
Citation: Lin, I.-C.; Tseng, P.-C.; Chen,

P.-H.; Chiou, S.-J. Enhancing Data

Preservation and Security in

Industrial Control Systems through

Integrated IOTA Implementation.

Processes 2024, 12, 921. https://

doi.org/10.3390/pr12050921

Academic Editor: Sergey Y. Yurish

Received: 29 March 2024

Revised: 27 April 2024

Accepted: 28 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Enhancing Data Preservation and Security in Industrial Control
Systems through Integrated IOTA Implementation
Iuon-Chang Lin 1,* , Pai-Ching Tseng 2,3, Pin-Hsiang Chen 1 and Shean-Juinn Chiou 4

1 Department of Management Information Systems, National Chung Hsing University, Taichung 40277, Taiwan;
benson0714@gmail.com

2 Ph.D. Program of Business, Feng Chia University, Taichung 40724, Taiwan; tpcp630@gmail.com
3 Natures Bank Exchange Co., Ltd., Taichung 40724, Taiwan
4 Department of Mechanical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;

sjchiou@dragon.nchu.edu.tw
* Correspondence: iclin@nchu.edu.tw

Abstract: Within the domain of industrial control systems, safeguarding data integrity stands as
a pivotal endeavor, especially in light of the burgeoning menace posed by malicious tampering
and potential data loss. Traditional data storage paradigms, tethered to physical hard disks, are
fraught with inherent susceptibilities, underscoring the pressing need for the deployment of resilient
preservation frameworks. This study delves into the transformative potential offered by distributed
ledger technology (DLT), with a specific focus on IOTA, within the expansive landscape of the Internet
of Things (IoT). Through a meticulous examination of the intricacies inherent to data transmission
protocols, we present a novel paradigm aimed at fortifying data security. Our approach advocates for
the strategic placement of IOTA nodes on lower-level devices, thereby streamlining the transmission
pathway and curtailing vulnerabilities. This concerted effort ensures the seamless preservation of
data confidentiality and integrity from inception to storage, bolstering trust in the convergence of IoT
and DLT technologies. By embracing proactive measures, organizations can navigate the labyrinthine
terrain of data management, effectively mitigate risks, and cultivate an environment conducive to
innovation and progress.

Keywords: DLT; IoT; data security; Docker; container technology; IOTA; Tangle

1. Introduction

With the emergence of Industry 4.0, various innovative industrial technologies, in-
cluding MES or AI technology, have gained attention. Traditional factories have gradually
transformed into intelligent factories, and the IoT also plays an important role in it. As IoT
devices generate a large amount of data, security and integrity that satisfy data preservation
requirements are increasingly valued. Data preservation technology has become indispens-
able. Currently, most of the models or technologies are implemented using encryption
technology. Generally, a trusted third party is required to store the data, which may lead to
data leakage or attack. In recent years, the DLT has developed vigorously. It can ensure the
security and integrity of data to satisfy data preservation requirements on the chain and
solve the problem of a single point of failure (SPOF) in the system. Currently, some methods
have emerged to combine with DLT to save data. However, most of the methods focus on
replacing the original third-party data storage and only uploading the data to DLT, ignoring
the risks that may occur during the uploading process. In the existing method [1,2], the
author uses IOTA as the DLT for storing data in the IoT. IOTA uses a tangle network based
on Directed Acyclic Graph (DAG) technology, which is different from traditional DLTs.
It does not require transaction fees and has faster transaction speeds. It is often used in
industrial environments. In the IoT network, data are received through sensors, computers,
and servers, and finally uploaded to the node of the DLT. Complicated paths may lead

Processes 2024, 12, 921. https://doi.org/10.3390/pr12050921 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12050921
https://doi.org/10.3390/pr12050921
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0009-0002-3367-6317
https://doi.org/10.3390/pr12050921
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12050921?type=check_update&version=2

Processes 2024, 12, 921 2 of 22

malicious attackers to use devices in the transmission path to attack, thereby destroying
the integrity of the data.

• In an Industry 4.0 environment, a manufacturing execution system (MES) is a com-
prehensive dynamic software system that ensures production quality. It can help
enterprises monitor, track, record, and control the data generated in the manufacturing
process, from receiving orders, production, and process control to products.

• According to the MESA model [3] proposed by MESA, “data collection and acquisi-
tion”, and “product tracking and historical records” are important components of MES.
On the traditional MES, the historical record of the product will upload the data to the
database in the system. However, the data stored in the database may be hijacked by
hackers, and the tampered data may greatly affect the judgment of decision-makers or
the accuracy of AI training models. Therefore, maintaining data integrity is a major
challenge for enterprises in terms of information security.

In a blockchain network, the author Satoshi Nakamoto [4] divided the network into
two roles: miners and users. Miners consume a significant amount of computing power to
provide proof of work (POW) to connect blocks. This reward structure poses a significant
obstacle in the machine-to-machine economy because small payments between machines
may be less than the cost of payment required. In IOTA, there is no difference between
miners and users, and all nodes can participate in consensus. The person who initiates
the transaction performs lightweight proof of work, and the transaction must be verified
by other people before it can be uploaded. Therefore, the more users there are, the faster
the verification speed, and the better the efficiency. In contrast, the performance of DLT
deteriorates as the number of transactions increases. In industrial environments with a
large number of IoT devices and a focus on efficiency, IOTA is more suitable than traditional
blockchain. However, IOTA has some weak points, which are described below:

1. The size of each data element in IOTA cannot exceed 32 kb. Therefore, uploading
pictures or videos may not be possible due to the size of the data.

2. IOTA does not provide an access control system. That is, anyone can access all data
on the IOTA Tangle network, which may lead to a loss of confidentiality, one of the
three elements of information security.

DLT can ensure the integrity of data on the ledger, but it still needs to store an index
pointing to the location of the data. For example, after uploading data to IOTA, a message
ID is generated that corresponds to the location of the data stored on IOTA. If this message
ID is stored in a local database, there is a risk of substitution. If the message ID is replaced
with a malicious one, the integrity of the data cannot be verified.

Man-in-the-middle attacks, a common attack method, such as ARP spoofing, DNS
spoofing, IP spoofing, etc., are common attack methods. The traditional information
flow involves data passing through sensors, edge computers, and servers, and finally
being uploaded to a distributed ledger. Although this is easier to manage, it makes the
transmission path very complex and increases the possibility of data being tampered with
during transmission. The objective of this paper is as follows:

• Ensure data preservation for data stored on the server.
• Ensure integrity and confidentiality of data transmitted from sensors to the server

and IOTA.
• Successfully upload data exceeding IOTA storage capacity.
• Ensure the integrity of data stored on the server and detect any tampered data.

The main contributions of our architecture are as follows:

• The data will be uploaded to IOTA, and the immutable nature of DLT will ensure the
integrity of the data after they are uploaded to IOTA.

Processes 2024, 12, 921 3 of 22

• Use containerization technology [5] to set up IOTA nodes, which can reduce the diffi-
culty of setting up nodes, because there is a significant number of different hardware
devices in the IoT environment.

• Set up the IOTA node on the Raspberry Pi, upload the data to Tangle after the sensor
receives the data, and successfully reduce the transmission path before uploading to
the DLT.

• By utilizing the method we proposed, the data will be preprocessed to ensure its in-
tegrity during transmission and storage on the server, thus satisfying data preservation
requirements in the IoT environment.

2. Related Works
2.1. Distributed Ledger Technology

IoT covers a significant number of hardware devices, and there are many different
communication paths between IoT devices. To protect the communication security between
IoT devices and Tangle, many studies have proposed methods to detect and avoid data
attacks [6]. However, the risk of data being attacked on the transmission path is still
unavoidable, so how to reduce the transmission path is the key issue to address.

2.2. Transmission Path Selection from Sensors to DLT

There are three architectures for sending data from the sensor to Tangle in the industrial
environment with IoT devices. This is inspired by W. F. Silvano and R. Marcelino [7]. The
transmission paths are divided into three types:

Architecture (i): Set up the IOTA node on the server: After the data are read by the
sensors, send them to the computer, use the computer to process the data and then transfer
them to the server or database, collect the data centrally, and then upload the data to Tangle.

Architecture (ii): Set up the IOTA node on the computer. After the data read by the
sensor are sent to the computer, the computer will upload the processed data to the tangle
through the IOTA node.

Architecture (iii): Set up the IOTA node on Raspberry Pi. After the sensor sends a
signal to Raspberry Pi, it directly uploads data to Tangle.

Architecture (i) will be used in fields that require a significant amount of preprocessing,
which can greatly reduce transmission time. Our architecture usually exists in today’s
smart field, where data can be centrally managed and uploaded. However, data may be lost
or hacked during the transmission process, or a single point of failure may occur during
the transmission process. Architecture (ii) is more secure than the previous architecture,
as the computer receives the data and processes them before uploading. Architecture (iii)
is the most ideal architecture in the intelligent factory, which can directly upload data to
Tangle, and can also avoid the loss of transmission data caused by SPOF.

2.3. IOTA

When the traditional DLT is applied to the IoT, the increase in the number of transac-
tions may lead to the consumption of handling gas fees and scalability issues. The author
Popov [8] proposed that Tangle solves the problem of gas fee and scalability. The traditional
DLT needs to use miners to verify each transaction to propose a block and connect each
block to form a DLT structure like a linked list. Tangle, as proposed by the author, belongs
to the mesh DLT structure. It can add new transaction blocks from any direction, improving
transaction speed and ensuring its scalability. The consensus protocol adopted by Tangle is
proof of work (PoW). When a transaction occurs, the node we set up will need to verify
two transactions on Tangle before requesting other nodes to verify the transaction we sent.
Its characteristic is that more users can make the transaction faster.

IOTA is a distributed ledger technology specifically created for the Internet of Things
(IoT) ecosystem. In contrast to traditional blockchain-based systems, IOTA utilizes a di-
rected acyclic graph (DAG) structure, known as Tangle, to handle transactions. Tangle
enables the concurrent processing of transactions and does not require miners to vali-

Processes 2024, 12, 921 4 of 22

date transactions, resulting in a more scalable and energy-efficient solution compared to
blockchain-based systems.

IOTA, like other blockchains or distributed ledgers, requires nodes to communicate.
IOTA nodes can communicate with Tangle and act as validators to verify other people’s
transactions. When uploading data to Tangle, the data are first verified by IOTA nodes
with two transactions on Tangle and then uploaded to Tangle via IOTA nodes.

Each node in the IOTA Tangle maintains a local database, or ledger, which records all
transactions and balances. The ledger is distributed among nodes in the network, meaning
that nodes share their copy of the ledger with other nodes. This distributed sharing of the
ledger makes the ledger a “distributed ledger”.

2.4. InterPlanetary File System

The InterPlanetary File System (IPFS) is a decentralized peer-to-peer (P2P) system
designed for storing and sharing files. IPFS operates by utilizing a content-addressed
storage system that identifies content using its unique hash. With its ability to offer a
decentralized and secure solution for file storage, IPFS has become increasingly popular in
recent years as an alternative to traditional centralized storage systems.

Some researchers have explored the use of IPFS in various applications. For example,
V. Mani, P. Manickam, Y. Alotaibi, S. Alghamdi, and O. I. Khalaf [9] proposed an IPFS-based
solution for storing and sharing electronic health records (EHRs). They demonstrated that
IPFS can provide a secure and efficient way to store and share sensitive health data while
preserving patients’ privacy.

In the IoT environment, real-time data reception and transmission with data integrity
assurance are essential. Therefore, the authors Alsboui et al. [10] proposed the mobile-
agent distributed intelligence Tangle-based approach (MADIT) to address the challenges
of massive data transmission and efficiency in IoT environments. They utilized the IOTA
masked authenticated messaging (MAM) protocol to ensure data privacy on Tangle. While
data on the ledger are publicly transparent, there may be a need to upload sensitive data to
the ledger. Hence, the authors Zhang et al. [11] proposed LDP, which uploads data to the
distributed ledger technology (DLT) while preserving data confidentiality. Depending on
different contexts, there may be a need to upload varying sizes of data that could exceed the
single transaction limit of the ledger. Therefore, the authors J. Jayabalan and N. Jeyanthi [12]
proposed a model that encrypts medical data and stores them on IPFS, while storing the
index generated by IPFS on the DLT, ensuring both data integrity and confidentiality.

2.5. Cipher Feedback

Cipher Feedback (CFB) is a mode of operation for block ciphers that allows for the
encryption of plaintext data of any length. CFB is a widely used mode of operation due to
its security and ease of implementation.

Figure 1 shows that CFB is a block cipher mode that operates similarly to CBC (Cipher
Block Chaining), in that the previous ciphertext block is used in the encryption of the
current block. Like CBC, CFB uses an initialization vector. However, the key difference is
that, in the CFB mode, the previous ciphertext block is encrypted first, and then XOR-ed
with the plaintext block to produce the ciphertext block for the current iteration.

Processes 2024, 12, x FOR PEER REVIEW 5 of 23

Figure 1. Cipher Feedback (CFB) mode encryption.

2.6. Summary
We were inspired to propose this architecture based on the related works mentioned

above. The entire process is depicted in Figure 2. Firstly, I conducted research on distrib-
uted ledger technology (DLT) and found it to be highly suitable for use in the context of
intelligence factories, as it can ensure the integrity of the stored data. Therefore, I chose
IOTA to implement this technology because it can upload data to the blockchain in real
time. However, I encountered a limitation with IOTA, as it cannot store data exceeding 3
MB. To address this challenge, I explored the InterPlanetary File System (IPFS) to store
large datasets and then stored the hash value of the data in IOTA, effectively resolving the
data storage issue while ensuring data integrity.

Furthermore, I studied the data transmission path method proposed by W.F. Silvano
and R. Marcelino [7]. I learned that minimizing the data transmission path is crucial for
ensuring data security. Therefore, I deployed IOTA nodes on Raspberry Pi to enable sen-
sors to transmit data to IOTA via the shortest path.

In terms of data transmission security, I utilized CFB Encryption to encrypt the data.
This encryption method not only ensures data integrity but also guarantees data confi-
dentiality.

By integrating all these methods, I developed a data preservation architecture. It en-
sures both the confidentiality of data during transmission and the integrity of data stor-
age.

\

Figure 2. The technique relationships of our proposed architecture.

Figure 1. Cipher Feedback (CFB) mode encryption.

Processes 2024, 12, 921 5 of 22

2.6. Summary

We were inspired to propose this architecture based on the related works mentioned
above. The entire process is depicted in Figure 2. Firstly, I conducted research on dis-
tributed ledger technology (DLT) and found it to be highly suitable for use in the context of
intelligence factories, as it can ensure the integrity of the stored data. Therefore, I chose
IOTA to implement this technology because it can upload data to the blockchain in real
time. However, I encountered a limitation with IOTA, as it cannot store data exceeding
3 MB. To address this challenge, I explored the InterPlanetary File System (IPFS) to store
large datasets and then stored the hash value of the data in IOTA, effectively resolving the
data storage issue while ensuring data integrity.

Processes 2024, 12, x FOR PEER REVIEW 5 of 23

Figure 1. Cipher Feedback (CFB) mode encryption.

2.6. Summary
We were inspired to propose this architecture based on the related works mentioned

above. The entire process is depicted in Figure 2. Firstly, I conducted research on distrib-
uted ledger technology (DLT) and found it to be highly suitable for use in the context of
intelligence factories, as it can ensure the integrity of the stored data. Therefore, I chose
IOTA to implement this technology because it can upload data to the blockchain in real
time. However, I encountered a limitation with IOTA, as it cannot store data exceeding 3
MB. To address this challenge, I explored the InterPlanetary File System (IPFS) to store
large datasets and then stored the hash value of the data in IOTA, effectively resolving the
data storage issue while ensuring data integrity.

Furthermore, I studied the data transmission path method proposed by W.F. Silvano
and R. Marcelino [7]. I learned that minimizing the data transmission path is crucial for
ensuring data security. Therefore, I deployed IOTA nodes on Raspberry Pi to enable sen-
sors to transmit data to IOTA via the shortest path.

In terms of data transmission security, I utilized CFB Encryption to encrypt the data.
This encryption method not only ensures data integrity but also guarantees data confi-
dentiality.

By integrating all these methods, I developed a data preservation architecture. It en-
sures both the confidentiality of data during transmission and the integrity of data stor-
age.

\

Figure 2. The technique relationships of our proposed architecture.

Figure 2. The technique relationships of our proposed architecture.

Furthermore, I studied the data transmission path method proposed by W.F. Silvano
and R. Marcelino [7]. I learned that minimizing the data transmission path is crucial for
ensuring data security. Therefore, I deployed IOTA nodes on Raspberry Pi to enable sensors
to transmit data to IOTA via the shortest path.

In terms of data transmission security, I utilized CFB Encryption to encrypt the data. This
encryption method not only ensures data integrity but also guarantees data confidentiality.

By integrating all these methods, I developed a data preservation architecture. It en-
sures both the confidentiality of data during transmission and the integrity of data storage.

3. Proposed Method
3.1. System Architecture

We categorize data into confidential and non-confidential data. Confidential data
include information that should not be accessible to others, such as official documents,
authorization contracts, technical cooperation agreements, etc. Non-confidential data, on
the other hand, include data opposite to confidential data, such as raw data generated
by machines, publicly available company data, etc. Based on these two types of data, we
provide different data preservation architectures.

The proposed system architecture and method extended the previous work [13]. It
ensures the integrity of the data before and after uploading to Tangle. It allows for selective
confidentiality based on the sensitivity of the data. Before uploading, we have developed
an algorithm based on CFB encryption for data preprocessing, which securely stores the
original data locally and verifies data integrity using DLT. We utilize containerization
technologies to establish nodes locally, minimizing the transmission path to Tangle, which
can reduce the risk of attacks. Furthermore, our proposed architecture does not require
significant computational capabilities from IoT devices in resource-constrained IoT envi-
ronments. We also proposed a method to address the issue of large data that cannot be
stored directly in IOTA. By combining IPFS and IOTA, data can be uploaded without being
limited by the single transaction capacity of IOTA while ensuring data integrity. We have

Processes 2024, 12, 921 6 of 22

chosen IOTA as our DLT of choice, as it offers efficient transaction verification compared
to Ethereum and can meet the real-time data exchange requirements in IoT environments.
The key factors to ensure data integrity are as follows:

1. Using DLT: The DLT and various consensus mechanisms to maintain the operation of
the entire ledger. By utilizing the tamper-evident nature of DLT, it can successfully
guarantee the integrity of data after they are uploaded to the chain.

2. Reducing the transmission path before uploading to the DLT: Taking the industrial
control field as an example, after data are uploaded to the DLT, the DLT can ensure
the integrity of the data. However, before uploading to the DLT, the data will first
go through sensors, edge computers, and servers. The more transmission paths that
the data goes through, the higher the possibility of intrusion. Therefore, reducing the
transmission path before uploading to the DLT is a key factor to ensure data integrity.

3.2. Shorten the Transmission Path

To shorten the transmission path, we need to set up an IOTA node on Raspberry Pi,
which can be more challenging compared to installing it on a regular desktop computer
because Raspberry Pi uses an arm64 CPU architecture (Sony’s UK manufacturing plant,
Pencoed, South Wales), which cannot directly install the official packages designed for the
amd64 architecture. Therefore, this article utilizes containerization technology to address
this issue.

Figure 3 demonstrates how to install the IOTA node on Raspberry Pi. The main process
is as follows:

Step 1: Create container: install docker on Raspberry Pi and create a container by docker.
This allows us to use containerization technology on our devices.
Step 2: Setup IOTA node: set up the IOTA node by using packages on the IOTA website
and modifying the configuration file. The main purpose of modifying the configuration file
is to increase the surrounding neighbor nodes, which makes it synchronize with Tangle.
Many other configuration files can be modified.
Step 3: Connect the sensor to Raspberry Pi: connect sensors (CO2 sensor, water sensor,
temperature sensor, etc.) to Raspberry Pi, and design a program to collect data from the
sensor automatically.
Step 4: Design a program: Design a program for uploading data to the tangle.
Step 5: Activate the IOTA node: enable programs that collect data and upload data
simultaneously.

Processes 2024, 12, x FOR PEER REVIEW 7 of 23

Figure 3. A flowchart of creating and setting up an IOTA node in a container.

3.3. Proposed System Model
This section presents a confidential data transmission architecture for uploading data

from IoT sensors to IOTA Tangle, involving four participants: Raspberry Pi with sensors,
DLT, server, and data user. As shown in Figure 4, sensors will transmit the raw data to
Raspberry Pi in real time, and the hash value of the data will be sent to IOTA through
containerization technology for subsequent verification. Meanwhile, the data will be en-
crypted or preprocessed based on their type using the algorithm proposed in this study.
Finally, before the data are used by the data user, they will undergo integrity verification
through IOTA and the algorithm proposed in this study to ensure that the data have not
been tampered with.

Figure 4. Proposed system architecture to ensure data integrity.

Figure 5 illustrates the detailed process of uploading non-confidential data to the
server and IOTA. To prevent data from being stolen in the public Tangle network, the
original data are hashed before being uploaded to IOTA. Figure 6 is the method based on
Algorithm 1, Figure 7 shows the process of data retrieval by the data user. Using the mes-
sage ID returned by IOTA, the data are preprocessed using the algorithm proposed in this
study (Algorithm 1) and then uploaded to the server. When the data user wants to access
the data, the stored message ID in the server undergoes integrity verification using the
verification algorithm (Algorithm 2) proposed in this study. Upon successful integrity

Figure 3. A flowchart of creating and setting up an IOTA node in a container.

3.3. Proposed System Model

This section presents a confidential data transmission architecture for uploading data
from IoT sensors to IOTA Tangle, involving four participants: Raspberry Pi with sensors,

Processes 2024, 12, 921 7 of 22

DLT, server, and data user. As shown in Figure 4, sensors will transmit the raw data to
Raspberry Pi in real time, and the hash value of the data will be sent to IOTA through
containerization technology for subsequent verification. Meanwhile, the data will be
encrypted or preprocessed based on their type using the algorithm proposed in this study.
Finally, before the data are used by the data user, they will undergo integrity verification
through IOTA and the algorithm proposed in this study to ensure that the data have not
been tampered with.

Processes 2024, 12, x FOR PEER REVIEW 7 of 23

Figure 3. A flowchart of creating and setting up an IOTA node in a container.

3.3. Proposed System Model
This section presents a confidential data transmission architecture for uploading data

from IoT sensors to IOTA Tangle, involving four participants: Raspberry Pi with sensors,
DLT, server, and data user. As shown in Figure 4, sensors will transmit the raw data to
Raspberry Pi in real time, and the hash value of the data will be sent to IOTA through
containerization technology for subsequent verification. Meanwhile, the data will be en-
crypted or preprocessed based on their type using the algorithm proposed in this study.
Finally, before the data are used by the data user, they will undergo integrity verification
through IOTA and the algorithm proposed in this study to ensure that the data have not
been tampered with.

Figure 4. Proposed system architecture to ensure data integrity.

Figure 5 illustrates the detailed process of uploading non-confidential data to the
server and IOTA. To prevent data from being stolen in the public Tangle network, the
original data are hashed before being uploaded to IOTA. Figure 6 is the method based on
Algorithm 1, Figure 7 shows the process of data retrieval by the data user. Using the mes-
sage ID returned by IOTA, the data are preprocessed using the algorithm proposed in this
study (Algorithm 1) and then uploaded to the server. When the data user wants to access
the data, the stored message ID in the server undergoes integrity verification using the
verification algorithm (Algorithm 2) proposed in this study. Upon successful integrity

Figure 4. Proposed system architecture to ensure data integrity.

Figure 5 illustrates the detailed process of uploading non-confidential data to the
server and IOTA. To prevent data from being stolen in the public Tangle network, the
original data are hashed before being uploaded to IOTA. Figure 6 is the method based
on Algorithm 1, Figure 7 shows the process of data retrieval by the data user. Using the
message ID returned by IOTA, the data are preprocessed using the algorithm proposed
in this study (Algorithm 1) and then uploaded to the server. When the data user wants
to access the data, the stored message ID in the server undergoes integrity verification
using the verification algorithm (Algorithm 2) proposed in this study. Upon successful
integrity verification of the message ID, the hash value of the data is retrieved from IOTA
using the message ID for further verification, ensuring that the accessed data have not been
tampered with.

Algorithm 1 A method to hash data based on CFB

1: Input: IV T, HDM
2: Output: HDML
3: /* The output will return a list consisting of the hashed D and the hashed msgID.*/
4: PD ⇐ Search previous cipher data on raspberry pi
5: if PD/= null or timeout <= t then
6: CT ⇐H(PD)⊕HDM
7: HDML.append(CT)
8: return HDML
9: else
10: Generate IV T with timestamp
11: CT ⇐H(PD) ⊕IV T
12: HDML.append(CT)
13: return HDML
14: end if

Processes 2024, 12, 921 8 of 22

Processes 2024, 12, x FOR PEER REVIEW 8 of 23

verification of the message ID, the hash value of the data is retrieved from IOTA using the
message ID for further verification, ensuring that the accessed data have not been tam-
pered with.

Figure 5. Sequence diagram for non-confidential data upload.

Figure 6. Proposed method based on CFB encryption.

Figure 5. Sequence diagram for non-confidential data upload.

Processes 2024, 12, x FOR PEER REVIEW 8 of 23

verification of the message ID, the hash value of the data is retrieved from IOTA using the
message ID for further verification, ensuring that the accessed data have not been tam-
pered with.

Figure 5. Sequence diagram for non-confidential data upload.

Figure 6. Proposed method based on CFB encryption. Figure 6. Proposed method based on CFB encryption.

Algorithm 2 Verify integrity of msgID

1: Input: BL, HDML
2: Output: true or false
3: /*The result of return true indicates that the data are correct and has not been tampered with.
false indicates that the data has been maliciously modified.*/
4: FD ⇐ H(BL [0]IVT⊕ BL [0]msgID⊕ BL [0]D) //First Data
5: if FD/= HDML [0] then
6: Data has been tampered with someone
7: return false
8: end if
9: n ⇐ number of data in BL
10: for i = 1 to n − 1 do
11: if H(BL[i − 1]D⊕ BL[i]msgID⊕ BL[i]D)/= HDML[i] then
12: Data has been tampered with someone
13: return false
14: end if
15: end for
16: return true

Processes 2024, 12, 921 9 of 22
Processes 2024, 12, x FOR PEER REVIEW 9 of 23

Figure 7. Sequence diagram for non-confidential data retrieval.

Algorithm 1 A method to hash data based on CFB
1: Input: IV T, HDM
2: Output: HDML
3: /* The output will return a list consisting of the hashed D and the hashed msgID.*/
4: PD ⇐ Search previous cipher data on raspberry pi
5: if PD ̸= null or timeout <= t then
6: CT ⇐H(PD)⊕HDM
7: HDML.append(CT)
8: return HDML
9: else
10: Generate IV T with timestamp
11: CT ⇐H(PD) ⊕IV T
12: HDML.append(CT)
13: return HDML
14: end if

Algorithm 2 Verify integrity of msgID
1: Input: BL, HDML
2: Output: true or false
3: /*The result of return true indicates that the data are correct and has not been tam-
pered with. false indicates that the data has been maliciously modified.*/

Figure 7. Sequence diagram for non-confidential data retrieval.

Table 1 shows the list of symbols used in the proposed architecture. This paper
proposes an architecture that includes two different data processing methods, which are
designed for non-confidential data and confidential data, respectively.

Algorithm 3 Verify data integrity

1: Input: BL, HL, MSL
2: Output: true or false
3: /*The result of return true indicates that the data is correct and has not been tampered with.
false indicates that the data has been maliciously modified.*/
4: n ⇐ number of data in BL
5: for i = 0 to n − 1 do
6: if H(BL[i]D)!= HL[i] then
7: Data have been tampered with someone
8: return false
9: else if MSL[i − 1] >= MSL[i] then
10: Data have been tampered with someone
11: return false
12: end if
13: end for
14: return true

Processes 2024, 12, 921 10 of 22

Table 1. Definition of notations.

Notation Definition

D Data receive from IOT sensors

H Hash value of D

msgID The location of data that save on IOTA

IVT The initialization vector with timestamp

H(·) A secure one-way hash function

HM The method we proposed based on CFB (Algorithm 1)

HDM A hash value of D⊕msgID

BL The list with a bundle of D, msgID, IVT

HDML The hash list of HDM

VM(·) The algorithm to verify integrity of msgID in DL (Algorithm 2)

HL The hash list corresponds to each D in DL

MSL The milestone list on IOTA tangle

V(·) The algorithm to verify integrity of D (Algorithm 3)

E(·) A encrypt algorithm for secret data (Algorithm 4)

key Secret key generated by AES

CT Ciphertext return by Algorithm 4

P Plaintext after CFB Decryption, which is D⊕msgID

CL The encrypted cipher list with D, msgID, IVT

Algorithm 4 Encrypt data based on CFB

1: Input: D, msgID, key
2: Output: CT
3: /* Return the ciphertext(CT) generated by using CFB encryption and the initialization vector
with timestamp(IV T).*/
4: PD ⇐ Search previous encrypted data on raspberry pi
5: if PD!= null or timeout <= t then
6: CT ⇐Ekey(PD)⊕(D ⊕ msgID)
7: return CT
8: else
9: Generate IVT with timestamp
10: CT ⇐Ekey(IVT)⊕(D ⊕ msgID)
11: return CT, IVT
12: end if

3.4. Non-Confidential Data Upload Method

This section provides a detailed explanation of the general data transmission path and
the preprocessing steps that data need to undergo. Figure 5 illustrates the data transmission
path when data are transmitted from IoT sensors to the server. The processing of data
on Raspberry Pi only requires the use of hash and exclusive or (XOR) operations and
does not require a significant amount of computing resources, making it suitable for IoT
environments with resource-constrained. After preprocessing, data preservation is ensured
on the server.

The entire process of uploading non-confidential data involves four actors: Raspberry
Pi, IoT sensors, IOTA, and server. Raspberry Pi is responsible for receiving and transmitting
information, the IoT sensors receive various signals, IOTA verifies the integrity of the
data, and the server is used to store data and msgID. The entire process is divided into
seven steps:

Processes 2024, 12, 921 11 of 22

Step 1–2: Raspberry Pi collects raw data from sensors using a program.
Step 3: The original data are hashed to obtain the hash value of the data, to prevent data
theft when uploading to IOTA.
Step 4–5: The hash value of the raw data is uploaded to IOTA and the returned msgID
is obtained.
Step 6–7: Algorithm 1 is used to preprocess the msgID, and the preprocessed data are
uploaded to the server, ensuring the integrity of the data and msgID stored on the server.

Before uploading data to the server, Algorithm 1 is applied for pre-processing to
ensure data integrity on the server. Algorithm 1 is based on the method shown in Figure 6,
which first randomly generates an Initialization Vector with Timestamp (IVT), hashes the
IVT using a hash function, and then uses XOR to create a hash value with the raw data. The
previous ciphertext is repeatedly hashed using a hash function and then using XOR with
the plaintext. These steps can allow for all data to have relatedness. If any data is tampered
with, the modified data can be easily identified during verification. To avoid spending a
significant amount of time verifying data, a timeout is set in advance on the third line of
Algorithm 1, with new IVT is generated periodically and preventing data from forming
excessively long chains, which can make data verification more efficient. In lines 4 and 8
of Algorithm 1, the hash function and XOR operation are used to make the hash values
of each data item correlate. This is to identify any tampering of the data. Hash and XOR
operations do not require significant computational power. Therefore, this method can be
used for preprocessing data when dealing with large amounts of data that require timely
processing, and it is suitable for execution in resource-constrained IoT environments after
preprocessing all the data before the timeout. They will be concatenated into a message
chain, and all the cipher texts will be stored in a list, which is the HDML.

3.5. Non-Confidential Data Retrieval Method

This section proposes the method that data users need to use when accessing data so
that data users will verify the integrity of the data before accessing them to ensure that the
data have not been tampered with. Figure 7 illustrates the entire process of accessing data,
which will use two different verification algorithms to verify the integrity of the data. The
entire process is divided into six steps:

Steps 1–2: Use the timestamp on the IVT to select which data to access, and then request
the entire data from the server with a specific timestamp. The obtained data include
IVT, BL, and HDML. IVT is a random number that contains a timestamp; BL is a list that
contains D, msgID, and IVT; and HDML is a list that contains HDM. HDM is the hash value
of D⊕msgID.
Step 3: Verify the integrity of msgID using Algorithm 2 to prevent hackers from replacing
the msgID and leading data users to the wrong location to search for the hash value on the
IOTA and return true or false after the verification is completed, wherein true indicates
successful verification and false indicates verification failure.
Steps 4–5: Obtain the hash value of the entire data and its corresponding milestone on the
IOTA using the msgID that has integrity. Verify whether the milestone indicates whether
the data have been uploaded in order, or whether the msgID has been replaced by a
malicious user.
Step 6: Perform integrity verification on the data using the verification method proposed
in Algorithm 3 and return true or false after the verification is completed, wherein true
indicates successful verification and false indicates verification failure.

In step 3 of Figure 7, Algorithm 2 is used to verify the integrity of the msgID stored
on the server. In the second line, the first data’s hash value is calculated using the first
IVT, msgID, and D in BL, and then compared with the first data’s hash value in HDML
to determine the integrity of the first data. The loop in line 8 will compare all remaining
msgID or data in BL to verify whether they are correct. Finally, true or false will be returned,

Processes 2024, 12, 921 12 of 22

wherein true indicates that the msgID has not been tampered with, while false indicates
that the data have been tampered with.

In Step 6 of Figure 7, Algorithm 3 is used to verify the integrity of the data by compar-
ing them with the hash value on the IOTA Tangle. In the conditional statement in line 4, the
algorithm first compares the hash value on the IOTA Tangle with the local hash value of the
data to verify that the two data items are consistent. In the conditional statement in line 7,
leveraging the characteristics of DLT, the milestone generated by the transaction uploaded
to the IOTA Tangle earlier will always be smaller than that of the later ones. Therefore, this
algorithm verifies whether the milestones on the IOTA Tangle are sorted in order. If there is
an issue of milestones being out of order, this means that the msgID has been replaced, and
the data do not have integrity. Finally, this algorithm will return whether the data have
been tampered with. If the data have been tampered with, it will return false; otherwise, it
will return true.

3.6. Confidential Data Upload Method

This section provides a detailed explanation of the encryption method required for
uploading confidential data, which incorporates the concept of CFB encryption. By con-
catenating all the data, the method ensures the integrity of the data stored on the server.
Although this method requires more computational power than the previously proposed
method for uploading non-confidential data, it ensures that the data can only be accessed
by those with the key, ensuring the confidentiality of the data. This study has written
the encryption method in Algorithm 4 to provide a data preservation method on the
server side.

Figure 8 shows the entire process of uploading confidential data, involving four
actors: Raspberry Pi, IoT sensors, IOTA, and server. Raspberry Pi is used for receiving and
transmitting information, IoT sensors are used for receiving various signals, IOTA is used
for verifying the integrity of the data, and the server is used for storing the data and msgID.
The entire process includes seven steps:

Step 1–2: Request data from sensors and return the received signal from the sensors to
Raspberry Pi.
Step 3: Convert the data into a hash value, which is H, by using a hash function.
Step 4–5: Upload H to IOTA to ensure that the data cannot be stolen from the public ledger.
After uploading H, receive the msgID returned by IOTA.
Step 6: Use Algorithm 4 proposed in this study to encrypt the data using CFB encryption.
This results in a ciphertext generated within the timeout, which is CT.
Step 7: Transmit the D and CT which are generated by Algorithm 4 to the server and store
them in the corresponding message chain using the timestamp of the IVT.

In step 6 of Figure 7, Algorithm 4 is used to encrypt the original data using CFB
encryption. The algorithm requires an AES key to encrypt all of the data. Due to the nature
of CFB, each ciphertext is related to the previous data, making it difficult for hackers to
tamper with the data. In line 4, a timeout is used to prevent the message chain formed
by CFB encryption from becoming too long. If the time does not exceed the timeout, the
previous data are encrypted, and XOR operation is used with the current data. In line 7,
enough message chains have been generated, so a new IVT is produced. If this timeout is
not set, verification will take a significant amount of time, so the IVT is regularly updated
at intervals to generate a new message chain.

Processes 2024, 12, 921 13 of 22

Processes 2024, 12, x FOR PEER REVIEW 13 of 23

method for uploading non-confidential data, it ensures that the data can only be accessed
by those with the key, ensuring the confidentiality of the data. This study has written the
encryption method in Algorithm 4 to provide a data preservation method on the server
side.

Figure 8 shows the entire process of uploading confidential data, involving four ac-
tors: Raspberry Pi, IoT sensors, IOTA, and server. Raspberry Pi is used for receiving and
transmitting information, IoT sensors are used for receiving various signals, IOTA is used
for verifying the integrity of the data, and the server is used for storing the data and msgID.
The entire process includes seven steps:
Step 1–2: Request data from sensors and return the received signal from the sensors to
Raspberry Pi.
Step 3: Convert the data into a hash value, which is H, by using a hash function.
Step 4–5: Upload H to IOTA to ensure that the data cannot be stolen from the public
ledger. After uploading H, receive the msgID returned by IOTA.
Step 6: Use Algorithm 4 proposed in this study to encrypt the data using CFB encryption.
This results in a ciphertext generated within the timeout, which is CT.
Step 7: Transmit the D and CT which are generated by Algorithm 4 to the server and store
them in the corresponding message chain using the timestamp of the IVT.

Figure 8. Sequence diagram for uploading confidential data.

In step 6 of Figure 7, Algorithm 4 is used to encrypt the original data using CFB en-
cryption. The algorithm requires an AES key to encrypt all of the data. Due to the nature
of CFB, each ciphertext is related to the previous data, making it difficult for hackers to
tamper with the data. In line 4, a timeout is used to prevent the message chain formed by
CFB encryption from becoming too long. If the time does not exceed the timeout, the pre-
vious data are encrypted, and XOR operation is used with the current data. In line 7,
enough message chains have been generated, so a new IVT is produced. If this timeout is
not set, verification will take a significant amount of time, so the IVT is regularly updated
at intervals to generate a new message chain.

Figure 8. Sequence diagram for uploading confidential data.

3.7. Confidential Data Retrieval Method

After preprocessing and uploading data using our proposed method, data users with
the key can use this method to verify the integrity of the data and retrieve it. Figure 9 shows
the detailed process of data retrieval, which involves three actors: the client, IOTA, and the
server. The client is the data user who must have the key to decrypt the encrypted CT. IOTA
stores the hash value corresponding to the data and can verify the integrity of the data
stored on the server. The server is used to store CL, which contains all ciphertexts within
a certain period and can be decrypted using the key to obtain P. The complete process
consists of seven steps:

Steps 1–2: Using the timestamp, the client retrieves the required data from the server, which
returns CL and BL. CL is a list of ciphertexts, while BL only includes IVT and D because the
integrity of the msgID has not yet been verified.
Step 3: The retrieved CL is decrypted using CFB decryption and the key to generate P,
which is D⊕msgID. Then, the BL [0, 1, . . ., n]D obtained from the server is used to XOR
each P to obtain the msgID with integrity.
Step 4: After obtaining the verified msgID, it can be added to BL. Therefore, BL includes D,
IVT, and msgID.
Step 5–6: Using msgID, the IOTA is queried for the hash value of D. All hash values
corresponding to msgID are placed in a list, which is HL. The milestone generated by the
transaction is queried, and all queried milestones are placed in a list to form MSL.
Step 7: Using Algorithm 3, the integrity of D is verified. BL, HL, and MSL are verified to
ensure that the hash value of the data are consistent. The order of the milestones is also
verified to detect any abnormalities in the milestones, which may indicate that the msgID
has been replaced.

Processes 2024, 12, 921 14 of 22

Processes 2024, 12, x FOR PEER REVIEW 14 of 23

3.7. Confidential Data Retrieval Method

After preprocessing and uploading data using our proposed method, data users with
the key can use this method to verify the integrity of the data and retrieve it. Figure 9
shows the detailed process of data retrieval, which involves three actors: the client, IOTA,
and the server. The client is the data user who must have the key to decrypt the encrypted
CT. IOTA stores the hash value corresponding to the data and can verify the integrity of
the data stored on the server. The server is used to store CL, which contains all ciphertexts
within a certain period and can be decrypted using the key to obtain P. The complete
process consists of seven steps:

Figure 9. Sequence diagram for confidential data retrieval.

Steps 1–2: Using the timestamp, the client retrieves the required data from the server,
which returns CL and BL. CL is a list of ciphertexts, while BL only includes IVT and D
because the integrity of the msgID has not yet been verified.
Step 3: The retrieved CL is decrypted using CFB decryption and the key to generate P,
which is D⊕msgID. Then, the BL [0, 1, …, n]D obtained from the server is used to XOR
each P to obtain the msgID with integrity.
Step 4: After obtaining the verified msgID, it can be added to BL. Therefore, BL includes
D, IVT, and msgID.
Step 5–6: Using msgID, the IOTA is queried for the hash value of D. All hash values corre-
sponding to msgID are placed in a list, which is HL. The milestone generated by the trans-
action is queried, and all queried milestones are placed in a list to form MSL.
Step 7: Using Algorithm 3, the integrity of D is verified. BL, HL, and MSL are verified to
ensure that the hash value of the data are consistent. The order of the milestones is also
verified to detect any abnormalities in the milestones, which may indicate that the msgID
has been replaced.

3.8. Large Data Upload Method
This section uses IPFS to solve the problem of limited capacity for storing data on

IOTA. IPFS can upload any type of data without size limitations. In IoT scenarios wherein
larger data such as photos or videos need to be uploaded, the 3 MB limit per transaction

Figure 9. Sequence diagram for confidential data retrieval.

3.8. Large Data Upload Method

This section uses IPFS to solve the problem of limited capacity for storing data on
IOTA. IPFS can upload any type of data without size limitations. In IoT scenarios wherein
larger data such as photos or videos need to be uploaded, the 3 MB limit per transaction in
IOTA can result in data being unable to be uploaded successfully. The method proposed in
this section does not consider the integrity verification of msgID when it is stored on the
server. If msgID integrity needs to be ensured, the algorithm used in the previous section
can be applied to preprocess msgID. This section only addresses the capacity limitation
of storing data on IOTA. Figure 10 shows the detailed process of large data uploads. The
process of uploading data involves seven steps:

Steps 1–2: Retrieve data from IoT devices and return them to Raspberry Pi.
Steps 3–4: Upload the data to IPFS and retrieve the IPFS CID, which can be used to locate
the file on IPFS.
Steps 5–6: Upload the IPFS CID to IOTA and retrieve the corresponding msgID.
Step 7: Upload the obtained msgID to the server for storage.

Processes 2024, 12, 921 15 of 22

Processes 2024, 12, x FOR PEER REVIEW 15 of 23

in IOTA can result in data being unable to be uploaded successfully. The method proposed
in this section does not consider the integrity verification of msgID when it is stored on the
server. If msgID integrity needs to be ensured, the algorithm used in the previous section
can be applied to preprocess msgID. This section only addresses the capacity limitation of
storing data on IOTA. Figure 10 shows the detailed process of large data uploads. The
process of uploading data involves seven steps:
Steps 1–2: Retrieve data from IoT devices and return them to Raspberry Pi.
Steps 3–4: Upload the data to IPFS and retrieve the IPFS CID, which can be used to locate
the file on IPFS.
Steps 5–6: Upload the IPFS CID to IOTA and retrieve the corresponding msgID.
Step 7: Upload the obtained msgID to the server for storage.

Figure 10. Sequence diagram for large data upload.

3.9. Large Data Retrieval Method
When receiving data, IPFS may be used to retrieve the data as they are stored on

different nodes. However, this may not be more efficient than traditional data retrieval
due to the scattered storage of the data. Figure 11 illustrates the entire receiving process,
which is divided into six steps:
Steps 1–2: Request a specific msgID of D from the server and receive the server’s response
containing the msgID.
Step 3–4: Use the msgID to request the IPFS CID from IOTA and receive the CID.
Step 5–6: Use the CID to request D from IPFS and wait for IPFS to retrieve the data from
the nodes and return D to the client.

Figure 10. Sequence diagram for large data upload.

3.9. Large Data Retrieval Method

When receiving data, IPFS may be used to retrieve the data as they are stored on
different nodes. However, this may not be more efficient than traditional data retrieval due
to the scattered storage of the data. Figure 11 illustrates the entire receiving process, which
is divided into six steps:

Processes 2024, 12, x FOR PEER REVIEW 16 of 23

Figure 11. Sequence diagram for large data retrieval.

4. Experimental Results
We implemented that the data received by the sensor are immediately uploaded to

the IOTA. Our proposed architecture can be applied in the current industrial environment,
and it can thus guarantee the integrity of the data. This article will implement the use of
Docker to set up an IOTA node to upload data to the server and IOTA and evaluate the
integrity of the data. Finally, different methods of uploading data will be evaluated.
• Raspberry Pi: The Raspberry Pi specifications are Broadcom BCM2711, Quad-core

Cortex-A72 (ARM v8) 64-bit SoC, 8 GB RAM, and OS with Red Hat Enterprise
Linux9.

• DHT11 sensor: The DHT11 is a basic, ultra-low-cost digital temperature and humid-
ity sensor. It uses a capacitive humidity sensor and a thermistor to measure the sur-
rounding air and spits out a digital signal on the data pin.

4.1. Implementation
The implementation of using Docker with containerized technology to set up nodes

is shown in Figure 12 below. It shows that all functions have been set up, and also suc-
cessfully executed. IOTA nodes are an essential part of the IOTA network, and they can
participate in transaction verification and network security. Adding more nodes can en-
hance the overall security of the network because the more nodes there are, the more dif-
ficult it is for attackers to target the network. IOTA nodes participate in verifying and con-
firming transactions. Adding more nodes can speed up the transaction verification process
and reduce the time it takes to confirm transactions. Therefore, deploying multiple IOTA
nodes on various industrial devices using Docker can increase the security of the entire
network and speed up transaction processing.

Figure 11. Sequence diagram for large data retrieval.

Processes 2024, 12, 921 16 of 22

Steps 1–2: Request a specific msgID of D from the server and receive the server’s response
containing the msgID.
Step 3–4: Use the msgID to request the IPFS CID from IOTA and receive the CID.
Step 5–6: Use the CID to request D from IPFS and wait for IPFS to retrieve the data from
the nodes and return D to the client.

4. Experimental Results

We implemented that the data received by the sensor are immediately uploaded to the
IOTA. Our proposed architecture can be applied in the current industrial environment, and
it can thus guarantee the integrity of the data. This article will implement the use of Docker
to set up an IOTA node to upload data to the server and IOTA and evaluate the integrity of
the data. Finally, different methods of uploading data will be evaluated.

• Raspberry Pi: The Raspberry Pi specifications are Broadcom BCM2711, Quad-core
Cortex-A72 (ARM v8) 64-bit SoC, 8 GB RAM, and OS with Red Hat Enterprise Linux9.

• DHT11 sensor: The DHT11 is a basic, ultra-low-cost digital temperature and hu-
midity sensor. It uses a capacitive humidity sensor and a thermistor to measure the
surrounding air and spits out a digital signal on the data pin.

4.1. Implementation

The implementation of using Docker with containerized technology to set up nodes is
shown in Figure 12 below. It shows that all functions have been set up, and also successfully
executed. IOTA nodes are an essential part of the IOTA network, and they can participate
in transaction verification and network security. Adding more nodes can enhance the
overall security of the network because the more nodes there are, the more difficult it is
for attackers to target the network. IOTA nodes participate in verifying and confirming
transactions. Adding more nodes can speed up the transaction verification process and
reduce the time it takes to confirm transactions. Therefore, deploying multiple IOTA nodes
on various industrial devices using Docker can increase the security of the entire network
and speed up transaction processing.

Processes 2024, 12, x FOR PEER REVIEW 17 of 23

Figure 12. IOTA node built with Docker.

After setting up the node, we need to upload the data to IOTA Tangle. The entire
process of this implementation can be divided into three steps:
Step 1. Receive temperature and humidity signals through the DHT11 sensor.
Step 2. Preprocess the data using the algorithm and send the received data to IOTA and
mongoDB in real time through IOTA node on Raspberry Pi.
Step 3. Before accessing the data, we can verify whether the data have been tampered with
through IOTA.

After uploading data, the integrity of the data are verified through our proposed al-
gorithm. If the data are correct, they can pass the algorithm smoothly. If the data have
been tampered with, an error will be reported.

Figure 13 shows the uploaded data from the dht11 sensor query using IOTA Ex-
plorer. It is a tool that you can use to search through data recorded on the DLT. The figure
shows that we uploaded the data and its hash value to IOTA. This implementation as-
sumes that the data are non-confidential, so the data are uploaded directly to IOTA. If the
data are confidential, only the hash value is uploaded, and both methods can verify the
data integrity using our proposed algorithm.

Figure 13. Data on IOTA.

4.2. Security Analysis
In this section, we will conduct a security analysis of the proposed method in this

paper. We will analyze potential attacks on data stored on the server and further explain
the integrity of the data.

A man-in-the-middle attack is a type of attack in network data transmission wherein
an attacker impersonates the identities of both ends of the communication to eavesdrop,
intercept, modify, or manipulate the communication content without being detected.
There are various methods to conduct this type of attack, including IP spoofing, DNS
spoofing, ARP spoofing, email phishing, SSL stripping, and WiFi eavesdropping, among
others. This section implements ARP spoofing and verifies that using the architecture we
proposed can detect data tampering and ensure the integrity of data stored on the server.

ARP spoofing, or address resolution protocol spoofing, is a malicious network attack
where an attacker sends fraudulent ARP messages to link an incorrect MAC address to an
IP address within a network. This allows the attacker to effectively replace the MAC

Figure 12. IOTA node built with Docker.

After setting up the node, we need to upload the data to IOTA Tangle. The entire
process of this implementation can be divided into three steps:

Step 1. Receive temperature and humidity signals through the DHT11 sensor.
Step 2. Preprocess the data using the algorithm and send the received data to IOTA and
mongoDB in real time through IOTA node on Raspberry Pi.
Step 3. Before accessing the data, we can verify whether the data have been tampered with
through IOTA.

After uploading data, the integrity of the data are verified through our proposed
algorithm. If the data are correct, they can pass the algorithm smoothly. If the data have
been tampered with, an error will be reported.

Figure 13 shows the uploaded data from the dht11 sensor query using IOTA Explorer.
It is a tool that you can use to search through data recorded on the DLT. The figure shows

Processes 2024, 12, 921 17 of 22

that we uploaded the data and its hash value to IOTA. This implementation assumes
that the data are non-confidential, so the data are uploaded directly to IOTA. If the data
are confidential, only the hash value is uploaded, and both methods can verify the data
integrity using our proposed algorithm.

Processes 2024, 12, x FOR PEER REVIEW 17 of 23

Figure 12. IOTA node built with Docker.

After setting up the node, we need to upload the data to IOTA Tangle. The entire
process of this implementation can be divided into three steps:
Step 1. Receive temperature and humidity signals through the DHT11 sensor.
Step 2. Preprocess the data using the algorithm and send the received data to IOTA and
mongoDB in real time through IOTA node on Raspberry Pi.
Step 3. Before accessing the data, we can verify whether the data have been tampered with
through IOTA.

After uploading data, the integrity of the data are verified through our proposed al-
gorithm. If the data are correct, they can pass the algorithm smoothly. If the data have
been tampered with, an error will be reported.

Figure 13 shows the uploaded data from the dht11 sensor query using IOTA Ex-
plorer. It is a tool that you can use to search through data recorded on the DLT. The figure
shows that we uploaded the data and its hash value to IOTA. This implementation as-
sumes that the data are non-confidential, so the data are uploaded directly to IOTA. If the
data are confidential, only the hash value is uploaded, and both methods can verify the
data integrity using our proposed algorithm.

Figure 13. Data on IOTA.

4.2. Security Analysis
In this section, we will conduct a security analysis of the proposed method in this

paper. We will analyze potential attacks on data stored on the server and further explain
the integrity of the data.

A man-in-the-middle attack is a type of attack in network data transmission wherein
an attacker impersonates the identities of both ends of the communication to eavesdrop,
intercept, modify, or manipulate the communication content without being detected.
There are various methods to conduct this type of attack, including IP spoofing, DNS
spoofing, ARP spoofing, email phishing, SSL stripping, and WiFi eavesdropping, among
others. This section implements ARP spoofing and verifies that using the architecture we
proposed can detect data tampering and ensure the integrity of data stored on the server.

ARP spoofing, or address resolution protocol spoofing, is a malicious network attack
where an attacker sends fraudulent ARP messages to link an incorrect MAC address to an
IP address within a network. This allows the attacker to effectively replace the MAC

Figure 13. Data on IOTA.

4.2. Security Analysis

In this section, we will conduct a security analysis of the proposed method in this
paper. We will analyze potential attacks on data stored on the server and further explain
the integrity of the data.

A man-in-the-middle attack is a type of attack in network data transmission wherein
an attacker impersonates the identities of both ends of the communication to eavesdrop,
intercept, modify, or manipulate the communication content without being detected. There
are various methods to conduct this type of attack, including IP spoofing, DNS spoofing,
ARP spoofing, email phishing, SSL stripping, and WiFi eavesdropping, among others. This
section implements ARP spoofing and verifies that using the architecture we proposed can
detect data tampering and ensure the integrity of data stored on the server.

ARP spoofing, or address resolution protocol spoofing, is a malicious network attack
where an attacker sends fraudulent ARP messages to link an incorrect MAC address to
an IP address within a network. This allows the attacker to effectively replace the MAC
address of a host on the network with their device, and potentially intercept or manipulate
the traffic flowing through that host.

Figure 14 demonstrates how an attacker can use commands to target a victim with an
IP address of 192.168.0.182. The figure shows that the victim machine has mapped the MAC
address of 192.168.0.1 to the attacker’s machine, so all transmitted data will go through the
attacker’s machine. Figure 15 displays all packets that go through the attacker’s machine,
allowing the attacker to eavesdrop on or modify any packets sent by the victim’s machine.
Using a proxy, the attacker can intercept and modify packets that are prepared to be sent to
the server. Figure 16 shows that, if unprocessed data are uploaded directly to the server,
they may be attacked and tampered with during transmission.

Processes 2024, 12, x FOR PEER REVIEW 18 of 23

address of a host on the network with their device, and potentially intercept or manipulate
the traffic flowing through that host.

Figure 14 demonstrates how an attacker can use commands to target a victim with
an IP address of 192.168.0.182. The figure shows that the victim machine has mapped the
MAC address of 192.168.0.1 to the attacker’s machine, so all transmitted data will go
through the attacker’s machine. Figure 15 displays all packets that go through the at-
tacker’s machine, allowing the attacker to eavesdrop on or modify any packets sent by the
victim’s machine. Using a proxy, the attacker can intercept and modify packets that are
prepared to be sent to the server. Figure 16 shows that, if unprocessed data are uploaded
directly to the server, they may be attacked and tampered with during transmission.

Figure 14. ARP spoofing implementation by the attacker.

Figure 15. Victim of ARP spoofing.

Figure 16. The captured packet by the attacker.

We propose an architecture that preprocesses or encrypts various types of data and
verifies the integrity of the data before they are accessed. Our framework can detect tam-
pering of data and identify the tampered data as Temp. After testing the framework with
ARP spoofing attacks in a laboratory environment, we confirmed that our framework can
prevent man-in-the-middle attacks. The integrity of the data can be verified regardless of
the type of man-in-the-middle attack encountered during transmission.

A remote access attack is a form of cyber-attack that occurs when an unauthorized
person gains access to a computer or network from a remote location, typically over the
Internet. The attacker may use various methods to gain access, including exploiting vul-
nerabilities in the operating system or applications, guessing weak passwords, or using
social engineering techniques to trick users into disclosing login credentials. Once the at-
tacker has gained remote access, they can carry out a wide range of malicious activities,

Figure 14. ARP spoofing implementation by the attacker.

Processes 2024, 12, 921 18 of 22

Processes 2024, 12, x FOR PEER REVIEW 18 of 23

address of a host on the network with their device, and potentially intercept or manipulate
the traffic flowing through that host.

Figure 14 demonstrates how an attacker can use commands to target a victim with
an IP address of 192.168.0.182. The figure shows that the victim machine has mapped the
MAC address of 192.168.0.1 to the attacker’s machine, so all transmitted data will go
through the attacker’s machine. Figure 15 displays all packets that go through the at-
tacker’s machine, allowing the attacker to eavesdrop on or modify any packets sent by the
victim’s machine. Using a proxy, the attacker can intercept and modify packets that are
prepared to be sent to the server. Figure 16 shows that, if unprocessed data are uploaded
directly to the server, they may be attacked and tampered with during transmission.

Figure 14. ARP spoofing implementation by the attacker.

Figure 15. Victim of ARP spoofing.

Figure 16. The captured packet by the attacker.

We propose an architecture that preprocesses or encrypts various types of data and
verifies the integrity of the data before they are accessed. Our framework can detect tam-
pering of data and identify the tampered data as Temp. After testing the framework with
ARP spoofing attacks in a laboratory environment, we confirmed that our framework can
prevent man-in-the-middle attacks. The integrity of the data can be verified regardless of
the type of man-in-the-middle attack encountered during transmission.

A remote access attack is a form of cyber-attack that occurs when an unauthorized
person gains access to a computer or network from a remote location, typically over the
Internet. The attacker may use various methods to gain access, including exploiting vul-
nerabilities in the operating system or applications, guessing weak passwords, or using
social engineering techniques to trick users into disclosing login credentials. Once the at-
tacker has gained remote access, they can carry out a wide range of malicious activities,

Figure 15. Victim of ARP spoofing.

Processes 2024, 12, x FOR PEER REVIEW 18 of 23

address of a host on the network with their device, and potentially intercept or manipulate
the traffic flowing through that host.

Figure 14 demonstrates how an attacker can use commands to target a victim with
an IP address of 192.168.0.182. The figure shows that the victim machine has mapped the
MAC address of 192.168.0.1 to the attacker’s machine, so all transmitted data will go
through the attacker’s machine. Figure 15 displays all packets that go through the at-
tacker’s machine, allowing the attacker to eavesdrop on or modify any packets sent by the
victim’s machine. Using a proxy, the attacker can intercept and modify packets that are
prepared to be sent to the server. Figure 16 shows that, if unprocessed data are uploaded
directly to the server, they may be attacked and tampered with during transmission.

Figure 14. ARP spoofing implementation by the attacker.

Figure 15. Victim of ARP spoofing.

Figure 16. The captured packet by the attacker.

We propose an architecture that preprocesses or encrypts various types of data and
verifies the integrity of the data before they are accessed. Our framework can detect tam-
pering of data and identify the tampered data as Temp. After testing the framework with
ARP spoofing attacks in a laboratory environment, we confirmed that our framework can
prevent man-in-the-middle attacks. The integrity of the data can be verified regardless of
the type of man-in-the-middle attack encountered during transmission.

A remote access attack is a form of cyber-attack that occurs when an unauthorized
person gains access to a computer or network from a remote location, typically over the
Internet. The attacker may use various methods to gain access, including exploiting vul-
nerabilities in the operating system or applications, guessing weak passwords, or using
social engineering techniques to trick users into disclosing login credentials. Once the at-
tacker has gained remote access, they can carry out a wide range of malicious activities,

Figure 16. The captured packet by the attacker.

We propose an architecture that preprocesses or encrypts various types of data and
verifies the integrity of the data before they are accessed. Our framework can detect
tampering of data and identify the tampered data as Temp. After testing the framework
with ARP spoofing attacks in a laboratory environment, we confirmed that our framework
can prevent man-in-the-middle attacks. The integrity of the data can be verified regardless
of the type of man-in-the-middle attack encountered during transmission.

A remote access attack is a form of cyber-attack that occurs when an unauthorized
person gains access to a computer or network from a remote location, typically over
the Internet. The attacker may use various methods to gain access, including exploiting
vulnerabilities in the operating system or applications, guessing weak passwords, or using
social engineering techniques to trick users into disclosing login credentials. Once the
attacker has gained remote access, they can carry out a wide range of malicious activities,
including stealing sensitive information, installing malware or ransomware, altering or
deleting data, and using the compromised system to launch additional attacks.

After a remote access attack on a computer, the D or msgID stored on the server may be
tampered with. If the data are not encrypted or preprocessed using our proposed method,
both the data and msgID may be tampered with simultaneously, and the integrity of the
data cannot be verified. However, with our proposed data preprocessing and encryption
method, data integrity can be verified before data retrieval, allowing us to identify the
tampered data and verify their integrity.

4.3. Performance Analysis

This section evaluates the proposed methods in this paper by comparing the com-
putational complexity and time required for each method and analyzing their respective
strengths and weaknesses. Finally, the time required for uploading data to IOTA and
Ethereum is compared, and the advantages and disadvantages of using DLT and blockchain
are analyzed.

To analyze the time required for each method used in this section, we have calculated
the time required for each operation used and then calculated the amount of computation
required for each method. Table 2 shows the average time required for the four operations:

Processes 2024, 12, 921 19 of 22

hashing, XOR, CFB encryption, and CFB decryption. These four operations are the methods
required to be used locally in this architecture.

Table 2. Measurement of computational methods.

Computational Methods Definition Measurement

SHA256 hash (HT)

SHA256 (Secure Hash Algorithm 256) is a
cryptographic hash function used to

compress data into a fixed-length digital
string (256 bits). It is a one-way

encryption algorithm that cannot be
decrypted in reverse.

6.78 ns

XOR (XT)

XOR (Exclusive OR) is a logical operator
used to perform an operation on two
binary bits. It outputs 0 when the two
bits are the same, and 1 when they are

different. XOR can be used for data
encryption and checksums.

12.12 ns

CFB encryption (ET)

CFB (Cipher Feedback) encryption is a
symmetric encryption mode that uses

XOR operation to generate ciphertext by
combining the plaintext with the output

of the encryption algorithm.

41.68 ns

CFB decryption (DT)

CFB decryption is the process of using
XOR operation to decrypt ciphertext with
the output of the encryption algorithm to
obtain plaintext. It uses feedback mode
and can decrypt ciphertext generated by

CFB encryption.

38.11 ns

This section divides the methods for uploading data into two categories: the non-
confidential data upload method and the confidential data upload method. It also divides
the methods for retrieving data into two categories: the non-confidential data retrieval
method and the confidential data retrieval method. The calculation time required for the
two upload methods uses the following equation, where n represents the total number of
data to be uploaded.

Total computation time of non-confidential data upload:

n

∑
i=1

(2HTi + XTi) (1)

Total computation time of confidential data upload method:

n

∑
i=1

(HTi + ETi) (2)

Figure 17 illustrates the computation time required by our architecture. The non-
confidential data upload method only uses hash computation. Therefore, it requires less
time but lacks confidentiality. The confidential data upload method uses CFB encryption
to encrypt data, which requires more computation time. Although it takes more time, it
ensures data confidentiality.

The calculation time required for the two data retrieval methods uses the following
equation, where n denotes the total number of data to be retrieved.

Total computation time of non-confidential data retrieval method:

n

∑
i=1

(2HTi + 2XTi) (3)

Processes 2024, 12, 921 20 of 22

Total computation time of confidential data retrieval method:

n

∑
i=1

(HTi) +
n

∑
i=1

(
DTi +

n

∑
j=1

(
DTj

))
(4)

Figure 18 compares the two methods of data uploading based on the time required
according to the amount of received data. The confidential data retrieval method initially
requires less time to receive data compared to the non-confidential data retrieval method.
However, as the amount of received data received increases, the confidential data retrieval
method takes more time because it will generate a message chain, and the longer the
message chain, the longer it takes to decrypt. Therefore, our architecture proposes a
method of generating new message chains periodically, which is crucial for reducing
decryption time.

Processes 2024, 12, x FOR PEER REVIEW 20 of 23

2𝐻𝑇 𝑋𝑇 (1)

Total computation time of confidential data upload method:

𝐻𝑇 𝐸𝑇 (2)

Figure 17 illustrates the computation time required by our architecture. The non-con-
fidential data upload method only uses hash computation. Therefore, it requires less time
but lacks confidentiality. The confidential data upload method uses CFB encryption to
encrypt data, which requires more computation time. Although it takes more time, it en-
sures data confidentiality.

Figure 17. The computation time of data upload.

The calculation time required for the two data retrieval methods uses the following
equation, where n denotes the total number of data to be retrieved.
Total computation time of non-confidential data retrieval method:

2𝐻𝑇 2𝑋𝑇 (3)

Total computation time of confidential data retrieval method:

𝐻𝑇 𝐷𝑇 𝐷𝑇 (4)

Figure 18 compares the two methods of data uploading based on the time required
according to the amount of received data. The confidential data retrieval method initially
requires less time to receive data compared to the non-confidential data retrieval method.
However, as the amount of received data received increases, the confidential data retrieval
method takes more time because it will generate a message chain, and the longer the mes-
sage chain, the longer it takes to decrypt. Therefore, our architecture proposes a method
of generating new message chains periodically, which is crucial for reducing decryption
time.

Figure 17. The computation time of data upload.

Processes 2024, 12, x FOR PEER REVIEW 21 of 23

Figure 18. The computational time of data retrieval.

This section compared the computation time required for different methods. As can
be seen from the analysis, if data need to be kept confidential, more computation time is
required. Depending on the needs of different fields, different methods can be used to
ensure data storage. For the uploading and receiving of confidential data, our method
successfully reduced the time required for data decryption by updating the message
chain.

By addressing specific vulnerabilities and offering a comparative analysis with estab-
lished DLTs, this paper underscores the importance and relevance of the proposed solu-
tion in mitigating real-world challenges encountered in industrial control systems.
Through proactive measures and innovative solutions, organizations can navigate the in-
tricate landscape of data management, fortify data security, and foster an environment
conducive to innovation and progress.

5. Conclusions
To ensure data preservation in IoT networks, we proposed a system architecture that

guarantees data integrity and confidentiality from sensors to the IOTA Tangle. Once the
sensors generate data, they are immediately uploaded to Tangle via our proposed method.
This method is designed to reduce transmission paths and ensure that data integrity and
confidentiality meet data preservation requirements. CFB encryption and DLT were used
in this study to ensure that data were not tampered with. By testing the architecture
against common attack methods, we were able to verify the security of the system, detect
any malicious modifications, and ensure data integrity and confidentiality. As a result, we
established a comprehensive data preservation framework.

Furthermore, our proposed architecture is versatile and can be applied to various
fields such as manufacturing execution systems (MESs), supply chain management, AI
training, environmental social governance (ESG), machine as a service (MaaS), and intel-
lectual property (IP) management, among others. In traditional MES, data including prod-
uct tracking and historical records are stored in a database. By using our proposed archi-
tecture, data integrity and confidentiality can be ensured, meeting data preservation re-
quirements and reducing the possibility of tampering. In intelligent factories, large
amounts of IoT-generated data are often used for AI training. Our architecture ensures
the integrity of the data used to train the model, so the accuracy of the model will not be
affected by data tampering. Our proposed architecture can also be applied to ESG by us-
ing it to validate data generated by CO2 sensors, which makes it impossible for enterprises
to forge data. It is difficult to verify the integrity of intangible assets, but with our

Figure 18. The computational time of data retrieval.

Processes 2024, 12, 921 21 of 22

This section compared the computation time required for different methods. As can
be seen from the analysis, if data need to be kept confidential, more computation time is
required. Depending on the needs of different fields, different methods can be used to
ensure data storage. For the uploading and receiving of confidential data, our method
successfully reduced the time required for data decryption by updating the message chain.

By addressing specific vulnerabilities and offering a comparative analysis with estab-
lished DLTs, this paper underscores the importance and relevance of the proposed solution
in mitigating real-world challenges encountered in industrial control systems. Through
proactive measures and innovative solutions, organizations can navigate the intricate land-
scape of data management, fortify data security, and foster an environment conducive to
innovation and progress.

5. Conclusions

To ensure data preservation in IoT networks, we proposed a system architecture that
guarantees data integrity and confidentiality from sensors to the IOTA Tangle. Once the
sensors generate data, they are immediately uploaded to Tangle via our proposed method.
This method is designed to reduce transmission paths and ensure that data integrity and
confidentiality meet data preservation requirements. CFB encryption and DLT were used
in this study to ensure that data were not tampered with. By testing the architecture against
common attack methods, we were able to verify the security of the system, detect any
malicious modifications, and ensure data integrity and confidentiality. As a result, we
established a comprehensive data preservation framework.

Furthermore, our proposed architecture is versatile and can be applied to various fields
such as manufacturing execution systems (MESs), supply chain management, AI training,
environmental social governance (ESG), machine as a service (MaaS), and intellectual
property (IP) management, among others. In traditional MES, data including product
tracking and historical records are stored in a database. By using our proposed architecture,
data integrity and confidentiality can be ensured, meeting data preservation requirements
and reducing the possibility of tampering. In intelligent factories, large amounts of IoT-
generated data are often used for AI training. Our architecture ensures the integrity of
the data used to train the model, so the accuracy of the model will not be affected by data
tampering. Our proposed architecture can also be applied to ESG by using it to validate
data generated by CO2 sensors, which makes it impossible for enterprises to forge data.
It is difficult to verify the integrity of intangible assets, but with our architecture, the
immutability of the data can be proven through DLT when disputes arise, providing better
management of intangible assets. In traditional supply chains, expensive IT platforms are
necessary to provide customers with comprehensive and transparent information about
product and process quality. Incorporating our architecture enables the tracking of the
source and quality of every component, as well as eliminating unnecessary quality control
processes because DLT ensures data authenticity, thus ensuring the quality and security of
the entire supply chain.

Our main objectives are to ensure the integrity of data storage, confidentiality and
security of data transmission, minimize data transmission paths, etc. With the proposed
architecture, we have successfully achieved these objectives. Furthermore, we have suc-
cessfully constructed a data preservation architecture.

In future research, we will adopt a user-centric approach to explore usability issues
and ensure the practical applicability of our proposed architecture. Additionally, we will
take an interdisciplinary perspective by collaborating with experts from various fields to
address legal, regulatory, ethical, and social implications, thereby enhancing the robustness
and effectiveness of our data preservation framework.

Author Contributions: Conceptualization, I.-C.L.; Methodology, P.-H.C.; Software, P.-H.C.; Valida-
tion, I.-C.L.; Formal analysis, P.-C.T.; Writing—original draft, P.-H.C.; Supervision, S.-J.C.; Project
administration, P.-C.T. All authors have read and agreed to the published version of the manuscript.

Processes 2024, 12, 921 22 of 22

Funding: This research was funded by [National Science and Technology Council, Taiwan] grant
number [112-2218-E-005-007].

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to specify the reason for the restriction.

Conflicts of Interest: Author Pai-Ching Tseng was employed by the company Natures Bank Exchange
Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Zheng, X.; Sun, S.; Mukkamala, R.R.; Vatrapu, R.; Ordieres-Meré, J. Accelerating Health Data Sharing: A Solution Based on the

Internet of Things and Distributed Ledger Technologies. J. Med. Internet Res. 2019, 21, 1–12. [CrossRef] [PubMed]
2. Lamtzidis, O.; Gialelis, J. An IOTA Based Distributed Sensor Node System. In Proceedings of the 2018 IEEE Globecom Workshops,

Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6.
3. New MESA Model: A Framework for Smarter Manufacturing. MESA International. 2022. Available online: https://mesa.org/

topics-resources/mesa-model/ (accessed on 5 May 2023).
4. Nakamoto, S. Bitcoin: A Peer-To-Peer Electronic Cash System. Bitcoin.org. 2008. Available online: https://bitcoin.org/bitcoin.

pdf/ (accessed on 5 May 2023).
5. Kumar, K.; Kurhekar, M. Economically Efficient Virtualization over Cloud Using Docker Containers. In Proceedings of the 2016

IEEE International Conference on Cloud Computing in Emerging Markets, Bangalore, India, 19–21 October 2016; pp. 95–100.
6. Soltani, R.; Saxena, L.; Joshi, R.; Sampalli, S. Protecting Routing Data in WSNs with Use of IOTA Tangle. In Proceedings of the

19th International Conference on Mobile Systems and Pervasive Computing, Niagara Falls, Canada, 9–11 August 2022; Volume
203, pp. 197–204.

7. Silvano, W.F.; Marcelino, R. Iota Tangle: A Cryptocurrency to Communicate Internet-of-Things Data. Future Gener. Comput. Syst.
2020, 112, 307–319. [CrossRef]

8. Popov, S. The Tangle; Computers & Industrial Engineering, 2019; Volume 136, pp. 160–172.
9. Mani, V.; Manickam, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. Hyperledger Healthchain: Patient-Centric IPFS-Based Storage of

Health Records. Electronics 2021, 10, 3003. [CrossRef]
10. Alsboui, T.; Qin, Y.; Hill, R.; Al-Aqrabi, H. Enabling Distributed Intelligence for the Internet of Things with IOTA and Mobile

Agents. Computing 2020, 102, 1345–1363. [CrossRef]
11. Zhang, K.; Tian, J.; Xiao, H.; Zhao, Y.; Zhao, W.; Chen, J. A Numerical Splitting and Adaptive Privacy Budget-Allocation-Based

LDP Mechanism for Privacy Preservation in Blockchain-Powered IoT. IEEE Internet Things J. 2023, 10, 6733–6741. [CrossRef]
12. Jayabalan, J.; Jeyanthi, N. Scalable Blockchain Model Using Offchain IPFS Storage for Healthcare Data Security and Privacy. J.

Parallel Distrib. Comput. 2022, 164, 152–167. [CrossRef]
13. Lin, I.C.; Tseng, P.C.; Chen, P.H.; Chiou, S.J. Securing Industrial Control Systems: Enhancing Data Preservation in IoT with

Streamlined IOTA Integration. In Proceedings of the 4th IFSA Winter Conference on Automation, Robotics & Communications
for Industry 4.0/5.0, (ARCI’ 2024), Innsbruck, Austria, 7–9 February 2024.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2196/13583
https://www.ncbi.nlm.nih.gov/pubmed/31172963
https://mesa.org/topics-resources/mesa-model/
https://mesa.org/topics-resources/mesa-model/
https://bitcoin.org/bitcoin.pdf/
https://bitcoin.org/bitcoin.pdf/
https://doi.org/10.1016/j.future.2020.05.047
https://doi.org/10.3390/electronics10233003
https://doi.org/10.1007/s00607-020-00806-9
https://doi.org/10.1109/JIOT.2022.3145845
https://doi.org/10.1016/j.jpdc.2022.03.009

	Introduction
	Related Works
	Distributed Ledger Technology
	Transmission Path Selection from Sensors to DLT
	IOTA
	InterPlanetary File System
	Cipher Feedback
	Summary

	Proposed Method
	System Architecture
	Shorten the Transmission Path
	Proposed System Model
	Non-Confidential Data Upload Method
	Non-Confidential Data Retrieval Method
	Confidential Data Upload Method
	Confidential Data Retrieval Method
	Large Data Upload Method
	Large Data Retrieval Method

	Experimental Results
	Implementation
	Security Analysis
	Performance Analysis

	Conclusions
	References

