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Abstract: In order to further understand the complex spatial distribution caused by the extremely
strong heterogeneity of buried hill reservoirs, this paper proposes a new method for predicting
the development pattern of buried hill reservoirs based on the traditional pre-drilling prediction
and post-drilling evaluation methods that mainly rely on seismic, logging, and core data, which
are difficult to meet the timeliness and accuracy of drilling operations. Firstly, the box method and
normalization formula are used to process and normalize the abnormal data of element logging
and engineering logging, and then the stepwise regression analysis method is used to optimize
the sensitive parameters of element logging and engineering logging. The Light Gradient Boosting
Machine (LightGBM) algorithm, deep neural network (DNN), and support vector machine (SVM)
are used to establish a new method for predicting the development pattern of buried hill reservoirs.
Lastly, a comprehensive evaluation index F1 score for the model is established to evaluate the
prediction model for the development pattern of buried hill reservoirs. The F1 score value obtained
from this model’s comprehensive evaluation index indicates that the LightGBM model achieves
the highest accuracy, with 96.7% accuracy in identifying weathered zones and 95.8% accuracy in
identifying interior zones. The practical application demonstrates that this method can rapidly and
accurately predict the development mode of buried hill reservoirs while providing a new approach
for efficient on-site exploration and decision-making in oil and gas field developments. Consequently,
it effectively promotes exploration activities as well as enhances the overall process of oil and gas
reservoir exploration.

Keywords: development mode; buried hill reservoirs; element logging; engineering logging; stepwise
regression analysis; LightGBM algorithm

1. Introduction

Currently, the exploration and development of buried mountain oil and gas fields have
emerged as a crucial area for augmenting offshore oil and gas storage and production [1,2].
Diverging from conventional reservoirs, burial hill reservoirs exhibit high heterogeneity
with complex and diverse spatial characteristics, posing significant challenges in their
evaluation and development. Extensive research has been conducted on the assessment of
buried hill reservoirs, highlighting that lithology serves as the fundamental factor influenc-
ing reservoir development. Subsequently, geological processes such as tectonic movements
and weathering leaching contribute to the formation of fractures or karst caves during
later stages, resulting in pronounced heterogeneity within buried hill reservoirs, which
hampers accurate prediction of their spatial distribution. However, these geological pro-
cesses lead to distinct variations in reservoir reconstruction [3,4], consequently leading
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to evident zonation patterns in terms of spatial types and properties within buried hill
reservoirs. Therefore, investigating zonation developmental characteristics is highly sig-
nificant for predicting superior reservoir zones and formulating effective exploration and
development strategies.

Previous studies on the characteristic model of reservoir zonation development in
buried hills primarily relied on seismic data, core data, well logging data, and well logging
data to establish a zonation method based on the understanding of geological origin de-
rived from the geological processes experienced by buried hills [5]. Currently, seismic data
are predominantly utilized to predict the development of buried hill reservoirs prior to
drilling. Zhang Zhijun et al. comprehensively employed well seismic data to investigate the
seismic response characteristics of faults and fractures at various scales, thereby providing
a theoretical foundation for fracture prediction in deep buried hill reservoirs [6]. Song
Aixue et al. integrated forward modeling techniques to establish dominant seismic facies
within different buried hill facies zones and combined them with lithology data to establish
identification markers for zoning in buried hills [7]. The utilization of seismic data for
zonation studies in buried hills mainly focuses on pre-drilling predictions; however, due
to limitations in existing seismic data quality and complexities associated with fracture
development within these formations, predicting favorable reservoirs often yields multiple
solutions. Furthermore, numerous scholars have conducted a comprehensive evaluation of
the buried hill development model using geological data such as core samples, thin sections,
and well logging data [8,9]. Wang Deying et al. extensively employed various experimental
methods, including core analysis, X-ray diffraction, scanning electron microscopy, conven-
tional physical properties testing, zircon dating, mineral dissolution simulation, statistical
analysis methods to investigate the geological characteristics, genetic mechanisms, and
a development model of gneiss weathering crust reservoirs in the Bohai Sea [2,10,11].
Shenwei et al. successfully achieved qualitative and quantitative characterization of each
phase zone by integrating core samples, rock flakes, conventional logging data, imaging
logging data, and array acoustic logging data [12–14]. Although these approaches are
comprehensive in nature, they rely on post-drilling logging data and coring experiment
results, which may not fulfill the requirement for effective operational decision-making [15].
Therefore, an efficient drilling-based method is urgently needed to determine the zonal
development mode of buried hill reservoirs.

Due to the exorbitant costs associated with offshore oil and gas drilling, limited
real-time data availability, and inadequate evaluation methods for mining parameters,
accurately predicting the zonal development mode of buried hill reservoirs through drilling
is of utmost importance [16–19]. This paper proposes an intelligent learning algorithm-
based evaluation method for assessing the development model of buried hill reservoirs
while drilling, leveraging drilling engineering logging and element logging technology. The
proposed approach effectively guides reservoir evaluation and facilitates the formulation
of development plans, yielding promising results in our research area.

2. Geological Setting

The Bozhong A gas field is situated in the southwest of the Bozhong Depression,
encompassed by both the Bozhong and Huanghekou Depressions. It represents a near
north–south structural ridge that is surrounded by the Bozhong Southwest Depression,
Bozhong main depression, and Huanghekou Depression [20]. The primary reservoirs
containing gas are Archaean metamorphic buried hills. This gas field constitutes a fracture-
dominated massive condensate gas reservoir with a burial depth ranging from 3870 m to
4700 m. The homogeneity of the buried hill reservoir in Archean is primarily controlled
by geological factors such as paleogeomorphology, tectonic movements, and weathering
leaching. Due to variations in weathering and structural homogenization, the buried hill
reservoir exhibits distinct characteristics of a weathering zone and an inner zone from top
to bottom (Figure 1). Among them, the weathered zone is influenced by both faulting and
weathering processes, resulting in the development of reservoir spaces such as structural
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fractures, weathered fractures, and corrosion holes. The continuity of the reservoir plane
is excellent, with a thick high part gradually thinning towards the low part, exhibiting
layered characteristics. Overall, the vertical thickness of gas drilled within the weathering
zone ranges from 125.1 m to 227.0 m, averaging 170 m. The content of dark minerals in
this zone is relatively low, with an average of 5.7%. Interpreted porosity averages at 4.4%,
permeability at 3.3 mD on average, and a net-to-gross ratio ranging from 45% to 69%. With
increasing depth inside the buried hill structure, geological stress gradually reduces its
influence while faults primarily control reservoir development; fractures are distributed
along these faults in a zonal pattern [21]. The gas layer thickness within this inner zone
measures approximately 171.6 m ⊥ 165.0 m with higher dark mineral content compared to
that found in the weathered zone. The logging interpretation indicates an average porosity
and permeability of 2.9% and 2.0 mD, respectively, while the net hair ratio stands at around
28.0%, lower than that observed in the weathered zone. The buried hill reservoir as a whole
is characterized by the longitudinal variation in physical property deterioration from the
weathering zone to the inner zone.
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Based on the aforementioned characteristics of reservoir development patterns and
fracture distribution, the development strategy for the Archaean buried hill in this gas
field has been determined. A set of development strata is adopted primarily to exploit the
reserves within the weathering zone of the buried hill. Therefore, it is crucial to employ
geological model evaluation technology for vertical zonation of buried hills in order to
optimize the oil and gas field development plan.

3. Material and Method

Element logging and engineering parameter logging are high-performance real-time
data generated during drilling. The rock type is an internal factor that controls the forma-
tion of fractures in buried hills, primarily influencing the difficulty of fracture formation
and the storage and permeability spaces within buried hills under external forces [22].
Continuous analysis of rock cuttings using element logging technology enables timely
and effective monitoring of changes in major elements and trace elements, reflecting the
evolving characteristics of rock types [23]. Real-time monitoring of pore and fracture
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development in buried hill reservoirs can reflect changes in drilling parameters, indicat-
ing the presence of drillable reservoir space within weathering zones. Therefore, drilling
engineering parameters often exhibit a strong correlation with effective reservoir develop-
ment. Consequently, we propose a machine learning-based prediction method for reservoir
development patterns utilizing these two LWD techniques [24].

3.1. Data Collection and Processing

The parameters of elemental logging and engineering logging were calculated for
18 wells in the research area. Firstly, the sample underwent pretreatment. The selected
elements logging measured the main elements, including Na, Mg, Al, Si, P, S, Cl, K, Ca,
Ba, Ti, Mn, and Fe. Varying influence weights led to the exclusion of trace elements
such as V, Ni, Sr, and Zr. Simultaneously, the combination of the drilling parameters,
comprising torque, fracture pressure gradient, weight on bit, penetration rate, and drilling
time, was studied. Additionally, the sampling intervals differed between the two logging
technologies, with a 5 m interval for element logging and a 1 m interval for engineering
logging. The average engineering parameter corresponding to a depth up to 5 m from the
element parameter was considered as the depth engineering parameter value. Finally, this
value was further processed.

The box plot method is used to characterize the abnormal situation of the data, to
detect and identify the abnormal value of the data, and to remove it from the sample. As
shown in Figure 2, the value Q3, corresponding to 75% of the subpoints of the data, is
the upper quartile, the value Q2, corresponding to 50% of the subpoints of the data, is
the median, and the value Q1, corresponding to 25% of the subpoints of the data, is the
lower quartile. The calculation formula for the upper limit is Q3 + 1.5 (Q3 − Q1), and the
calculation formula for the lower limit is Q1 − 1.5 (Q3 − Q1). When using a box chart to
identify outliers, when the datum value is greater than the upper limit of the box chart or
less than the lower limit of the box chart, it is judged to be an outlier [25].
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In addition, in order to eliminate the impact on subsequent machine learning, the
input data are standardized, and the processing formula is as follows:

x‘ =
x − xmin

xmax − xmin

where x’ is the standardized value of the feature parameter, x is the characteristic parameter
value, and xmax is the maximum value of the feature parameter. xmin is the minimum value
of the feature parameter.

The standard post-values of the feature parameters after data deletion are taken as the
input parameters of the model.
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3.2. The Parameters Were Selected by Stepwise Regression Analysis

The contribution of each feature to the dependent variable will be determined through
stepwise regression, which determines whether a feature should be included in the regres-
sion model [26]. If a newly introduced variable fails to maintain its significance based
on F-test, it will be eliminated. This ensures that important variables are always retained
in the model, reducing input dimensions and mitigating the risk of overfitting [27]. The
implementation steps are as follows:

When A significance level α is given, the critical value Fα(m, n − m − 1) of the rejection
domain is determined according to the degree of freedom m (that is, the number of features)
and n − m − 1. For each feature parameter xi(1 ≤ i ≤ m ), a unitary linear regression model
is fitted, and the statistic Q is regarded as an empty set, that is, SSE(Q) = SST, then
SST = (xi|Q) = SSR(xi), MSE(Q, xi) = MSE(xi), and each Fi are calculated:

Fi =
SSR(xi)

MSE(xi)
, i = 1, 2, . . . m (1)

Fi1 = max
1≤i≤m

Fi (2)

In the aforementioned formula, SSE represents the sum of squared errors between the
predicted values of the model and the original values. SSR denotes the sum of squared
differences between the predicted values of the model and the mean value of the original
data. SST signifies the sum of squared differences between the original data and its mean
value. MSE stands for mean square error, while Fα corresponds to the critical value in the
rejection domain.

If Fim > Fα, it indicates that regression model with characteristic parameter xi is
selected as the current model; otherwise, no independent variables are introduced into this
model. By incorporating the remaining m − 1 characteristic parameters into the current
model, we obtain m − 1 binary regression models.

Fi =
SSR(xi|xi1)

MSE(xi1, xi)
, i ̸= 1 (3)

Fi2 = max
i ̸=i1

Fi (4)

If Fi2 > Fα, the selection ends, and the selected model parameters are optimal. If
Fi2 > Fα, then the feature parameter xi2 is selected into the model, and xi2 is introduced
according to the above calculation, which still has a significant impact on y:

Fi =
SSR(xi1|xi2)

MSE(xi1, xi2)
(5)

If Fi2 ≤ Fα, then xi1 needs to be eliminated, and the model containing xi2 is the
optimal model.

Based on the selected model from the previous step, the remaining m − 2 feature
parameters are incorporated into the current model, and their F-values are calculated for
fitting and merging, determining whether to introduce these parameters. Finally, these
steps are iterated until all feature parameters have been either selected or eliminated,
resulting in the preferred set of remaining parameters.

3.2.1. The Parameters of Logging Elements Were Optimized by Stepwise
Regression Analysis

The dependent variable in this study was the type of reservoir development model,
while the independent variables were considered as the main elements. Table 1 and Figure 3
present the analysis of variance and the model, respectively. In the stepwise regression
analysis, each variable was introduced individually based on its importance [28]. As shown
in Table 2, Al was the first variable to enter. At this stage, SSR (the sum of squares of
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differences between predicted and actual types) equaled 23.669 with a degree of freedom
equal to 1; SSE (the sum of squares error between predicted and actual types) equaled
163.277 with a degree of freedom equal to 756. The mean square error can be derived from
this MSE = SSR

P = 23.669, mean residual sum of squares MSR = SSE
n−p−1 = 0.216, hence,

F = MSR
MSE = 109.579, the F-value is the result of the F-test.

Table 1. Analysis of variance of logging element parameters.

Model Quadratic
Sum DOF Mean Square F-Value Significance p

a
Regression 23.669 1 23.669 109.593 <0.001

Residual error 163.277 756 0.216 — —
Summary 186.946 757 — — —

b

Regression 34.840 2 17.420 86.468 <0.001
Residual error 152.106 755 0.201 — —

Summary 186.946 757 — — —

c
Regression 48.040 3 16.013 86.922 <0.001

Residual error 138.906 754 0.184 — —
Summary 186.946 757 — — —

d

Regression 51.387 4 12.847 71.362 <0.001
Residual error 135.559 753 0.180 — —

Summary 186.946 757 — — —

e
Regression 53.409 5 10.682 60.153 <0.001

Residual error 133.537 752 0.178 — —
Summary 186.946 757 — — —

f

Regression 55.306 6 9.218 52.586 <0.001
Residual error 131.640 751 0.175 — —

Summary 186.946 757 — — —

g
Regression 60.047 7 8.578 50.699 <0.001

Residual error 126.899 750 0.169 — —
Summary 186.946 757 — — —

h

Regression 61.743 8 7.718 46.171 <0.001
Residual error 125.203 749 0.167 — —

Summary 186.946 757 — — —
Predictive variable: a—Al; b—Al, S; c—Al, S, Si; d—Al, S, Si, Mn; e—Al, S, Si, Mn, Na; f—Al, S, Si, Mn, Na, Ca;
g—Al, S, Si, Mn, Na, Ca, K; h—Al, S, Si, Mn, Na, Ca, K, Fe.
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Table 2. Analysis of variance of engineering parameters.

Model Quadratic Sum DOF Mean Square F-Value Significance p

a

Regression 48.585 1 48.585 265.464 <0.001

Residual error 138.361 756 0.183 — —

Summary 186.946 757 — — —

b

Regression 54.023 2 27.011 153.425 <0.001

Residual error 132.923 755 0.176 — —

Summary 186.946 757 — — —

c

Regression 55.756 3 18.585 106.817 <0.001

Residual error 131.190 754 0.174 — —

Summary 186.946 757 — — —

d

Regression 57.521 4 14.380 83.665 <0.001

Residual error 129.425 753 0.172 — —

Summary 186.946 757 — — —

e

Regression 58.251 5 11.650 68.076 <0.001

Residual error 128.695 752 0.171 — —

Summary 186.946 757 — — —

Predictive variable: a—Fracture pressure gradient; Drilling time; b—Fracture pressure gradient, Drilling time,
Drilling rate; c—Fracture pressure gradient, Drilling time, Drilling rate, Torque; d—Fracture pressure gradient,
Drilling time, Drilling rate, Torque, Bit pressure. Dependent variable: e—Reservoir development model type.

In Figure 3, R represents the correlation, which exhibits a gradual increase with the
introduction of the preferred parameter. The decision coefficient R2 signifies the percentage
that the fitted model can explain the variation in the dependent variable. The progressive
increment of R2 indicates improved effectiveness of the regression model, while adjusted
R2 is employed to evaluate how well the model fits due to an increase in independent
variables. According to Figure 3, upon introducing the Al element, there is a complex
decision coefficient R2 value of 0.127 for this model and a significance level p = 0.000b < 0.05,
confirming significant regression coefficients. Following regression principles, Al should be
included as an optimal variable by introducing one element at a time and repeating these
steps accordingly. Eventually, the parameters selected include Al, S, Si, Mn, Na, Ca, K, and
Fe, whereas other elements are eliminated from consideration.

In Figure 4, examining standardized residuals and measured cumulative probability
reveals that final feature distribution generally adheres to normality assumptions with
close proximity between the curve and diagonal line, indicating a good fitting effect of
our model.
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3.2.2. Using Stepwise Regression Analysis to Optimize Drilling Engineering Parameters

The progressive regression analysis method was employed to optimize the drilling
engineering parameters, with the geological model type considered as the dependent
variable and fracture pressure gradient, drilling time, drilling rate, torque, weight on
bit, and Dc index taken as independent variables for gradual analysis. The summary
of the stepwise regression analysis model and variance analysis is presented in Table 2
and Figure 5, respectively. The optimized parameters include fracture pressure gradient,
drilling time, drilling rate, torque, and weight on bit.
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3.3. Model Establishment and Evaluation

Compared to traditional neural networks, the deep neural network (DNN) possesses
certain advantages. The increased depth resulting from multiple hidden layers signifi-
cantly enhances its performance [29]. However, this improvement comes at the cost of
a larger number of parameters, such as initial network topology values, weights, and
thresholds. Consequently, the model becomes more complex and prone to overfitting.
Support vector machine (SVM) is a supervised learning model commonly employed for
pattern recognition, classification, and regression analysis [30]. Nevertheless, SVM exhibits
limitations in handling large sample sizes and utilizing kernel functions effectively for
linear non-fractional data selection criteria, which are absent [31]. It also demonstrates
heightened sensitivity towards missing or noisy data while failing to provide robust sup-
port for feature diversity [32]. In this study, we employ the LightGBM algorithm based on
gradient-boosting trees to construct our model. This approach not only supports multi-class
features but also reduces time and space overhead during unilateral gradient sampling
compared to traditional machine learning algorithms when traversing all feature values.
Additionally, it offers benefits such as low memory consumption, reduced computational
costs, fast training speed with high accuracy rates while efficiently processing massive
datasets [33–36].

The GBDT model is an integrated tree-based approach that effectively addresses clas-
sification and regression problems [37]. By iteratively fitting the residuals of the previous
model with new trees, a complete model comprising K trees is trained, and the final pre-
dicted value is obtained by summing up the corresponding results from each tree. In line
with formula 6, the fundamental concept behind the LightGBM algorithm lies in combining
M weak regression trees into robust ones [38].

F(x) =
K

∑
k=1

fk(x) (6)

The innovation of LightGBM lies in the incorporation of novel technologies, namely
Exclusive Feature Bunching (EFB) and Gradient-based One-Side Sampling (GOSS), into
the histogram-based GBDT algorithm. EFB enables the fusion and binding of certain fea-
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tures to effectively reduce feature dimensionality without compromising accuracy. Mean-
while, the GOSS algorithm ensures accurate estimation of information gain while reducing
sample size.

In this study, a total of 1608 data combinations from 18 wells were utilized as training
samples. The aforementioned preferred logging elements and drilling engineering param-
eters were employed as input variables for the model, while the labeled–coded types of
buried hill reservoir development patterns served as the output variables. Consequently, a
machine learning-based prediction model for buried hill reservoir development patterns
was established. To enhance the accuracy assessment of the model, it is essential to establish
a comprehensive set of evaluation indices [39–41]. Traditionally, prediction accuracy has
been used to measure model performance; however, in cases where sample sizes are imbal-
anced, accuracy alone fails to reflect the true predictive capability of the model. Therefore,
this paper proposes utilizing the F1 score index for comprehensive evaluation purposes.
The formula for calculating the F1 score is presented below.

precision = TP/(TP + FP) (7)

recall = TP/(TP + FN) (8)

F1score = 2 × precision × recall/(precision + recall) (9)

In the formula, precision is the accuracy rate, recall is the recall rate, and the classifica-
tion results of pattern recognition can generally be classified into four categories, TP is the
true example, FP is the false positive example, FN is the false counter-example, and TN is
the true counter-example.

The F1 score demonstrates a robust amalgamation of the detection rate and recall rate,
rendering it a more comprehensive evaluation metric.

3.4. Model Verification

Based on previous knowledge of the buried hill reservoir development pattern by
conventional logging curves, imaging logging, wall core, core, and slice, the accuracy
and reliability of the prediction of the buried hill reservoir development pattern based on
the learning model of the base tool in this paper are verified. The difference in reservoir
performance between the weathered zone and inner zone is also evident in the physical
properties, drilling time, resistivity, and other electrical measurement curves. Due to the
relatively developed fractures in the weathered zone, the average linear fracture density
of imaging logging is 3–6 fractures/m, showing good reservoir performance; the average
porosity of logging interpretation is 2.4–6.5%, and the net gross ratio is 0.33–0.62. However,
the reservoir in the inner zone is poor as a whole, with an average linear fracture density
of 0.8–1.2 fractures/m. The average porosity of logging interpretation is 1.7–3.9%, and
the net-to-gross ratio is less than 0.35. It can be seen from the electrical measurement
curve that cracks develop in the weathering zone, the drilling time and resistivity are
relatively low, the drilling time is 8–29 min/m, and the resistivity is 170–1100 Ω·m. The
inner zone dense layer is relatively developed, and the drilling time is generally higher,
ranging from 12 to 52 min/m, and the resistivity is significantly higher than that of the
weathering zone, ranging from 700 to 22,000 Ω·m. The core shows that the whole fracture
of the weathering zone is relatively developed, and the analysis of the cast thin slice and
scanning electron microscope shows that the micro-reservoir space of the weathering zone
is mainly micro-fracture, followed by the dissolution porosity, which is distributed in a
beaded pattern along the micro-fracture. The main reservoir space type of the inner zone is
that weathering fractures and dissolution pores formed by weathering leaching are less
developed, and the matrix is relatively dense [42].

4. Result

During the drilling process of metamorphic rock buried hill in well N1 of the Bozhong
A gas field, the optimal element logging parameters Al, S, Si, Mn, Na, Ca, K, Fe, and
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engineering parameters such as rupture pressure gradient, drilling time, drilling rate,
torque, and bit weight were predicted using the LightGBM algorithm model. It is predicted
that the boundary depth between the weathering zone and the inner zone of the well
is 4210.0 m. After drilling operations concluded successfully, the analysis data from the
logging curve analysis, image logging interpretation, wireline sidewall core sampling,
and thin section examination indicate that above 4205.0 m formation resistivity, values
are below 200 Ω, making it evident that rock density falls below 2.73 g/cm3 while actual
porosity ranges between 1.2% and 12.8%, which can be attributed to weathering processes
and tectonic activities. The reservoir space is predominantly characterized by pores and
fractures. The overall resistivity of the inner fracture zone generally ranges between
200 Ω and 2000 Ω, while the rock density exhibits an overall increase, typically exceeding
2.71/cm3. The actual porosity falls within the range of 1.3% to 3.1%, primarily influenced
by structural dynamics, with cracks dominating the reservoir space. These findings indicate
that the boundary depth between the genuine weathering crust and the inner zone lies at a
depth of 4205.0 m (Figure 6). Moreover, these studies demonstrate that drilling predictions
align with the actual development model of buried hills.
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During the drilling process itself, based on predictions from our reservoir development
model regarding boundaries between weathered zones and internal zones, we decided
to conduct production testing in the upper weathered zone initially before utilizing a
9.53 mmPC oil nozzle for further production testing purposes. This approach resulted in an
average daily oil production rate of 176.94 m3/d alongside an average daily gas production
rate of 178,586 m3/d—indicative of high productivity levels observed in this wellbore
scenario. The accuracy and reliability of our prediction model are further substantiated
through these outcomes. Compared with logging, imaging logging, core, and cast thin
sections, the development model of the buried hill in the Bozhong Depression can be
judged at least 15 days earlier, and the cost can save at least 30%.

5. Discussion

By utilizing 150 data combinations from two wells as test samples, we validated the
efficacy of three machine learning models, namely LightGBM, SVM, and DNN. As depicted
in Figure 7, the F1 score values demonstrate that LightGBM exhibits the highest accuracy
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in identifying weathering zones at an impressive rate of 96.7%, along with a commendable
accuracy of 95.8% for inside zone identification. Following closely is the DNN with
accuracies of 88.6% and 90.2% for the weathering zone and inside zone identification,
respectively. In contrast, SVM achieves lower accuracies of 84.6% and 87.6% for the
weathering zone and inside zone identification, respectively, when compared to the other
two models.
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In summary, it can be observed that different models exhibit certain variations in
predicting reservoir development patterns. Notably, the LightGBM algorithm demonstrates
superior performance, highlighting the superiority of gradient-boosting tree models over
classical machine learning methods like SVM. This finding underscores the advanced
nature and predictive capabilities of the LightGBM algorithm in forecasting buried hill
reservoir development patterns.

6. Conclusions

1. A machine learning-based approach is proposed for predicting the development mode
of buried hill reservoirs during drilling. Firstly, a multi-parameter fusion technique is
employed to integrate element logging and engineering logging data obtained while
drilling, followed by optimization of sensitive parameters using stepwise regression
analysis. Subsequently, a prediction model for the development mode of buried hill
reservoirs is established using the LightGBM algorithm, providing a novel method
for rapid prediction in this context. The accuracy of the proposed model surpasses
previous approaches.

2. Through the validation of three machine learning models, namely LightGBM, SVM,
and DNN, it is demonstrated that LightGBM exhibits the highest accuracy in identi-
fying the weathering zone with a remarkable precision of 96.7% while achieving an
accuracy rate of 95.8% for identifying the inside zone. Following closely is the DNN,
which attains accuracies of 88.6% and 90.2% for the weathering zone and inside zone
identification, respectively. The SVM model demonstrates an identification accuracy of
84.6% for the weathering zone and 87.6% for inner zone recognition correspondingly.
Consequently, it can be concluded that the LightGBM algorithm model holds great
potential in predicting reservoir development patterns within this oilfield. The ideas
and methods in this paper can be further applied to the development and production
of other oil fields so as to improve the efficiency of exploration and development.

3. In contrast to the transmission evaluation method, this prediction approach employs
MWD data for assessment and offers an intelligent technical solution for prediction
in scenarios with limited data. It exhibits characteristics of enhanced prediction
speed and heightened accuracy. This methodology can serve as a robust foundation
for efficient field exploration and development decision-making, thereby effectively
advancing the progress of oil and gas reservoir exploration and development in
this region.
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