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Abstract: Lithium perchlorate-doped polypyrrole growing on titanium substrate (LiClO4-PPy/Ti)
has been fabricated to act as electroactive electrode material for feasible electrochemical energy
storage. A theoretical and experimental investigation is adopted to disclose the conductivity, elec-
troactivity properties and interfacial interaction-dependent capacitance of LiClO4-PPy/Ti electrode.
The experimental measurement results disclose that LiClO4-PPy/Ti reveals lower ohmic resistance
(0.2226 Ω cm−2) and charge transfer resistance (2116 Ω cm−2) to exhibit higher electrochemical
conductivity, a more reactive surface, and feasible ion diffusion to present higher double-layer capac-
itance (0.1930 mF cm−2) rather than LiClO4/Ti (0.3660 Ω cm−2, 65,250 Ω cm−2, 0.0334 mF cm−2).
LiClO4-PPy/Ti reveals higher Faradaic capacitance caused by the reversible doping and dedoping
process of perchlorate ion on PPy than the electrical double-layer capacitance of LiClO4/Ti caused
by the reversible adsorption and desorption process of the LiClO4 electrolyte on Ti. Theoretical
simulation calculation results prove that a more intensive electrostatic interaction of pyrrole N···Ti
(2.450 Å) in LiClO4-PPy/Ti rather than perchlorate O···Ti (3.537 Å) in LiClO4/Ti. LiClO4-PPy/Ti
exhibits higher density of states (57.321 electrons/eV) at Fermi energy and lower HOMO-LUMO
molecule orbital energy gap (0.032 eV) than LiClO4/Ti (9.652 electrons/eV, 0.340 eV) to present the
enhanced electronic conductivity. LiClO4-PPy/Ti also exhibits a more declined interface energy
(−1.461 × 104) than LiClO4/Ti (−5.202 × 103 eV) to present the intensified interfacial interaction.
LiClO4-PPy/Ti accordingly exhibits much higher specific capacitances of 0.123~0.0122 mF cm−2 at
current densities of 0.01~0.10 mA cm−2 rather than LiClO4/Ti (0.010~0.0095 mF cm−2, presenting
superior electroactivity and electrochemical capacitance properties. LiClO4-PPy/Ti could well act as
the electroactive supercapacitor electrode for feasible energy storage.

Keywords: lithium perchlorate doping polypyrrole; titanium substrate; electrochemical capacitance;
interfacial interaction; simulation calculation

1. Introduction

The electrochemical behaviors and performances of energy storage devices are related
to the electrode and electrolyte materials as well as their interfacial interaction [1–3]. In
addition, the electrode substrate materials are also related to the properties of functional
electrodes. The electrochemical capacity and mechanical stability are most concerned for
the electrodes of energy storage devices. These electrode materials mainly involve the
various graphite carbon, conductive polymers, transition metal sulfates or oxides, and their
composites [4–7]. In particular, the conductive polymers become suitable supercapacitor
electrode materials for flexible energy storage [8,9]. The electrical conductive materials,
such as carbon fiber, graphene, graphite carbon, titanium, and so on, have been used to
prepare the energy storage electrodes [10–12]. They could act as the multifunctional roles,
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such as the electrode substrate, current collector, and electrode. However, the contradictory
behaviors of these substrate materials also emerged in respect to the electrochemical activity
and electrochemical stability. For example, titanium metal could resist the chemical and
electrochemical corrosion in neutral, alkaline, and even acidic conditions [13]. Titanium
keeps the chemical and electrochemical stability in a certain degree, and is applied to
electrode material as well as electrode-supporting material [14–17]. The structure-adjusted
titanium, such as titanium sheet, titanium mesh, and titanium foam with high electro-
chemical stability, can be used to support various electroactive materials [18–21]. On the
other hand, titanium metal also behaves the relatively low electrochemical activity due
to the passivation layer of titanium oxides on the surface [22]. Surface modification us-
ing conductive polymers is a useful method to Improve the electrochemical activity of
titanium. The Ti metal sheet can act as the electrode substrate. The conductive polymers
usually includes polyaniline, polypyrrole, and polythiophene, which have been used to act
as electroactive materials for the supercapacitor electrode application [23]. The different
electroactive materials can be coated on Ti substrate to form functional electrodes. The
polypyrrole (pPy) has been electrodeposited on Ti substrate to form pPy/Ti electrode
through cyclic voltammetry polymerization process [24]. The polyaniline (PANI) has been
electrodeposited and coated on Ti substrate to form PANI/Ti electrode through a pulse
potentiostatic polymerization process [25]. These conductive polymers could conduct
the reversible ion doping–dedoping process to provide superior capacitance [26–28]. The
interfacial bonding strength between the doped conductive polymers and metal substrates
is related to the electrochemical energy storage performance [29]. In addition, the reactive
electrolytes also influence the electrical double-layer capacitance due to the interfacial
adsorption on metal substrates and the Faradaic capacitance due to the ion doping state of
conductive polymers. In previous studies, the system of a lithium perchlorate electrolyte
and polypyrrole has been attempted for various applications in different areas [30,31].
However, the interfacial interaction between lithium perchlorate doping polypyrrole and
metal titanium substrate is still sparsely investigated [32].

This study focuses on disclosing the promotion effect of electroactive polypyrrole
on the electrochemical properties of lithium perchlorate interacting with titanium sub-
strate. The polypyrrole is used as the typical conductive polymer material, and a metal
titanium sheet is used as the stable substrate material. The titanium sheet has chemical
and electrochemical stability to resist the electrochemical corrosion to act as a suitable
current collector. The polypyrrole growing on titanium substrate (PPy/Ti) is designed as
the supercapacitor electrode in the application of electrochemical energy storage, which
is prepared through the electrochemical polymerization process. The lithium perchlorate
(LiClO4) is used as a neural electrolyte to study the electrical double-layer capacitance of
titanium metal substrate and the Faradaic capacitance of polypyrrole. The interfacial inter-
action is intensively considered between the LiClO4 electrolyte and the PPy/Ti electrode
when the electrochemical behavior is investigated for LiClO4-Ppy/Ti. The electrochemical
performances are fully evaluated through cyclic voltammetry, electrochemical impedance
spectrum, and galvanostatic charge/discharge measurements. The theoretical simulation
calculation has been applied to disclose the atomic charge distribution, electrostatic poten-
tial, and interfacial affinity of LiClO4-PPy/Ti, which could lead to a better understanding
of capacitance performance.

2. Results and Discussion
2.1. Microstructure and Morphology Characterization

Figure 1A–D shows SEM images of Ti and PPy/Ti. The Ti sheet substrate reveals the
uniquely complete surface structure without any crack. The chemical polishing treatment
could lead to forming the uniform metal surface. Comparatively, PPy/Ti revels the com-
pact covering layer of PPy film supported on the Ti sheet. The PPy also is composed of
the aggregating particles, forming uniquely complete film structure without any crack.
Concerning the surface microstructure, the Ti sheet shows smooth surface and PPy/Ti
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shows rough surface. The insert in Figure 1D shows the cross-section SEM image of PPy/Ti.
The PPy covered on the surface of the Ti substrate exhibits a close-packing film. The mor-
phology, microstructure, and thickness of such PPy film could be adjusted by modulating
the electropolymerization reaction parameters in the CV electrodeposition process. This
study focuses on the interfacial interaction between PPy film and Ti substrate, which is
related to the microstructure of PPy. It is believed that PPy/Ti could conduct more feasible
ion diffusion and doping reaction in the presence of lithium perchlorate in comparison the
ion adsorption of PPy/Ti.
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Figure 1. (A) SEM image and (B) magnified SEM image of Ti; (C) SEM image of PPy/Ti; and
(D) magnified SEM image and cross-section SEM image of PPy/Ti.

Figure 2A shows the XRD pattern of the titanium sheet substrate. Concerning the
titanium sheet, the distinct characteristic diffraction peaks at 2θ of 35.1◦, 38.5◦, 40.3◦, 53.1◦,
63.1◦, 70.8◦, 76.3◦, 77.5◦, and 82.3◦ correspond to the respective crystal planes of (100),
(002), (101), (102), (110), (103), (112), (201), and (202) [33]. The titanium sheet involves the
close-packed hexagonal crystal phase structure, which is acted as stable metal substrate.
Figure 2B shows the Raman spectrum of the Ti substrate. The Ti substrate does not reveal
any characteristic Raman peaks in full wavenumber range due to the absence of electronic
transition-relaxation of crystal lattice Ti atoms at 785 nm excitation photon energy. Figure 2C
shows the Raman spectrum of PPy/Ti synthesized in this study. The characteristic Raman
peaks of PPy/Ti are observed at 983 and 1050 cm−1, with a broad band of 1340–1410 cm−1

and 1580 cm−1, which are assigned to C–H ring deformation vibration, C–N stretching
vibration, and C=C aromatic stretching vibration, respectively. The characteristic Raman
peak position of the literature-reported PPy is located at 980, 1040, 1314–1410 cm−1, and
1597 cm−1 [34]. The characteristic Raman peaks of PPy are well-matched between this
study-formed PPy/Ti and the literature-reported PPy. Therefore, the Raman spectrum
analysis result could well confirm the formation of PPy in the as-prepared PPy/Ti electrode
in this study. Figure 2D shows the FTIR spectrum of PPy/Ti. The characteristic peaks at
1540, 1480, 1190, and 1040 cm−1 were ascribed to C=C double bond stretching vibration,
C-C single bond stretching vibration, C-N single bond stretching vibration, and N-H
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in-plane bending vibration. The characteristic peaks at 912, 768, 742, and 675 cm−1 are
ascribed to the C-H out-of-plane bending vibration. The observation of the C=C double
bond, C-C single bond, and C-N single bond could be ascribed to the formation of PPy.
Accordingly, PPy fully grew on the Ti substate to form PPy/Ti through the electrochemical
polymerization and deposition process.
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Figure 2. (A) XRD pattern and (B) Raman spectrum of Ti substrate; (C) Raman spectrum of PPy/Ti;
and (D) FTIR spectrum of PPy/Ti.

2.2. Electrochemical Properties

The CV curves can be used to calculate the CV-based capacitance (CCV, mF cm−2)
using Equation (1). The GCD curves can be used to calculate the GCD-based capacitance
(CGCD, mF cm−2) using Equation (2).

CCV = i/v = [(
∫ Va

Vc
i(ν) ∗ dν)/(Va − Vc)]/ν= [

1
2
(
∮

i(ν) ∗ dν)/∆V]/ν (1)

CGCD =
I ∗ t
∆V

(2)

where: Va, upper potential; Vc, lower potential; i(v), response current density (mA cm−2);
v, potential sweep rate (V s−1); I, discharge current density (mA cm−2); t, discharge time
(s); and ∆V, potential window (V).

Figure 3A,B shows the CV curves of LiClO4/Ti and LiClO4-PPy/Ti at scan rates
of 5~200 mV s−1 and the potential range of 0~0.8 V versus saturated calomel electrode
(SCE) in 1.0 M LiClO4 electrolyte solution. The CV curves of LiClO4/Ti demonstrate the
rectangle-like shape to present electrical double-layer capacitance due to the reversible
adsorption–desorption of LiClO4 electrolyte ion on the Ti substrate. The oxidation potential
of Ti2+/Ti is −1.39 V versus SCE. This means that the electrochemical oxidation of Ti
is unlikely to occur in the potential range of 0~0.8 V versus SCE, presenting the high
electrochemical stability of the Ti substrate in LiClO4 electrolyte. Comparatively, the CV
curves of LiClO4-PPy/Ti exhibit an obviously deviated rectangle shape in the potential
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range of 0~0.8 V, presenting the polarization effect. The redox potential of PPy is around
0.5 V versus SCE [35]. LiClO4-PPy conducts reversible ClO4

− doping-dedoping reaction
which contributes to the Faradaic capacitance performance.
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Figure 3. (A,B) CV curves and (C,D) CV-based capacitance curves of LiClO4/Ti and LiClO4-PPy/Ti
at scan rates of 5~200 mV s−1 in 1.0 M LiClO4 electrolyte solution.

Figure 3C,D shows CV-based capacitance curves of LiClO4/Ti and LiClO4-PPy/Ti.
When the CV cures of LiClO4/Ti and LiClO4-PPy/Ti conduct the scan rate increasing
from 5 to 200 mV s−1, their mean response current increases from 0.13 to 2.47 µA cm−2

and from 2.28 to 9.011 µA cm−2, respectively. The CV-based capacitance decreases from
0.0256 to 0.0124 mF cm−2 and from 0.456–0.045 mF cm−2, respectively. In comparison
with LiClO4/Ti, LiClO4-PPy/Ti exhibits a much higher mean response current and specific
capacitance performance at the same scan rate, presenting its superior electrochemical
activity in the neutral LiClO4 electrolyte. The oxidation potential of Ti2+/Ti is 1.39 V
versus SCE (Ti − 2e → Ti2+). The oxidation potential of PPy at the doping process is
approximate 0.5 V versus SCE (PPy − e + ClO4

− → PPy+ClO4
−). PPy/Ti could conduct

reversible doping–dedoping process of PPy rather than the electrochemical oxidation of
the Ti substrate in the potential range of 0~0.8 V. Additionally, the PPy covering layer
could also resist such electrochemical corrosion reaction of Ti substrate. Meanwhile, PPy
could conduct the redox reaction through the reversible doping–dedoping ClO4

− anion,
contributing to improving the electrochemical activity and, accordingly, the Faradaic
capacitance performance.

Figure 4A,B shows the GCD curves of LiClO4/Ti and LiClO4-PPy/Ti in the poten-
tial range of 0~0.8 V (vs. SCE) and 1.0 M LiClO4 electrolyte solution. The GCD curves
of LiClO4/Ti show complete symmetric characteristics. This shows the good reversible
properties of LiClO4 ion adsorption–desorption during the charge–discharge process. Such
LiClO4/Ti exhibits ideal electrical double-layer capacitance behavior. Comparatively, the
GCD curves of LiClO4-PPy/Ti shows the sloping plateau. The less-symmetric characteristic
is ascribed to the redox reaction in the charge–discharge process. Such LiClO4-PPy/Ti
exhibits Faradaic capacitance behavior. Therefore, LiClO4-PPy/Ti demonstrates much
higher capacitance performance than LiClO4/Ti in the neutral LiClO4 electrolyte. Fur-
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thermore, LiClO4-PPy/Ti conducts the doping–dedoping reaction of PPy, and LiClO4/Ti
conducts the ion adsorption–desorption process of Ti. The GCD curve shape of LiClO4-
PPy/Ti shows fewer identical characteristics than that of LiClO4/Ti. Figure 4C,D shows
GCD-based capacitance curves of LiClO4/Ti and LiClO4-PPy/Ti. According to the GCD
curves at current densities of 0.01~0.10 mA cm−2, the corresponding GCD-based specific
capacitances achieve 0.010~0.0095 mF cm−2 and 0.123~0.0122 mF cm−2. Therefore, LiClO4-
PPy/Ti exhibits much higher capacitance than LiClO4/Ti, since electroactive LiClO4-PPy
mostly contributes to Faradaic capacitance rather than electrical double layer capacitance
of Ti substrate in LiClO4 electrolyte. These GCD measurement results agree with the
CV measurement results. Furthermore, this LiClO4-PPy/Ti electrode keeps the similar
capacitance performance in comparison with the ion doped PPy reported in the litera-
ture [36,37]. Figure 4E shows the cycling capacity retention curve of LiClO4-PPy/Ti. The
capacity retention achieves 76.1% after 1000 cycles during the cycling charge–discharge
process. Therefore, the PPy/Ti electrode exhibits the reasonable cycling stability in the
electrochemical Faradaic reaction process.
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at current densities of 0.01~0.1 mA cm−2 in 1.0 M LiClO4 electrolyte solution; and (E) the cycling
capacity retention curve of LiClO4-PPy/Ti.
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An electrochemical impedance spectroscopy (EIS) is adopted to investigate the elec-
trolyte ion diffusion and interfacial charge transfer properties of electrode materials.
Figure 5A,B shows the Nyquist plots of the EIS spectra of LiClO4/Ti and LiClO4-PPy/Ti.
Figure 5C shows equivalent circuit model for fitting curves of EIS spectra. The equiva-
lent circuit includes charge-transfer resistance (Rct), ohmic resistance (Ro), double layer
capacitance (Cdl), constant phase element (CPE), and CPE exponent (n). n = 1 indicates
ideal capacitor behavior, and n = 0 indicates pure resistor behavior. Table 1 lists the fitting
parameter values of these elements used in an equivalent circuit model. In comparison
with LiClO4/Ti, the slightly lowered Ro value of LiClO4-PPy/Ti indicates higher electronic
conductivity. The ohm resistance of LiClO4-PPy/Ti is mostly dependent on the Ti substrate.
The conducting LiClO4-PPy layer prevents the formation of semi-conducting titanium
oxide. The quite lowered Rct value indicates the more electroactive interface of LiClO4-PPy
for the charge transfer. Its higher Cdl value indicates higher double-layer capacitance due
to the rougher surface of PPy/Ti rather than Ti substate. However, its higher CPE value
indicates the higher Warburg impedance in view of electrolyte diffusion. The Warburg
impedance of Ti substrate keeps relatively low value. The lithium ion has relatively high
diffusion coefficient and plays a more predominant role than the electrode materials in the
LiClO4 electrolyte. LiClO4/Ti carries out a shorter ion diffusion length than LiClO4-PPy/Ti.
Therefore, LiClO4/Ti reveals a relatively lower CPE value than LiClO4-PPy/Ti. Moreover,
LiClO4-PPy/Ti exhibits a larger CPE exponent (n value) than LiClO4/Ti. This indicates that
LiClO4-PPy/Ti more likely approaches capacitor behavior rather than resistance behavior.
The LiClO4-PPy layer provides more active interface for electrolyte ion adsorption and
charge transfer. Therefore, LiClO4-PPy/Ti exhibits higher electroactivity than LiClO4/Ti,
contributing to a higher specific capacitance in neutral LiClO4 electrolyte solution.
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Table 1. Fitting parameter values of elements used in equivalent circuit model of LiClO4/Ti and
LiClO4-PPy/Ti.

Substance Cdl (mF cm−2) Rct (Ω cm−2) Ro (Ω cm−2) CPE (S sn cm−2) n

LiClO4/Ti 0.0334 65,250 0.3660 0.00263 0.746
LiClO4-
PPy/Ti 0.1930 2116 0.2226 0.03427 0.912

2.3. DFT Simulation Calculation of LiClO4/Ti and LiClO4-PPy/Ti

The LiClO4 molecule conducts the adsorption–desorption to establish interfacial inter-
action between LiClO4 and Ti substrate through Van der Waals forces in the electrochemical
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process. The LiClO4 molecule also conducts the doping–dedoping process to establish
electrostatic interaction between LiClO4-PPy and Ti substrate. The atomic charge distri-
bution could affect the interaction of LiClO4/Ti and LiClO4-PPy/Ti. The DFT simulation
calculation is used to investigate electronic properties of LiClO4/Ti and LiClO4-PPy/Ti [38].

Figure 6A,B shows molecule the structure models of LiClO4/Ti and LiClO4-PPy/Ti.
LiClO4/Ti involves an interfacial electrostatic interaction between the LiClO4 and Ti sub-
strate. LiClO4-PPy/Ti involves an interfacial electrostatic interaction between the LiClO4-
PPy and Ti substrate. LiClO4-PPy presents the perchlorate ion doping state of PPy.

Figure 6C,D shows the molecular electrostatic potentials of LiClO4/Ti and LiClO4-
PPy/Ti. Concerning LiClO4/Ti, the negative charge of ClO4

− ion could induce the charge
dissociation of the Ti substrate, which leads to forming positive and negative crystal lattice
Ti atoms. Concerning LiClO4-PPy/Ti, the doping state of LiClO4-PPy reveals a positive
charge of hydrogen atoms and negative charge of conjugated pyrrole rings, which leads
to the forming of a positive and negative crystal lattice of Ti atoms. The intermolecular
interaction distance is determined to be 3.537 Å for perchlorate O. . .Ti of LiClO4/Ti and
2.450 Å for pyrrole N. . .Ti of LiClO4-PPy/Ti, respectively. Therefore, LiClO4-PPy/Ti
presents stronger electrostatic interaction than LiClO4/Ti. The electrostatic interaction is
allowed to occur for LiClO4/Ti and LiClO4-PPy/Ti. The intensified interaction has been
established between the LiClO4-PPy molecule chain and the Ti substrate, contributing to
the activation of the LiClO4-PPy/Ti electrode.

Figure 6E,F shows the density of states curves of LiClO4/Ti and LiClO4-PPy/Ti. Both
LiClO4/Ti and LiClO4-PPy/Ti demonstrate metal conductivity characteristics, since the
characteristic density of states at Fermi energy 0 eV cross from the valance band to the
conduction band. Comparatively, LiClO4-PPy/Ti demonstrates more orbit energy levels
than the LiClO4/Ti at valence band and conduction band regions, which are ascribed
to the interfacial interaction between the LiClO4-PPy and the Ti substrate. Furthermore,
LiClO4-PPy/Ti shows a higher DOS level (57.321 electrons/eV) than LiClO4/Ti (9.652
electrons/eV) at Fermi energy 0 eV. LiClO4-PPy/Ti exhibits higher electron states and
higher electronic conductivity.

Figure 6G,H shows the band gap structure curves of LiClO4/Ti and LiClO4-PPy/Ti.
The band gaps of LiClO4/Ti and LiClO4-PPy/Ti approach 0.03 and 0 eV, presenting sim-
ilar superior conductivity of metal substrates. Comparatively, LiClO4-PPy/Ti demon-
strates much greater energy levels at the valance band and conduction band regions than
LiClO4/Ti, which presents superior electrical conductivity of LiClO4-PPy/Ti. Therefore,
the band gap analysis results agree with the DOS analysis results, proving the superior
electronic conductivity of LiClO4-PPy/Ti rather than LiClO4/Ti. The declined interfacial
energies are −5.202 × 103 eV for LiClO4/Ti and −1.461 × 104 for LiClO4-PPy/Ti, which
presents the intensified interfacial interaction of LiClO4-PPy/Ti. Therefore, LiClO4-PPy/Ti
shows higher electroactivity than LiClO4/Ti. LiClO4-PPy has more electronic distribution
than LiClO4-PPy/Ti, which leads to stronger interaction, lower interfacial energy, and,
accordingly, higher capacitance performance.

Figure 6I shows the HOMO and LUMO HOMO and LUMO frontier molecular orbital
charge distribution of LiClO4/Ti and LiClO4-PPy/Ti. Concerning HOMO and LUMO
electron distribution in LiClO4/Ti and LiClO4-PPy/Ti, their molecular orbitals are mostly
dependent on Ti rather than LiClO4 and LiClO4-PPy. In Ti atoms, there occurs an obvious
electronic transition, which causes heterogeneous electron distribution. Comparatively,
different O and Cl atoms in LiClO4 occur insignificant electronic transition due to weak
electron transfer. Similarly, the electron transition of different atoms in LiClO4-PPy also
becomes relatively neglective because of weak electronic transfer. The HOMO-LUMO
molecule orbital energy gaps of LiClO4/Ti and LiClO4-PPy/Ti are determined to be 0.340
eV and 0.032 eV, respectively. Therefore, LiClO4-PPy/Ti with a low HOMO-LUMO gap
presents its high conductivity and high electroactivity, also. The HOMO-LUMO gap
analysis results agree with the DOS and band gap analysis results. The DFT simulation
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calculation results support the CV and GCD measurement results, proving the higher
capacitance of LiClO4-PPy/Ti.
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Figure 7 shows the Mulliken charge population of C, O, N, Cl, and Ti atoms of
LiClO4/Ti and LiClO4-PPy/Ti. The interfacial interaction in LiClO4/Ti and LiClO4-PPy/Ti
leads to the center charge offset of the Ti lattice atoms and the negative charge density
distribution of oxygen atoms as well as nitrogen atoms. Accordingly, Ti atoms involve the
dissociation distribution of negative and positive charge in LiClO4/Ti and LiClO4-PPy/Ti.
Table 2 lists the Mulliken charges of C, O, N, Cl, and Ti atoms in LiClO4/Ti and LiClO4-
PPy/Ti. The negative charge densities of oxygen atoms are changed from LiClO4/Ti (−0.78,
−0.80, −0.82, −0.95) to LiClO4-PPy/Ti (−0.76, −0.77, −0.78, −0.90), indicating a slightly
decreased negative charge. The dissociated positive and negative charge densities of Ti
substrate are (+0.13~+0.05)/(−0.23~−0.04) for LiClO4/Ti and (+0.62~+0.08)/(−0.05~−0.01)
for LiClO4-PPy/Ti, respectively. Therefore, the electrostatic interaction is formed between
negative-charged perchlorate O and positive-charged Ti. Additionally, the negative charge
densities of nitrogen atom are (−0.58~−0.47). Obviously, the strong electrostatic interaction
is further formed between the negative-charged pyrrole N and the positive-charged Ti in
LiClO4-PPy/Ti. Herein, LiClO4 exhibits the surface adsorption state of Ti in LiClO4/Ti
and the doping state of PPy in LiClO4-PPy/Ti. The Mulliken charge population analysis
proves the shorter intermolecular interaction distance in LiClO4-PPy/Ti in comparison with
LiClO4/Ti. Accordingly, LiClO4-PPy/Ti achieves higher electroactivity than LiClO4/Ti.
The DFT simulation calculation results agree with the experimental measurement results in
confirming the superior capacitance of LiClO4-PPy/Ti.
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Table 2. Mulliken charge population of C, O, N, Cl, and Ti atoms in LiClO4/Ti and LiClO4-PPy/Ti.

Element LiClO4-Ti LiClO4-PPy-Ti

O1 −0.78 −0.76
O2 −0.80 −0.77
O3 −0.82 −0.78
O4 −0.95 −0.90
Cl +2.45 +2.47
C1 / +0.03
C2 / +0.04
N / (−0.58~−0.47)

Ti
(−0.23~−0.04) (−0.05~−0.01)
(+0.13~+0.05) (+0.62~+0.08)

3. Experimental Section
3.1. Preparation of LiClO4-PPy/Ti

The titanium sheet (Ti, purity 99.5%, size 10 × 50 mm, thickness 0.2 mm.) was washed
using acetone, ethanol, and then deionized water to remove surface stains. The Ti sheet
then conducted the chemical polishing treatment in HF-HNO3 solution to dissolve the
surface-covered oxide layer. The chemical cleaned Ti sheet was obtained. The Ti sheet
conducted the electrostatic adsorption in lithium perchlorate solution form LiClO4/Ti. A
normal pulse voltammetry process was employed to synthetize LiClO4-PPy/Ti using a
three-electrode reaction system, which included the fresh Ti sheet working electrode, Pt
foil counter electrode, the Hg/Hg2Cl2 reference electrode, and acetonitrile solvent solution
of 0.1 M LiClO4 electrolyte and 0.15 M pyrrole. The reaction parameters included a pulse
potential range of 0.7~1.1 V and pulse potential increment of 0.001 V.

3.2. Characterization and Measurement

The surface microstructure characterization of LiClO4-PPy/Ti and LiClO4/Ti was
conducted using a scanning electron microscope (SEM, ZEISS Ultra Plus, Germany). A
Raman spectrum measurement of LiClO4-PPy/Ti was conducted using a Raman spectro-
scope (Thermo Fisher DXR3, He-Ne laser, Emitting wavelength of 785 nm). A crystal phase
structure characterization of titanium substrate was conducted using an X-ray diffraction
(XRD, Bruker D8-Discover, Wavelength of X-ray source, 0.154 nm) apparatus. Electrochem-
ical capacitive measurements of LiClO4-PPy/Ti and LiClO4/Ti were performed using an
electrochemical workstation (CHI 760D, CH Instruments Co., Ltd., China), which includes
galvanostatic charge/discharge (GCD) and cyclic voltammetry (CV). The electrochemi-
cal impedance spectrum (EIS) measurement was carried out at the frequency range of
10−2~105 Hz. The 1.0 M LiClO4 was used as the doping ion source and the electrolyte
solution, contributing to maintaining the electrochemical stability of the titanium substrate
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in LiClO4-PPy/Ti. electrode. The total surface area was used to evaluate electrochemical
capacitance.

3.3. Theoretical Simulation Calculation

Density functional theory (DFT) simulation calculation was carried out to investigate
electronic properties and atomic charge distribution of LiClO4 and LiClO4-PPy interaction
at the interface of Ti substrate [38]. The total density of states (DOS), Mulliken charge
population, interfacial binding energy, highest occupied molecular orbital (HOMO), lowest
unoccupied molecular orbital (LUMO), and electrostatic potential were determined and
discussed for better understanding of the electrostatic interfacial interaction of LiClO4-
PPy/Ti and LiClO4/Ti. The DMol3 package was applied to calculate HOMO-LUMO energy
gaps, and the CASTEP package was applied to calculate electronic energy gap and charge
density difference and DOS value.

4. Conclusions

The PPy/Ti has been prepared through an electro-polymerization deposition process
which is applied as supercapacitor electrode for electrochemical energy storage. Theoretical
and experimental investigations are adopted to disclose the conductivity and interfacial
interaction-dependent capacitance of LiClO4-PPy/Ti. LiClO4/Ti reveals ideal electrical
double-layer capacitance due to the reversible adsorption/desorption of LiClO4 electrolyte
on Ti substrate in the potential range of 0~0.8 V. LiClO4-PPy/Ti reveals Faradaic capaci-
tance due to reversible doping/dedoping perchlorate ion in PPy. LiClO4-PPy/Ti reveals
lower charge transfer resistance, lower ohmic resistance, and lower Warburg resistance to
present more active interface, higher electronic conductivity, and more feasible ion diffu-
sion properties than LiClO4/Ti. LiClO4/Ti and LiClO4-PPy/Ti achieve the mean response
current of 0.13~2.47 µA cm−2 and 2.28~9.011 µA cm−2 at 5~200 mV s−1. The corresponding
specific capacitances are 0.010~0.0095 mF cm−2 and 0.123~0.0122 mF cm−2 at 0.01~0.10
mA cm−2. LiClO4-PPy/Ti keeps much higher electrochemical conductivity and higher
specific capacitance than LiClO4/Ti. Theoretical calculation results prove that interfacial
electrostatic adsorption of LiClO4/Ti and ClO4

− anion doping of LiClO4-PPy/Ti could
change atomic charge density distribution. LiClO4-PPy/Ti exhibits higher electronic con-
ductivity and lower interface energy than LiClO4/Ti. LiClO4-PPy/Ti can act as a superior
supercapacitor electrode to exhibit electroactivity and capacitance for the promising energy
storage application.
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