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Abstract: Using slow-release fertilizer is one of the sustainable strategies to improve the effectiveness
of fertilizers and mitigate the environmental pollution caused by excess usage of fertilizer. In
this study, a slow-release urea fertilizer with water retention and photosensitivity properties was
prepared by a two-step method. It was characterized by Fourier transform infrared spectroscopy,
thermogravimetric analysis, scanning electron microscopy and an infrared camera. This fertilizer
can prolong the release period of urea, improve water-retention capacity of soil, and carry out
photothermal conversion under illumination. Comparing four release kinetics models, the Ritger–
Peppas model was the best fitting model for releasing behavior in soil, and diffusion followed the
Fickian mechanism. The application of fertilizer on winter wheat was carried out to intuitively
evaluate the fertilizer’s effects on promoting plant growth and resisting water stress. Thus, this study
provides a new strategy for improving fertilizer utilization rate and maintaining soil moisture, which
will be beneficial for sustainable agriculture.

Keywords: slow-release fertilizer; urea; water retention; sodium alginate; carboxymethyl starch
sodium; polydopamine

1. Introduction

Light, water, and temperature are considered the most important factors during crop
growth. In areas with low precipitation, soils with a high water-retention capacity can
reduce the influence of drought on crops [1]. Soil temperature affects the growth of crop
roots and the cycle of nutrient elements [2]. Increasing the moisture and temperature of
soil can improve crop germination, promote the growth process, and thus contribute to a
higher yield.

With the continuous growth of the population, a large number of chemical fertil-
izers, such as urea, are used to ensure the yield of grain. However, more than 50% of
fertilizers are lost because of volatilization, leaching, and chemical hydrolysis [3,4]. To
ensure the food supply, chemical fertilizer has been overused, which damages soil structure
and causes soil hardening [5,6]. Furthermore, the rapid infiltration of chemical fertilizer
makes it difficult for plants to absorb all nutrients. Nutrients accumulate and leach into
groundwater, resulting in water eutrophication and serious agricultural non-point source
pollution [7,8]. To improve the utilization rate of chemical fertilizers and reduce the total
amount of chemical fertilizers, slow-release fertilizers (SRFs) have been gradually applied
to agricultural production [9–11].

In recent years, biodegradable and environmentally friendly materials used in SRFs
have attracted much attention. Sodium alginate (SA) is a natural biodegradable polymer
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with high gelation ability that has been used as a good material for SRFs [12]. However,
after solidifying into dry particles, its water absorption is low. Carboxymethyl starch
sodium (CMS) is an important derivative of starch. CMS is not only biodegradable but also
has good water absorption, and is widely used in food, textiles, and medicine. However,
its low mechanical strength limits its application in agriculture [13]. Dopamine (DA),
as a biodegradable and non-toxic photosensitizer, has good photothermal conversion
efficiency and can spontaneously adhere to the surface of materials to form a polydopamine
film [14,15]. In addition, dopamine can significantly improve plant growth, chlorophyll
content, and root development. It can regulate nitrogen absorption and metabolism by
enhancing activities of enzymes related to nitrogen metabolism [16]. However, reported
studies about dopamine in the field of agriculture are rare.

In this study, sodium alginate (SA) and carboxymethyl starch sodium (CMS) were
compounded to form a composite network core to embed urea, and a polydopamine
(PDA) film was formed on its surface by using the self-polymerization adsorption of
dopamine. The physical and chemical properties, water retentivity and photosensitivity,
release kinetics models, and winter wheat application of the SRF were investigated for the
evaluation of the feasibility in sustainable agriculture.

2. Materials and Methods
2.1. Experimental Materials

Sodium alginate (viscosity: 200 ± 20 mpa·s, Mw: 198.11), carboxymethyl starch
sodium, calcium chloride, urea, and dopamine hydrochloride were purchased from Aladdin
Chemical Technology Co. , Ltd. (Shanghai, China); Tris-HCl (pH 8.5) and p-dimethylami-
nobenzaldehyde were purchased from Sinopharm Chemical Reagents Co., Ltd. (Shanghai,
China); ethanol and hydrochloric acid were purchased from Nanjing Chemical Reagent
Co., Ltd. (Nanjing, China); and winter wheat (Jimai 23) was supplied by the Crop Research
Institute of Shandong Academy of Agricultural Sciences.

2.2. Preparation of Sodium Alginate/Carboxymethyl Starch Sodium/Polydopamine/Urea

Sodium alginate (0.6 g) was added into distilled water (20 mL) and heated (70 ◦C) with
stirring to dissolve. Carboxymethyl starch sodium (0.5 g) was dissolved in distilled water
(10 mL). Then, the solutions of sodium alginate and carboxymethyl starch sodium were
mixed evenly, and added to urea (3 g). Afterward, the mixed solution was dripped into
calcium chloride solution (2%) to solidify into gelatinous particles, with an autosampler
at a constant speed. The gelatinous particles of sodium alginate/carboxymethyl starch
sodium/urea (SCU) were collected by filtration, washed with distilled water three times,
and dried at room temperature.

Then, dopamine hydrochloride (500 mg) was added to Tris-HCl (10 mM, pH 8.5). Sub-
sequently, SCU particles were added and stirred slowly for 5 min. Dopamine in the solution
polymerized spontaneously on the surface of SCU particles, thus forming sodium algi-
nate/carboxymethyl starch sodium/polydopamine/urea (SCPU). Finally, SCPU particles
were collected by filtration, washed with distilled water, and dried at room temperature.

2.3. Characterization

The structures of SA, CMS, PDA, urea, and SCPU were characterized by Fourier
transform infrared (FTIR) spectroscopy (Thermo Fisher Nicolet 5700, Waltham, MA, USA),
and the FTIR spectra were obtained in wavenumber range from 400 to 4000 cm−1 with
KBr disks. Thermogravimetric analysis (TGA) was performed with a thermogravimetric
analyzer (Mettler Toledo TGA 1600HT, Greifensee, Switzerland), and the heating rate was
10 ◦C/min from 25 ◦C to 900 ◦C under a nitrogen atmosphere. The surface morphology
of sodium alginate/urea (SU), SCU and SCPU particles was characterized by scanning
electron microscopy (SEM, JEOL JSM-IT500, Tokyo, Japan). Before testing, the samples
were sputtered with gold.
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2.4. Water Absorption of SCPU

A certain amount of SU, SCU, and SCPU particles were soaked in 100 mL distilled
water until the swelling was balanced. After removing the residual water from the
particle surface with absorbent paper, the water absorption (WA) was calculated using
Equation (1) [17] as follows:

WA (%) = (Ws − Wd)/Wd × 100% (1)

where Ws is the saturated weight of sample and Wd is the dry weight of sample.

2.5. Water-Holding Capacity and Water-Retention Behavior of SCPU

Soil was dried to constant weight at room temperature and was passed through a
20-mesh sieve. Then, the soil (40 g) was mixed with SCPU (3 g or 5 g) and added into
a PVC pipe (diameter of 3 cm), with the bottom sealed with gauze. Distilled water was
added slowly from the top of the PVC pipe until it seeped from the bottom of the pipe.
When no more water dripped from the bottom, the pipe was weighed again. The maximum
water-holding (WH) capacity was calculated using Equation (2) [18] as follows:

WH (%) = (W1 − W0)/W × 100% (2)

where W is the total mass of the soil and SCPU, W0 is the total mass of the soil, SCPU, and
PVC pipes, and W1 is the total mass of the water, soil, SCPU, and PVC pipes.

A mixture of soil (40 g) and SCPU (5 g) was placed in a glass beaker (50 mL). Distilled
water was added into the beaker slowly to penetrate into the soil, and then the beaker was
weighed. The beaker was placed at room temperature and weighed every two days, and
the observation was carried out for 20 days. The water retention (WR) was calculated using
Equation (3) [19] as follows:

WR (%) = (Wt − W0)/(W1 − W0) × 100% (3)

where W0 is the total mass of soil, SCPU, and beaker, W1 is the total mass of water, soil,
SCPU, and beaker, and Wt is the total mass of water, soil, SCPU, and beaker after a certain
time interval.

2.6. Slow-Release Behavior of SCPU

The soil was washed with distilled water to remove the soluble matter completely and
dried. Then, the soil (500 g) was mixed with SCPU (5 g) and packed into a PVC column
(diameter 10 cm, height 40 cm). An appropriate amount of sand was added at the top of
the soil to reduce interference. Absorbent cotton was placed at the bottom of the column
to prevent clogging. At a certain time interval, 50 mL distilled water was slowly added to
the soil column, and leachate was collected at the bottom of the column with a triangular
bottle. The amount of urea released was analyzed using a spectrophotometer to compare
the slow-release behavior of urea and SCPU particles [20].

2.7. Release Kinetics of SCPU

The zero-order model, first-order model, Higuchi model, and Ritger–Peppas model
were used to simulate the release kinetics of SCPU slow-release fertilizer [21–23].

Zero-order model: Mt/M∞ = k0 t (4)

First-order model: Mt/M∞ = 1 − e−k1t (5)

Higuchi model: Mt/M∞ = kH t1/2 (6)
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Ritger-Peppas model: Mt/M∞ = kR tn (7)

where t is the release time, and Mt and M∞ are the urea mass at a particular release time ‘t’
and at equilibrium, respectively. N is the diffusion exponent of the Ritger–Peppas model.
k0, k1, kH, and kR are release constants in the zero-order model, first-order model, Higuchi
model, and Ritger–Peppas model, respectively.

2.8. Photothermal Conversion Performance of SCPU

For measuring the photothermal conversion performance, the Petri dish (diameter
5 cm) was covered with a certain amount of SCU and SCPU microspheres, and then
irradiated by the sunlight of 120 mW/cm2 for 5 min. The temperature variation of the
samples at different time intervals were monitored by an infrared camera.

2.9. Plant Growth Experiment

The soil was collected from the experimental field of Bio-Agriculture Institute of
Shaanxi, Xi’an, Shaanxi province, China (34◦16′ N, 108◦54′ E). The properties of soil
were 11.9 g·kg−1 (soil organic matter), 0.79 g·kg−1 (total N), 59.7 mg·kg−1 (available
N), 80.7 mg kg−1 (Olsen-P), 249.3 mg kg−1 (exchangeable K), and pH 8.14.

Urea (0.2 g), 1× SCPU (containing 0.2 g urea), and 2× SCPU (containing 0.4 g urea)
were mixed in soil (2000 g) with untreated soil as a control. Then, the soil was moved
into flowerpots (diameter 15 cm). A total of 25 winter wheat seeds were planted in each
flowerpot, and were then placed in a greenhouse (18 ◦C) for observation. Three replicates
were conducted for each treatment. The plants were watered every 4 days (200 mL),
and watering was stopped on the 16th day. The growth of winter wheat in different soil
treatments under moisture and drought conditions were compared.

2.10. Statistical Analysis

The data were statistically analyzed by ANOVA with the SPSS software package
(version 26.0) for Windows. Means were compared by the least significant difference (LSD)
test at the 0.05 probability level.

3. Results and Discussion
3.1. FTIR Analysis

The FTIR spectra of sodium alginate, carboxymethyl starch sodium, dopamine, urea,
and SCPU are shown in Figure 1. In the spectrum of sodium alginate, the characteris-
tic absorption peak at 1028 cm−1 was associated with the C-O stretching vibration [24].
For carboxymethyl starch sodium, the absorption peaks at 1593 cm−1 and 1151 cm−1

were attributed to the C=O stretching vibration of carboxylic acid group (-COO) and the
C-O-C bond vibration of glycoside, respectively [25,26]. In the spectrum of dopamine, the
characteristic absorption peaks at 1282 cm−1, 1608 cm−1, and 3332 cm−1 were the stretch-
ing vibrations of C-O, C=C of the benzene ring, and N-H groups, respectively [27–29]. In
the spectrum of urea, the absorption peaks at 1675 cm−1 and 3427 cm−1 were due to the
stretching of C=O and N-H bonds, respectively [30]. Furthermore, these characteristic
peaks of sodium alginate, sodium carboxymethyl starch, polydopamine, and urea were
also observed in the FTIR spectrum of SCPU, which confirmed the successful preparation
of SCPU.
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3.2. Thermogravimetric Analysis

The thermal stability of all related materials was investigated by thermogravimet-
ric analysis (TGA) in a nitrogen atmosphere (Figure 2A). The loss of all the materials
at approximately 100 ◦C was related to a small amount of adsorbed water and bound
water [31]. In the thermal decomposition curve of urea, decomposition started at 130 ◦C
and ended at approximately 400 ◦C. At temperatures above 400 ◦C, the residual content
was almost zero, which was consistent with relevant reports [32]. Sodium alginate was
dehydrated before 200 ◦C. It cracked to form intermediate products at 200–260 ◦C. When
the temperature rose from 260 ◦C, the intermediate products continued to be cracked and
carbonized, with approximately 31% remaining at 800 ◦C [33]. The maximum weight
loss of carboxymethyl starch sodium occurred at 225–320 ◦C, which was mainly related
to the breaking of C-O-C bond in carboxymethyl starch sodium and the loss of carbon
dioxide. When the temperature reached 800 ◦C, the residue was approximately 19% [34].
Although obvious thermal decomposition of dopamine can be observed at 256–430 ◦C, the
residue can still reach 28% at 800 ◦C. Furthermore, when dopamine forms as a polymer,
it will undergo a gradual thermal decomposition, and the residue can reach over 40% at
800 ◦C [35]. The thermal degradation process of SCPU was a comprehensive reflection
of sodium alginate, carboxymethyl starch sodium, dopamine, and urea. SCPU showed
obvious thermal decomposition at 160–320 ◦C, and gradually decomposed above 320 ◦C.
The residual rate at 800 ◦C was 7.7%, which was between the rates of related materials.
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3.3. SEM Analysis

The morphology before and after swelling and the scanning electron microscope
images of SA/urea (SU), SA/CMS/urea (SCU), and SA/CMS/PDA/urea (SCPU) are
shown in Figure 2B and C, respectively. SA/urea was a kind of translucent particle, and
its morphology had no obvious change after water absorption. SA/CMS/urea was a
glossy white particle when it was dried, and its transparency and size increased after water
absorption. After covering the outer membrane of PDA, SA/CMS/PDA/urea appeared as
black particles, and the transparency and particle size increased obviously after absorbing
water. The SEM images showed that there were many granular protrusions on the surface
of the SA/urea particles. The surface of SA/CMS/urea was relatively smooth and lustrous,
with many tiny undulations and several folds. After covering it with PDA, the surface of
SA/CMS/PDA/urea became smoother, but there were still some obvious large holes.

3.4. Water Absorption, Retention, and Water-Holding Capacity of SCPU

SCPU can improve the water-holding capacity of soil, thus storing water during
irrigation or rainfall, and releasing water when facing water stress. The results showed
that the water absorption of SA/urea was 19.1%. For SA/CMS/urea, it was increased
to 164.9% with the addition of CMS. The water absorption of SA/CMS/PDA/urea was
169.5%, which may be attributed to the hydrophilicity of the PDA film (Figure 3A). It was
reported that a kind of nitrogen slow-release fertilizer based on chitosan/polyvinyl alcohol
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blend also has a good water absorption of up to 120% [30]. For the soil without SCPU, the
water holding capacity was 45.1% on the 10th day and decreased to 0.18% on the 16th day.
For the soil with 5 g SCPU added, the water holding capacity was 77.2% on the 10th day,
and it could still be maintained at 24.7% on the 20th day (Figure 3B). The water-holding
ratio of untreated soil was 42.9%, while the ratios of soil treated with 3 g and 5 g SCPU
were 72.0% and 80.4%, respectively. The results showed that the addition of SCPU was
beneficial to reduce the speed of water loss and alleviate water stress (Figure 3C). It had
been found that the water retention performance of soil with SRF was significantly higher
than that of soil without SRF [36].
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3.5. Slow-Release Behavior and Mechanism of SCPU in Soil

The release behavior and mechanism of SCPU in soil were studied at room temperature.
In the soil treated with urea (CK), almost all urea was released on the 4th day. Compared
with CK, the soil treated with SCPU released 79.7% of urea on the 25th day, indicating a
longer duration (Figure 3D). For SCPU, the initial rapid release might be attributed to the
release of urea loaded near the surface [37].

Four release kinetic models were used to simulate the behavior of SCPU in releasing
urea. The release kinetic parameters of different models were shown in Table 1. The results
showed that the Ritger–Peppas model (R2 = 0.987) was the best-fitting model for urea
release in soil. The diffusion constant in the Ritger–Peppas model can be used to determine
diffusion mechanism of SCPU, which is similar to the release mechanism of a double-
mesh hydrogel slow-release fertilizer based on sodium alginate and halloysite [33]. Since
n = 0.392 (≤0.45), the diffusion mechanism followed Fickian diffusion [38].
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Table 1. Parameters of the kinetic model.

Model Parameter Value

Zero-order
R2 0.814
K0 2.734

First-order
R2 0.982
K1 0.168

Higuchi R2 0.973
KH 15.806

Ritger–Peppas R2 0.987
n 0.392

3.6. Photothermal Conversion Effect

An appropriate amount of SCU and SCPU particles was placed in Petri dishes and
irradiated in the sun for 5 min. During this process, the temperature change in particles
was observed regularly with an infrared camera (Figure 4). The results showed that
compared with SCPU, the temperature of SCPU particles, which were covered with PDA
film, increased rapidly within 5 min. This indicated that SCPU fertilizer particles have a
photothermal conversion ability, which was related to the photothermal conversion effect
of the PDA film [39,40].
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3.7. Effects of SCPU on the Growth of Winter Wheat

To evaluate the influence of SCPU on the growth of plants, winter wheat (Jimai 23)
was selected as the model crop. In pot experiments, the performance levels of winter wheat
in the untreated group (CK), urea group, 1× SCPU group (containing the same amount of
urea), and 2× SCPU group (containing twice the amount of urea) were compared under
normal growth conditions and water stress. The results of winter wheat growth are shown
in Figure 5. The germination rate and height of winter wheat treated with SCPU were
significantly higher than those of the CK and urea groups (Figure 5A,B). This may be related
to the slow release of urea by SCPU and the growth promoting effect of PDA. In addition,
in the process of water stress, winter wheat treated with SCPU can maintain growth for at
least 9 days. However, the winter wheat of CK and urea groups had withered and died
after drought for 9 days without watering (Figure 5C). This indicated that the application
of SCPU could improve the drought resistance of winter wheat [41].
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The nitrogen nutrient released rapidly in urea far exceeds the utilization capacity of
plants, which leads to higher losses. And the fast ammonia volatilization may affect the
germination of plants [42,43]. On the contrary, the slow-release behavior of SCPU is milder,
which can meet the requirements of plant growth. Previous studies have found that crop
yields are influenced primarily by the amount and distribution of rainfall and the soil’s
capacity to hold moisture [44,45]. Thus, the improvement of soil water-holding capacity
through treatment with SCPU is also one of the reasons for the better growth of winter
wheat. Apart from these, the photothermal conversion effect of polydopamine is beneficial
to the increase in soil temperature, and can play numerous physiological roles in plants,
especially in improving plant nitrogen use efficiency [46]. These factors made the winter
wheat grow better in the soil treated by SCPU.

Although SCUP is more beneficial to plant growth than pure urea, the application cost
is also an important factor to be considered in the practical promotion of SCPU. After a
cursory calculation and comparison (Table S1), the SCPU obtained relatively higher prepa-
ration price of 85 RMB·kg−1 compared with that of traditional urea fertilizer. Nevertheless,
this price is lower than that of other similar products reported in the previous literature (226
RMB·kg−1). Although the price of SCPU is not very competitive compared with traditional
fertilizers, considering the yield and environmental benefits, this SRF may be a promising
choice for proper optimization in some arid and cold areas in the future.

4. Conclusions

In conclusion, a slow-release urea fertilizer (SCPU) based on sodium alginate/car-
boxymethyl starch sodium/polydopamine was obtained by a two-step method. It was
analyzed and characterized by FTIR, TGA, SEM, and infrared camera. Compared with
sodium alginate particles, SCPU can significantly improve the water absorption. Further
results showed that SCPU could increase the water holding capacity of soil, slow down the
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loss of water, and was sensitive to light. SCPU can release urea continuously in soil for more
than 25 days, and the mechanism of release behavior was consistent with Fickian diffusion.
The results of pot experiments showed that SCPU can promote the germination of winter
wheat, improve growth, and enhance the drought resistance of crops. In summary, the
findings of this study will help promote the growth of winter crops, prolong the duration
of fertilizer, and improve soil moisture.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr12040842/s1, Table S1. Comparison of urea, SCPU, and other SRFs in
practical application.
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