance. The existing power system
dispatch strategies are insufficient to address supply and consumption needs during ma-
jor weather events, and there is an urgent need to research the coordinated optimization
dispatch of flexible resources in new power systems under major weather events.

1.2. Literature Review

Existing research on the optimal dispatch of power systems mainly focuses on analyz-
ing renewable energy’s generation patterns and load characteristics under conventional
weather conditions to achieve optimal system dispatch. However, these methods have
not fully considered the uncertainty characteristics on both the supply and demand sides
during major weather events. Therefore, the coordinated dispatch of flexible resources,
such as generation, load, and energy storage, has become a critical approach to ensuring
the reliability of the power supply and promoting renewable energy consumption [7].

In recent years, with technological advancements and policy support, the economic fea-
sibility and dispatch flexibility of flexible resources have continuously improved. Flexible
resources, represented by advanced energy storage technologies and demand response tech-
nologies on the load side, have received widespread attention from scholars in related fields.
These studies mainly focus on the vital role of flexible resources in grid dispatch, especially
in enhancing system supply reliability and promoting renewable energy consumption. The
research primarily concentrates on three key areas: the operational characteristics of flexible
resources, application scenarios, and dispatch strategies.

The flexibility of the power system refers to the ability to react quickly to all kinds
of emergencies and changes under the boundary constraints of the power system and to
flexibly adjust the power supply according to the load demand [8]. The flexibility of power
systems originates mainly from four aspects: the supply side, the grid side, the demand
side, and the energy storage side [9–11]. The system’s flexibility can be reflected on different
time scales, divided into short-term (<15 min), medium-term (15–60 min), and long-term
(>1 h) [12–17]. Short-term and medium-term controls mainly address instantaneous load
fluctuations and the short-term uncertainties of renewable energy. In contrast, long-term
control helps balance changes in energy demand over a day, or even over seasonal cycles.
Regarding application scenarios, flexible resource optimization dispatch is often used for
system peak shaving, frequency regulation, spinning reserve, enhancing system distur-
bance resistance, pre-disaster prevention, and post-disaster recovery. Considering the
different control characteristics of various flexible resources, existing methods for the coor-
dinated dispatch of flexible resources usually follow a day-ahead and intra-day coordinated
dispatch strategy [18]. This layered dispatch method can better adapt to the electricity
market trading model and dynamic changes in the external environment of grid operations.

Overall, existing research on the optimal dispatch of flexible resources in power
systems is limited to optimizing flexible system resources in specific scenarios and has
not yet deeply explored the integrated coordinated dispatch of flexible system resources
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in both regular and special scenarios (such as major weather events). Therefore, there
is an urgent need to consider the adaptability of dispatch plans to regular and special
scenarios, deeply analyze the control characteristics of flexible resources under different
scenarios, and develop an event-driven day-ahead and intra-day optimal dispatch strategy
for power systems.

1.3. Contributions

The main contributions of this paper include the following three aspects:
Firstly, a power system model incorporating multiple flexible regulation resources,

such as source, grid, load, and storage, has been established, and the regulation characteris-
tics of different types of flexible regulation resources, such as traditional units, pumped
storage, ES, and demand response, have been modeled.

Secondly, an event-driven day-ahead and intra-day coordinated dispatch strategy for
power systems is proposed. Under normal weather conditions, a deterministic day-ahead
and intra-day dispatch strategy is executed based on renewable energy output forecasts
and load demand prediction curves. When major weather events occur, considering the
strong uncertainty characteristics on both the supply and demand sides, a day-ahead robust
and intra-day stochastic dispatch strategy is executed, effectively balancing the economic
efficiency and robustness of the dispatch strategy. The proposed method can support the
sustainable scheduling and operation of power systems under various operating conditions,
especially for major weather processes.

Finally, through comparative case studies, it is concluded that the event-driven day-
ahead and intra-day dispatch strategy proposed in this paper can accommodate both
normal weather and major weather event scenarios, effectively ensuring the economic and
sustainable operation of the system under normal weather and the safety of the system’s
operation during major weather events.

The structure of the remaining part of this paper is as follows: Section 2 introduces the
structure of the flexible resource aggregation system. Section 3 constructs mathematical
models for various types of flexible resources and the complete model for deterministic
day-ahead to intra-day optimization scheduling. Section 4 presents the uncertainty mod-
eling methods and the event-driven day-ahead and intra-day optimal dispatch methods.
Section 5 displays the results of the case study analysis. Section 6 provides a summary of
the entire paper.

2. Flexible Resource Aggregation System Description

Developing renewable energy sources, represented by WT and PV, is crucial for
achieving the ‘dual carbon’ goals. Enhancing the flexibility of the new power system can
be achieved through the flexible transformation of traditional thermal power (TP) [19],
the widespread use of energy storage technology, and the promotion of demand-side
management techniques.

In addition to renewable energy sources, such as WT and PV, the new power system
also aggregates various flexible resources, including electrochemical energy storage (ES)
and pumped storage (PS). These resources and demand response (DR) mechanisms guide
the transition of end loads from rigidity to flexibility. The structure of the flexible resource
aggregation system is depicted in Figure 1.

Due to the emphasis on economic operation under normal weather conditions and
the focus on the security of supply and consumption during major weather events, a
proposed event-driven optimization scheduling strategy combines normal weather and
major weather processes. This strategy consists of three parts:

1. Decision Function: The decision function provides a decision directive to the schedul-
ing platform, enabling transition between different scheduling strategies.

2. Pre-Event Scheduling Strategy: This part of the strategy deals with scheduling deci-
sions made before the occurrence of significant weather events.
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3. Post-Event Scheduling Strategy: The post-event scheduling strategy focuses on
scheduling decisions made after significant weather events.

The decision function is essential, as it provides a decision command to the scheduling
platform, facilitating the transition between different scheduling strategies based on the
prevailing conditions.
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3. Deterministic Day-Ahead and Intra-Day Optimal Dispatch Models
3.1. Model of Flexible Resources
3.1.1. Thermal Power

TP units are subject to operational constraints, including power constraints and ramp
rate constraints, as shown in Equations (1) and (2):

Pmin
g ≤ Pg,t ≤ Pmax

g (1){
Pg,t − Pg,t−1 ≤ ug,tRg
Pg,t−1 − Pg,t ≤ ug,t−1Rg

(2)

where Pmin
g and Pmax

g are the upper and lower output limits of the TP unit g, respectively;
Rg is the ramp rate of the TP unit g; and ug,t is the start/stop state of the TP unit, with
a value of 1 representing the startup of the unit and 0 representing the shutdown of the
TP unit.

3.1.2. Battery Storage

The constraints of BS include the rated power of the inverter and the rated charging
and discharging power, as shown in Equations (3) and (4):{

Pcha
bs,t ubs,t ≤ Pbs,t ≤ Pdis

bs,tubs,t
Smin

SOC ≤ SSOC,t ≤ Smax
SOC

(3)

SSOC,t+1 =


SSOC,t(1 − δ) +

Pcha
bs,t ηcha

bs ∆t
Vbs

charge

SSOC,t(1 − δ)− Pdis
bs,t∆t

ηdis
bs Vbs

discharge
(4)



Processes 2024, 12, 840 5 of 15

where Pcha
bs,t and Pdis

bs,t are the rated charging power and rated discharging power, respectively;
ubs,t is the start/stop state, SSOC,t is the state of charge; Smax

SOC and Smin
SOC are the upper and

lower limits of the state of charge; δ is the self-depletion rate; ηcha
bs and ηdis

bs are the charging
and discharging efficiencies; and Vbs is the installed capacity.

3.1.3. Pumped Storage

The constraints of PS include reservoir capacity constraints and ramp rate constraints,
the latter being influenced by the pumping rate, as shown in Equations (5)–(7):

Pmin
ps,t ≤ Pps,t ≤ Pmax

ps,t (5)

Vmin
ps,t ≤ Vps,t ≤ Vmax

ps,t (6)∣∣Pps,t − Pps,t−1
∣∣ ≤ ∆Pps (7)

where Pmin
ps,t and Pmax

ps,t represent the upper and lower limits of the upper and lower grid
capacity; Vmin

ps,t and Vmax
ps,t define the upper and lower limits of the pumped storage capacity;

and ∆Pps represents the ramping rate.

3.1.4. Demand Response

DR resources (e.g., electric vehicles (EVs)) include valley filling and peak shaving
demand responses. Responses can also be categorized into price-based demand response
(PDR) and incentive-based demand response (IDR), based on different customer response
methods. PDR needs to be determined in the day-ahead scheduling. Depending on the
length of time required to respond to grid dispatch instructions, IDR can be divided into
the following categories:

• Class A IDR arranged one day in advance;
• Class B IDR, with a response time of 15 min to 2 h;
• Class C DR, with a response time of 5 to 15 min.{

0 ≤ P+
PDR,t ≤ P+,max

PDR
0 ≤ P−

PDR,t ≤ P−,max
PDR

(8)

{
0 ≤ P+

IDR,t ≤ P+,max
IDR

0 ≤ P−
IDR,t ≤ P−,max

IDR
(9)

where P+
PDR,t and P−

PDR,t are the load increase and decrease amounts for PDR; P+,max
PDR

and P−,max
PDR are the maximum load increase and decrease amounts for PDR; P+

IDR,t
and P−

IDR,t are the load increase and decrease amounts for Class A, B, and C IDRs,
respectively; and P+,max

IDR and P−,max
IDR are the maximum load increase and decrease

amounts for IDR.

3.2. Deterministic Day-Ahead and Intro-Day Optimal Dispatch Models
3.2.1. Objective Function

1. Day-ahead deterministic optimal dispatch model

The objective function of the day-ahead deterministic optimal dispatch model is to
minimize the sum of system operating costs, load-shedding costs, and renewable energy
abandoned costs. The formula is presented as follows:

min f1 =
24

∑
t=1

(
fope,t + floss,t

)
(10)
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fope,t = fg,t + fdg,t + fbt,t + fdr,t
floss,t = faban,t + fshed,t

fg,t = ∑
g∈Gn

[
(

agP2
g,t + bgPg,t + cg

)
+Sg

(
1 − ug,t−1

)
ug,t]

fdg,t = kwtPwt,t + kpvPpv,t
fbt,t = kbtPbt,t + πbtubt,t
fdr,t = kIDRA|PIDRA,t|+ kIDRB|PIDRB,t|
faban,t = kaban

(
Ppre

wt,t − Pwt,t + Ppre
pv,t − Ppv,t

)
fshed,t = kshed Pshed,t

(11)

where fope,t represents the system operating costs, including the costs of TP, WT, PV, ES,
and DR; floss,t represents the sum of load shedding costs fshed,t and renewable energy
abandoned costs faban,t; ag, bg, and cg are the cost coefficients of TP; Sg is the start/stop
cost coefficient for TP; kwt and kpv are respectively the cost coefficients for WT and PV; kbt
is the cost coefficient for ES; πbt is the start/stop cost coefficient for ES; kIDRA is the cost
coefficient for Type A IDR; kIDRB is the cost coefficient for Type B IDR; kaban is the penalty
cost coefficient for renewable energy abandoned; Ppre

wt,t and Ppre
pv,t are the predicted powers

for WT and PV; Pwt,t and Ppv,t are the actual outputs for WT and PV; kshed is the penalty
cost coefficient for load shedding; and Pshed,t is the load-shedding power.

2. Intra-day deterministic optimal dispatch model

The dispatch time scale of the intra-day optimal dispatch model is 15 min, with a
total dispatch period of 4 h. The model’s objective function is also to minimize the sum
of system operating costs, load shedding costs, and abandoned renewable energy costs.
Compared to the day-ahead dispatch model, the only change in the intra-day optimal
dispatch model is the cost of invoking an IDR (interruptible demand response) type of
demand-side response. Since Type A has already been determined, the intra-day phase
mainly optimizes the invocation costs of IDR Types B and C.

min f2 =
4

∑
t=1

(
fope,t + floss,t

)
(12)

fDR,t = kIDRB∆|PIDRB,t|+ kIDRC∆|PIDRC,t| (13)

In the day-ahead deterministic and intra-day deterministic optimal dispatch models,
the uncertainty of renewable energy and load forecast power is not considered. Instead,
they are directly used as deterministic input values in the models.

3.2.2. Constraints

In addition to the aforementioned flexible resources’ operational constraints, the mod-
els’ constraints include line transmission and node power balance constraints. Moreover, it
is stipulated that the load-shedding cost should not exceed the rated load demand.

−Pmax
ij ≤ Bij

(
θi,t − θj,t

)
≤ Pmax

ij (14)

∑ Pg,i,t + Pi,bs,t + Pi,ps,t + Pi,wt,t + Pi,pv,t + Pi,PDR,t + Pi,IDR,t = Pload
i,t − Pshed

i,t − Paban
i,t (15)

0 ⩽ Pshed
i,d,t ⩽ Pload

i,d,t (16)

where Pmax
ij is the maximum transmission power of the line between nodes i and j; Bij is the

susceptance between nodes i and j; θi,t is the phase angle at the node i at the moment t; Pi,g,t,
Pi,bs,t, Pi,ps,t, Pi,wt,t, Pi,pv,t, Pi,PDR, and Pi,IDR are the outputs of TP, ES, PS, WT, PV, PDRs, and
IDRs at moment t at node i; and Pload

i,t , Pshed
i,t , and Paban

i,t are the rated load, load-shedding
power, and renewable energy abandoned power at moment t at node i.
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4. Methodology
4.1. Random Variable Probability Models
4.1.1. Wind Power Probability Model

The volatility of WT output is mainly related to the volatility of wind speed, which
can be represented by the Weibull two-parameter distribution over a period of time [20]:

f (v) =
K
D

( v
D

)K−1
exp

(
−
( v

D

)K
)

(17)

where K and D are the shape and scale parameters of the Weibull distribution; and v is the
wind speed.

4.1.2. Photovoltaic Probability Model

The PV output is mainly affected by light intensity, which can be expressed by Beta
distribution over a period of time. The probability density function of light intensity is
shown in the following equation [20]:

f (r) =
Γ(α + β)

Γ(α)Γ(β)

(
r

rmax

)α−1(
1 − r

rmax

)β−1
(18)

where α and β are the shape parameters of Beta distribution; r and rmax are the actual light
intensity and maximum light intensity, respectively; and Γ(·) are the Gamma functions.

4.1.3. Load Probability Model

The load can usually be considered as a standard distributed random variable. The
load active probability density function is shown in the following equation [21]:

f (PL) =
1√
2πσ

exp

(
− (PL − Pm)

2

2σ2

)
(19)

where Pm and σ are the expected value and standard deviation of the load power; and PL is
the actual load power.

4.2. Day-Ahead and Intra-Day Optimal Dispatch Models Considering Uncertainty
4.2.1. Day-Ahead Robust Optimal Dispatch Model

When WT, PV, and load power uncertainties are considered, the robust optimization
method [22,23] is used to evaluate the worst-case scenario in the day-ahead optimal dis-
patch strategy to increase the robustness of the dispatch strategy. The following equation
shows the compact form of the deterministic optimal dispatch model in Section 2, after
considering the uncertainties: 

minx,ycTy
s.t. Ay ≥ a

Dy = d
Fx + Gy ≥ g
Iuy = û

(20)

x =
[
ug,t, ubs,t

]T
y = [Pwt,t, Ppv,t, Pg,t, Pcha

bs,t, Pdis
bs,t, Pps,t, Ppdr,t, P+

idr,t, P−
idr,t

]T

t = 1, 2, · · · , TN

(21)

where x and y represent the optimization variables, and c is the coefficient column vector
corresponding to the objective function; D, F, G, and Iu are the coefficient matrices for
the variables under the corresponding constraints; and d is a constant column vector.
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The values of WT, photovoltaic power, and load power are the forecasted values for the
respective time periods:

û =
[
ûwt(t), ûpv(t), ûload(t)

]T, t = (1, 2 · · · TN) (22)

where ûwt(t), ûpv(t), and ûload(t), respectively, represent the forecasted values of WT, PV,
and load power for time period t.

The fluctuations in WT, PV, and load power are contained within a box-type uncer-
tainty set U:

U :=


u =

[
uwt(t), upv(t), uload(t)

]T ∈ R(TN)×3, t = 1, 2 · · · TN
uwt(t) ∈ [ûwt(t)− ∆umax

wt (t), ûwt(t) + ∆umax
wt (t)]

upv(t) ∈
[
ûpv(t)− ∆umax

pv (t), ûpv(t) + ∆umax
pv (t)

]
uload(t) ∈

[
ûload(t)− ∆umax

load(t), ûload(t) + ∆umax
load(t)

] (23)

where uwt(t), upv(t), and uload(t) are the uncertainty variables for WT, photovoltaic power,
and load power introduced due to uncertainty. ∆umax

wt (t), ∆umax
pv (t), and ∆umax

load(t) respec-
tively represent the maximum allowable fluctuation deviations for WT, PV, and load power,
all of which are positive numbers.

4.2.2. Intra-Day Rolling Stochastic Optimal Dispatch Model

Building upon the foundation of day-ahead robust optimization dispatch, which has
already ensured a certain degree of system security, a stochastic optimization method [24,25]
is used during the intra-day dispatch phase to consider the uncertainties of WT, photovoltaic
power, and load power to cope with the fluctuations of uncertain variables in the intra-
day stage.

The objective function of stochastic optimization is to minimize the daily expected
total operating costs in each scenario based on the probabilities of uncertain variables
(e.g., WT, PV, and load) in different scenarios. Typical scenarios are generated by k-means
clustering, considering the probability models described in Section 4.1. Therefore, the
objective function can be expressed as follows:

minxk,yk ∑
k∈Ω

pkcTyk

s.t. Ayk ⩾ a
Dyk = d
Fxk + Gyk ⩾ g
yk ⩾ 0
k ∈ Ω

(24)

where Ω represents the set of scenarios of type k; pk is the probability of the k scenario
occurring; the optimization variables xk and yk correspond to x and y in the kth scenario.
Accordingly, the constraint conditions should be satisfied in each scenario. Since the values
of the optimization variables differ across scenarios, they need to be transformed through
an expectation function after the solution is obtained.

4.3. Event-Driven Day-Ahead and Intra-Day Optimal Dispatch Strategy Considering Major
Weather Events

To enhance the compatibility of the dispatch strategy with both normal weather and
major weather events, we propose an event-driven day-ahead and intra-day optimal dis-
patch strategy. Under normal weather conditions, the focus is on the economic efficiency of
system operation, and dispatch is conducted according to a deterministic strategy. During
major weather events, the emphasis shifts to the safety and robustness of system operations.
Dispatch is carried out according to a day-ahead robust and intra-day stochastic optimiza-
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tion dispatch strategy that considers new energy and load power fluctuations, thereby
achieving a balance between the system operation’s flexibility and economic efficiency.

We propose an event-driven decision function for determining the supply and con-
sumption pressure of the system and dynamically changing the system scheduling scheme
according to the decision results. The decision function f (d) is as follows:

fgap,t,d =
∣∣ fload,t,d − fDG,t,d

∣∣ (25)

f gap,d =
1
24

365

∑
t=1

fgap,t,d (26)

µgap =
1

365

365

∑
d=1

f gap,d (27)

σgap =

√√√√ 1
365

365

∑
d=1

( f gap,d − µgap)2 (28)

{
Tlow = µgap − 1.5σgap
Thigh = µgap + 1.5σgap

(29)

f (d) =

{
major weather event, f gap,d ⩽ Tlow or f gap,d ⩾ Thigh

conventional weather, Tlow < f gap,d < Thigh
(30)

This decision function can be directly applied to the new energy and load forecasting
power to determine the operational state of the system before the day to help in more
efficient power system scheduling.

The structure of the event-driven day-ahead and intra-day optimal dispatch model is
shown in Figure 2.
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5. Results and Discussions
5.1. Parameter Settings

We use the IEEE 30-bus system topology as the object of analysis, as shown in Figure 3.
The forecast and actual data of renewable energy (including wind and photovoltaic power)
and load power for a whole year in a province in China are used as input parameters, as
shown in Figure 4.

Processes 2024, 12, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 3. Diagram of an IEEE 30-bus system containing flexible resources (G: TP; W:WT; P:PV; B: 
BS; P:PS, and numbers are the branch numbers) 

 
Figure 4. The forecast and actual data of renewable energy and load power for a whole year in a 
province in China. 

5.2. Case Analysis 
5.2.1. Comparison of Operation Results 

Figure 5 shows the optimal dispatch results for one day of the system under a major 
weather event for the deterministic day-ahead and intra-day dispatch strategy and the 
day-ahead robust-intraday stochastic dispatch strategy considering uncertainty. Table 1 
shows the various costs for that day under the two dispatch strategies. 

 

24  
G

2

 

1  3  

4

 

5 
6  

7

 

8
 

9
 

10  

11  

12  

13  14  

15  

16  

17  

18  

19  

20  

21  

22  

23

25  

26  

27
 

28  

29  30  

G

G

G

G

G

G

W

B
P

G  H

Figure 3. Diagram of an IEEE 30-bus system containing flexible resources (G: TP; W:WT; P:PV; B: BS;
P:PS, and numbers are the branch numbers).

Processes 2024, 12, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 3. Diagram of an IEEE 30-bus system containing flexible resources (G: TP; W:WT; P:PV; B: 
BS; P:PS, and numbers are the branch numbers) 

 
Figure 4. The forecast and actual data of renewable energy and load power for a whole year in a 
province in China. 

5.2. Case Analysis 
5.2.1. Comparison of Operation Results 

Figure 5 shows the optimal dispatch results for one day of the system under a major 
weather event for the deterministic day-ahead and intra-day dispatch strategy and the 
day-ahead robust-intraday stochastic dispatch strategy considering uncertainty. Table 1 
shows the various costs for that day under the two dispatch strategies. 

 

24  
G

2

 

1  3  

4

 

5 
6  

7

 

8
 

9
 

10  

11  

12  

13  14  

15  

16  

17  

18  

19  

20  

21  

22  

23

25  

26  

27
 

28  

29  30  

G

G

G

G

G

G

W

B
P

G  H

Figure 4. The forecast and actual data of renewable energy and load power for a whole year in a
province in China.

5.2. Case Analysis
5.2.1. Comparison of Operation Results

Figure 5 shows the optimal dispatch results for one day of the system under a major
weather event for the deterministic day-ahead and intra-day dispatch strategy and the
day-ahead robust-intraday stochastic dispatch strategy considering uncertainty. Table 1
shows the various costs for that day under the two dispatch strategies.
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Table 1. Various costs of the system under the two strategies.

Cost (Million USD)

Deterministic
Day-Ahead and

Intro-Day Optimal
Dispatch Strategy

Day-Ahead Robust
and Intra-Day

Stochastic Optimal
Dispatch Strategy

Comparison

Total cost 817.76 815.41 +2.35

Operating cost 797.66 814.32 −16.66

Load-shedding cost 19.1 0.09 +19.1

Renewable energy
abandoned cost 0.09 0 +0.09

It can be observed that during major weather events, the operating costs under the
deterministic strategy are higher than those using the day-ahead robust and intra-day
stochastic optimal dispatch strategy. This is because the former’s deterministic strategy
ignores errors in renewable energy and load power, resulting in a dispatch plan that cannot
accurately meet the actual load demand, thereby increasing operating costs.
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The day-ahead robust intra-day stochastic optimization scheduling strategy aims to
ensure the system’s reliability during significant weather events by determining robust
scheduling plans in the day-ahead phase. This strategy can effectively reduce load shedding
and renewable energy abandonment caused by major weather events. Additionally, intra-
day stochastic dispatch allows the system to respond more flexibly to real-time weather
and load changes, reducing economic losses caused by weather forecast errors.

Furthermore, an analysis of the optimized dispatch results of the system under the
two dispatch strategies during a continuous week of major weather events is shown in
Figure 6. Table 2 presents the various costs for that week under the two dispatch strategies.
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Figure 6. (a) Dispatch result in a continuous week under major weather events using deterministic
day−ahead and intra−day dispatch strategy; (b) Dispatch result in a continuous week under major
weather events using day−ahead robust and intra−day stochastic dispatch strategy.

Table 2. Various costs of the system under the two dispatch strategies.

Cost (Million USD)

Deterministic
Day-Ahead and

Intro-Day Optimal
Dispatch Strategy

Day-Ahead Robust
and Intra-Day

Stochastic Optimal
Dispatch Strategy

Comparison

Total cost 6832.00 6818.24 +13.76

Operating cost 6782.50 6810.39 −27.89

Load-shedding cost 48.74 7.34 +41.4

Renewable energy
abandoned cost 0.76 0.51 +0.25

It can be observed that although the operating costs of using the day-ahead robust
and intra-day stochastic optimal dispatch strategy during a continuous week of major
weather events are higher than those of the deterministic strategy, this approach enhances
the robustness of the dispatch strategy when dealing with major weather events. As a result,
it can reduce the risks associated with ensuring supply and accommodating consumption,
thereby securing the safety of the load supply and renewable energy consumption and
effectively lowering the total costs.

5.2.2. Comparison of Methodologies

To verify the robustness and economic efficiency of the event-driven dispatch strategy,
we compare the following three schemes from an annual perspective:
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• Scheme 1: Use the deterministic day-ahead and intra-day optimal dispatch strategy
throughout the year.

• Scheme 2: Use the day-ahead robust and intra-day stochastic optimal dispatch strategy
throughout the year.

• Scheme 3: Use an event-driven dispatch strategy, which means using the deterministic
day-ahead and intra-day optimal dispatch strategy under normal weather conditions,
and the day-ahead robust and intra-day stochastic optimal dispatch strategy during
major weather events.

Table 3 presents the annual costs of the system under the three schemes. Figure 7
compares the system’s load-shedding and renewable energy abandoned power costs
throughout the year under the three schemes.

Table 3. Various costs of the system for the whole year under the three schemes.

Cost (Million USD) Scheme 1 Scheme 2 Scheme 3

Total cost 570,789 1,018,660 572,018

Operating cost 570,006 1,018,650 571,746

Load-shedding cost 721 6 278

Renewable energy
abandoned cost 62 4 13
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It can be observed that considering the economy, flexibility, and robustness of system
operation comprehensively, Scheme 3 provides the best results. It employs the more
economical deterministic day-ahead and intra-day optimal dispatch strategy under normal
weather conditions while switching to the robust and intra-day stochastic optimal dispatch
strategy, focusing more on system operational safety, during major weather events. This
flexible adjustment can help the system cope with different operating conditions, effectively
alleviating the problems of short-time and frequent start/stop power abandonment and
load shedding of various types of flexible units. Not only can the total operating cost be
controlled within a reasonable range, but it can also reduce the amount of load shedding in
the system, reduce the risk of the system’s preservation and consumption, better realize
the source–load balance, and contribute to the safe and stable operation of the system.
Therefore, the event-driven dispatch scheme can ensure the stability and reliability of the
power system’s operation while providing good economic benefits.
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6. Conclusions

In future power systems with significant new energy integration, managing the vari-
ability of renewable energy output will require more than just traditional generation units;
it will also require the coordinated dispatch of flexible resources across generation, grid,
load, and storage.

This paper presents an event-driven day-ahead and intra-day optimal dispatch strat-
egy that dynamically adapts to supply and demand uncertainties, aiming to balance
economic efficiency and operational robustness under conventional scenarios and major
weather events. This approach increases system flexibility and reliability by reducing
dispatch costs and load shedding. The case study shows that, compared to deterministic
day-ahead and intra-day optimal dispatch strategies, event-driven dispatch significantly
improves economic efficiency and increases the capacity for electricity supply and renew-
able energy consumption. It reduces load shedding and renewable curtailment by 77% and
78%, respectively.

Future research will focus on different types of demand response, e.g., buildings,
electric vehicles, etc. By integrating these demand response systems with renewable energy
resources, the development of more resilient and sustainable operational strategies can be
achieved, particularly in the face of major weather events.
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Assessment of Electricity Supply Security for 140 Countries. Ecol. Indic. 2020, 110, 105731. [CrossRef]

24. Bu, Y.; Zhang, X. On the Way to Integrate Increasing Shares of Variable Renewables in China: Activating Nearby Accommodation
Potential under New Provincial Renewable Portfolio Standard. Processes 2021, 9, 361. [CrossRef]

25. Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al.
IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate
Change (IPCC): Geneva, Switzerland, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSTE.2015.2410760
https://doi.org/10.1109/TII.2020.2987823
https://doi.org/10.1109/TSG.2015.2471102
https://doi.org/10.1016/j.ijepes.2021.107357
https://doi.org/10.1016/j.ijepes.2021.106998
https://doi.org/10.1016/j.epsr.2022.108645
https://doi.org/10.1016/j.gloei.2023.11.001
https://doi.org/10.1016/j.ijfatigue.2020.105912
https://doi.org/10.1109/TPWRS.2019.2897727
https://doi.org/10.1016/j.ecolind.2019.105731
https://doi.org/10.3390/pr9020361

	Introduction 
	Background 
	Literature Review 
	Contributions 

	Flexible Resource Aggregation System Description 
	Deterministic Day-Ahead and Intra-Day Optimal Dispatch Models 
	Model of Flexible Resources 
	Thermal Power 
	Battery Storage 
	Pumped Storage 
	Demand Response 

	Deterministic Day-Ahead and Intro-Day Optimal Dispatch Models 
	Objective Function 
	Constraints 


	Methodology 
	Random Variable Probability Models 
	Wind Power Probability Model 
	Photovoltaic Probability Model 
	Load Probability Model 

	Day-Ahead and Intra-Day Optimal Dispatch Models Considering Uncertainty 
	Day-Ahead Robust Optimal Dispatch Model 
	Intra-Day Rolling Stochastic Optimal Dispatch Model 

	Event-Driven Day-Ahead and Intra-Day Optimal Dispatch Strategy Considering Major Weather Events 

	Results and Discussions 
	Parameter Settings 
	Case Analysis 
	Comparison of Operation Results 
	Comparison of Methodologies 


	Conclusions 
	References

