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Abstract: The stepwise synthesis and characterization of three new mixed-ligand organometallic
tetranuclear platinum squares were achieved. All of the complexes were constituted by the conjunc-
tion of two (2,2′-bpy)Pt-terph-Pt(2,2′-bpy) (terph = p-terphenyl) fragments linked by a variety of NˆN
ligands (4,4′-bipyridine (4,4′-bpy), 1,4-di(pyridin-4-yl)benzene (dpbz), and 4,4′-di(pyridin-4-yl)-1,1′-
biphenyl (dpbph)), which occupied the fourth coordination site of each metal center, giving rise to
square-shaped molecules of the general formula [Pt2(2,2′-bpy)2(terph)(NˆN)]2. Consequently, the
tetranuclear complexes, {[Pt(2,2′-bpy)]4(µ-terph)2(µ-4,4′-bpy)2}{PF6}4 (7), {[Pt(2,2′-bpy)]4(µ-terph)2(µ-
dpbz)2}{PF6}4 (8), and {[Pt(2,2′-bpy)]4(µ-terph)2(µ-dpbph)2}{PF6}4 (9) were constructed. The photo-
physical properties of these complexes were studied both in the solid state and in various solvents,
revealing fluorosolvatochromism.

Keywords: platinum; synthesis; tetranuclear; supramolecular; fluorosolvatochromism

1. Introduction

Platinum Supramolecular Coordination Complexes (SCCs) have emerged as attrac-
tive subjects of research, garnering significant attention owing to their various proper-
ties. They exhibit catalytic specificity in the formation of C-X bonds through reductive
elimination [1,2]. Beyond their catalytic potential, platinum squares (a subclass of SCCs
with a rectangular shape) have demonstrated noteworthy biological attributes [3] and
have been investigated for their promising anticancer properties [4]. Their photophysical
properties as dual emitters [5] and fluorescence probes have also been studied.

In recent times, several innovative strategies have been reported for the synthesis of
platinum squares, highlighting the dynamic nature of ongoing research in this field. The
synthetic strategy commonly involves the one-pot self-assembling of supramolecular units,
starting from cis-mononuclear building blocks [6–9]. An equal amount of NˆN ligands, such
as 4,4′-bpy, is then added, resulting in the formation of a symmetric tetranuclear complex.

An alternative synthetic approach involves initially synthesizing one side of the
square by forming a binuclear bridged platinum complex. Subsequently, two equivalents of
another bridged ligand (BL) coordinate monodentataly to the metal center, resulting in the
formation of a “pi” shaped complex. Finally, one more equivalent of the initial binuclear
complex completes the fourth side of the square by coordinating the platinum centers to
the ends of the BL (Figure 1). This method is known as a stepwise synthesis approach. It
is worth noting that the presence of bulky auxiliary ligands on platinum centers, such as
bisphosphines, hinders the self-rotation within the binuclear complex, resulting in mixtures
of syn- and anti-conformers. Such mixtures impede the formation of platinum square
complexes [10]. Overall, stepwise synthesis offers advantages by enabling the coordination
of different types of bridged ligands in the same compound.
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square complexes [10]. Overall, stepwise synthesis offers advantages by enabling the co-
ordination of different types of bridged ligands in the same compound. 

 
Figure 1. Cartoon representation of stepwise synthesis for a platinum square. The four platinum 
corners are indicated by a yellow color and the square side ligands by purple and green (BL). The 
xs of BLs correspond to 10 eq of each BL, as detailed in the experimental section. 

In 1990, M. Fujita et al. [11] documented the discovery of tetranuclear square com-
plexes with the synthesis of [Pd(en)(4,4′-bpy)]4(NO3)8, prepared through a one-step reac-
tion between the mononuclear complex Pd(en)(NO3)2 and the ligand 4,4′-bpy. The synthe-
sis of the same complex via a solventless reaction between the same reactants [12] was also 
reported, suggesting the formation of linear intermediates. Comparative studies revealed 
that the analogous Pt(II) tetranuclear complex exhibits greater stability than its Pd(II) 
counterpart, attributed to the higher kinetic inertia of the Pt(II) ion [13]. This Pt(II) complex 
received significant attention due to its cytotoxic properties against HL-60 cells 14] and its 
role as a specific G-quadruplex binder [15]. A few years later, Garci et al. reported an al-
ternative synthetic approach for this type of complex utilizing mechanochemical ball mill-
ing, forming products in high yields [16]. 

To date, several Pd(II) tetranuclear complexes have been reported, utilizing various 
auxiliary ligands such as ethylenediamine [17], 2,2′-bpy and its derivatives [18], and che-
lated phosphines [19]. Furthermore, tetranuclear rhomboidal Pt(II) complexes have been 
reported to exhibit aggregation-induced emission properties [20,21]. Also, tunable emis-
sion properties were achieved in similar rhomboidal complexes by modifications to the 
building ligands [22]. The reaction of 2,9-bis[trans-Pt(PEt3)2NO3]2(µ-phenanthrene) with 
rigid dianionic carboxylate ligands affords rhomboid tetranuclear and triangular hexanu-
clear Pt(II) complexes, depending on the nature of the dicarboxylate ligand [23]. 

We synthesized and characterized three new mixed-ligand organometallic tetranu-
clear platinum squares using the stepwise approach. These complexes share a common 
bridging ligand, p-terphenyl (terph), while the other ligands increase in size: 4,4′-bipyri-
dine (4,4′-bpy), 1,4-di(pyridin-4-yl)benzene (dpbz), and 4,4′-di(pyridin-4-yl)-1,1′-biphenyl 
(dpbph) (Scheme 1). To complete the platinum coordination sphere, we employed 2,2′-
bpy as an auxiliary ligand. Thus, the tetranuclear complexes, {[Pt(2,2′-bpy)]4(µ-terph)2(µ-
4,4′-bpy)2}{PF6}4 (7), {[Pt(2,2′-bpy)]4(µ-terph)2(µ-dpbz)2}{PF6}4 (8), and {[Pt(2,2′-bpy)]4(µ-
terph)2(µ-dpbph)2}{PF6}4 (9) were formed. Our objective was to investigate the photophys-
ical properties of these platinum squares across different solvents. 

Figure 1. Cartoon representation of stepwise synthesis for a platinum square. The four platinum
corners are indicated by a yellow color and the square side ligands by purple and green (BL). The xs
of BLs correspond to 10 eq of each BL, as detailed in the experimental section.

In 1990, M. Fujita et al. [11] documented the discovery of tetranuclear square complexes
with the synthesis of [Pd(en)(4,4′-bpy)]4(NO3)8, prepared through a one-step reaction
between the mononuclear complex Pd(en)(NO3)2 and the ligand 4,4′-bpy. The synthesis
of the same complex via a solventless reaction between the same reactants [12] was also
reported, suggesting the formation of linear intermediates. Comparative studies revealed
that the analogous Pt(II) tetranuclear complex exhibits greater stability than its Pd(II)
counterpart, attributed to the higher kinetic inertia of the Pt(II) ion [13]. This Pt(II) complex
received significant attention due to its cytotoxic properties against HL-60 cells [14] and
its role as a specific G-quadruplex binder [15]. A few years later, Garci et al. reported an
alternative synthetic approach for this type of complex utilizing mechanochemical ball
milling, forming products in high yields [16].

To date, several Pd(II) tetranuclear complexes have been reported, utilizing various
auxiliary ligands such as ethylenediamine [17], 2,2′-bpy and its derivatives [18], and
chelated phosphines [19]. Furthermore, tetranuclear rhomboidal Pt(II) complexes have
been reported to exhibit aggregation-induced emission properties [20,21]. Also, tunable
emission properties were achieved in similar rhomboidal complexes by modifications to
the building ligands [22]. The reaction of 2,9-bis[trans-Pt(PEt3)2NO3]2(µ-phenanthrene)
with rigid dianionic carboxylate ligands affords rhomboid tetranuclear and triangular
hexanuclear Pt(II) complexes, depending on the nature of the dicarboxylate ligand [23].

We synthesized and characterized three new mixed-ligand organometallic tetranu-
clear platinum squares using the stepwise approach. These complexes share a com-
mon bridging ligand, p-terphenyl (terph), while the other ligands increase in size: 4,4′-
bipyridine (4,4′-bpy), 1,4-di(pyridin-4-yl)benzene (dpbz), and 4,4′-di(pyridin-4-yl)-1,1′-
biphenyl (dpbph) (Scheme 1). To complete the platinum coordination sphere, we em-
ployed 2,2′-bpy as an auxiliary ligand. Thus, the tetranuclear complexes, {[Pt(2,2′-bpy)]4(µ-
terph)2(µ-4,4′-bpy)2}{PF6}4 (7), {[Pt(2,2′-bpy)]4(µ-terph)2(µ-dpbz)2}{PF6}4 (8), and {[Pt(2,2′-
bpy)]4(µ-terph)2(µ-dpbph)2}{PF6}4 (9) were formed. Our objective was to investigate the
photophysical properties of these platinum squares across different solvents.
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2. Results and Discussion
2.1. Synthesis and Characterization

The synthesis of the complex [Pt(COD)Cl]2(µ-terph) (COD = 1,5-cyclooctadiene)
was successfully achieved by modifying the method originally reported for the complex
[Pt(COD)Cl]2(µ-bph) [1]. This synthetic procedure (Scheme 2) involved three steps. Firstly,
a bromine–lithium exchange reaction was conducted at −78 ◦C in tetrahydrofuran. Subse-
quently, 4,4′′-bis(trimethylstanyl)-p-terphenyl was synthesized in situ after the addition of
trimethyltin chloride. Finally, another transmetallation reaction between the arylstannane
and the platinum complex Pt(COD)Cl2 resulted in the formation of the binuclear complex
(1). This binuclear complex served as the starting material for subsequent reactions. In the
following step, the coordinated COD in complex (1) was replaced by 2,2′-bpy, forming the
complex [Pt(2,2′-bpy)Cl]2(µ-terph).
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Scheme 2. Synthetic procedure for complex (1).

The orientation of the replaceable ligand on the metal center plays a crucial role in
facilitating the following reactions. The anti-conformer impedes the continuation of the
reactions towards the square complex, whereas the syn-conformer promotes their formation.
Several factors influence this equilibrium, including the steric hindrance by the auxiliary
ligands and the rigidity of the bridging ligand [10].

The 1H NMR spectrum of complex (1) (Figure S1) in CD2Cl2 showed only one set of
signals due to its high symmetry. Additionally, it is worth noting that both isomers syn-
and anti-exhibited precisely the same spectrum. In the 1H NMR spectrum of (2), the signals
of the coordinated 1,5-COD disappeared, indicating that the 1,5-COD was replaced by the
ligand 2,2′-bpy in each Pt center (Figure S2). This reaction was accompanied by a noticeable
change in the color of the suspended solid from white to bright yellow. Furthermore, the
spectrum indicated that the terph exhibited high symmetry, containing two doublets and
one singlet peak, all shifted downfield relative to complex (1). In contrast, 2,2′-bpy lacked
symmetry, exhibiting more than the expected four signals. The presence of double signals
attributed to the H6 and H6′, with ∆δ = 0.86 ppm, suggested a distinct environment for
the two pyridine rings of 2,2′-bpy (Figure S3). In the ROESY spectrum of (2) (Figure S4), a
cross-peak between H6′ (8.80 ppm) and Ha (7.53 ppm) of terph suggested the proximity of
H6′ to the aromatic ring of terph, resulting in a pronounced shielding effect. The signal
of H6 appeared significantly downfield, at 9.66 ppm, indicating a strong interaction with
the coordinated Cl. This difference was attributed to the orientation of the H6 and H6′ of
2,2′-bpy towards the bridged terph ligand. Also, a significant difference of 0.45 ppm was
observed in the H5 and H5′ signals.

Additional evidence supporting the formation of (2) was derived from the HR-ESI-MS
(Figure S5), where a distinct cluster peak was observed at m/z = 1043.1487. This peak was
assigned to the single charged cation [C40H34N4ClSO195Pt2]+, which could be formulated
as {[Pt2(2,2′-bpy)2(DMSO)Cl](µ-terph)}+. The presence of the DMSO was justified by the
preparation of the sample for HR-ESI-MS, where 5 µL of DMSO was added to improve
the solubility.
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The coordination of the NˆN ligands to the platinum center without removing the
Cl atoms was not successful. To address this issue, two equivalents of AgNO3 were
added (Scheme 3), and the mixture was subjected to sonication using a 750 W equipment.
Following the removal of the precipitated AgCl, the complex {[Pt(2,2′-bpy)(CH3CN)]2
(µ-terph)}2+, (3) was isolated. The HR-ESI-MS (Figure S6) and NMR spectra confirmed the
proposed formula (Figures 2 and S7).
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Figure 2. Aromatic region of stacked 1HNMR spectra of 4,4′-bpy (a), complex (3) (b), complex (4) (c),
and complex (7) (d) in DMSO-d6 at 500 MHz and 298 K.

Subsequently, the formation of “pi”-shaped complexes (4)–(6) was achieved by adding
an excess of the required BLs (4,4′-bpy, dpbz, dpbph) to act monodentately. This was con-
firmed by the reduction of the BLs symmetry reflected in the signals of the 1HNMR spectra.
Specifically, in 1HNMR of complex (4), four signals corresponding to 4,4′-bpy rings were
observed (Figure 2). The coordinated pyridine ring showed significant downfield shifts for
H6 (+0.60 ppm) and H5 (+0.29 ppm), while the proton signals of the non-coordinated ring
shifted slightly downfield. Moreover, upfield shifts were observed for the three signals
of terph by 0.3 ppm, probably due to a difference in bond strength between the Pt-Cl and
Pt-py. On the other hand, a dramatic upfield shift of 2,2′-bpyH6 by 1.68 ppm was observed,
indicating a strong shielding effect. This large shift may be interpreted by the change in
the electron density of H6 due to the transition from the Pt-Cl. . .H6 interaction in (2) to
the proximity of H6 to the 4,4′-bpy coordinated pyridine ring in (4). The other protons of
2,2′-bpy remained almost unaffected after the coordination of 4,4′-bpy.

In the ROESY spectrum of (4) (Figure 3), cross-peaks between the H6(2,2′-bpy) →
H2/6 (4,4′-bpy), H6′(2,2′-bpy) → Ha(terph), and Ha(terph) → H2/6(4,4′-bpy) confirmed
the proposed “pi” shape for this complex. Similar results were observed for all the “pi”-
shaped complexes (4)–(6).
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In the 1HNMR spectrum of complex (7), the signals that were assigned to the free
pyridine rings of 4,4′-bpy were not observed anymore due to their coordination on the
Pt(II) centers of the added complex (3). Also, complex (7) was highly symmetric, re-
sulting in only one set of signals for each ligand (Figure S8). Similar results were also
observed for complexes (8) and (9). At the ROESY spectra of tetranuclear complexes (7)–(9)
(Figures 4 and S9), cross-peaks between 2,2′-bpyH6′ → BLsH2/6, 2,2′-bpyH6 → terphHa,
and BLsH2/6 → terphHa were observed. Considering the above constraints on the spatial
placing of the ligands (2,2′-bpy, terph, BLs), we concluded that the tetranuclear platinum
complexes adopted a rectangular structure.
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with assignment at inter-ligand cross-peaks.

The formation and stability of complexes (7)–(9) were confirmed through HR-ESI mass
spectra. Within all spectra, three distinct cluster peaks were observed, corresponding to
multicharged cations generated through the successive release of [PF6]− ions from the
original complex. Consequently, the following cations were assigned: {[M]-4[PF6]}4+, {[M]-
3[PF6]}3+, and {[M]-2[PF6]}2+, with {[M]-4[PF6]}4+ being the most predominant among them.
The single charged cation {[M]-[PF6]}+ was not observed. The isotopic patterns of these
cations closely aligned with the theoretically simulated ones, as illustrated in Figure 5.
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2.2. Photophysical Studies
2.2.1. Absorption and Emission Spectra of Complexes (7)–(9)

Table 1 summarizes the photophysical data of complexes (7)–(9), while Figure 6
illustrates their absorption and emission spectra.

Table 1. Photophysical data of complexes (7)–(9).

Complex

UV/Vis Absorbance
λmax [nm], (ε × 104 [M−1cm−1]) Excitation Emission

QY%

Solution
(CHCl3) Solid

λexc λem

Solution
(CHCl3) Solid Solution

(CHCl3) Solid Solution
(CHCl3) Solid

(7) 268 (15.30), 281 (12.2), 328 (5.2) 242, 313, 420 365 400 427 574 1.7% 4%

(8) 276 (12.2), 345 (2.1) 242, 315, 418 365 400 433, 615 597 5% 2%

(9) 278 (11.1) 242, 313, 422 365 400 431 578 1% 1%
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room temperature of complexes (7)–(9). (c) Excitation and emission spectra of complexes (7)–(9) in
CHCl3 (1.5 × 10−6 M).

The UV–vis spectra of complexes (7)–(9) in the solid state were similar, while their
solution spectra exhibited significant differences from each other. In the solid state, the
complexes showed three distinct absorbance bands, two in the UV region and one in the
visible region. The absorption bands at 240 nm and 310 nm were attributed to n→π* or
π→π* transitions of the aromatic ligands 4,4′-bpy, dpbz, and dpbph. Additionally, the third
band observed in the visible region was associated with the metal-to-ligand charge transfer,
[(5d)Pt→π*(L)] [24]. However, their absorption spectra in CHCl3 exhibited remarkable
differences. Complex (9) displayed an intense band at 278 nm assigned to intra-ligand
transitions arising from their aromatic ring system [25]. In complex (8), this band shifted
slightly to 276 nm, while, in complex (7), it was split to 268 nm and 281 nm, probably
due to the differences in the absorption maxima of the containing ligands. A very weak
band at 328 nm and 345 nm for complexes (7) and (8), respectively, was attributed to the
[(5d)Pt→π*(L)] transition [24], while it was not observed for complex (9) due to its very
weak intensity. Similar results have been reported for rhomboidal structures [22], where
bands with weak intensity in the range of 420–480 nm were attributed to metal-to-ligand
charge transfer [26].

Upon excitation of complexes (7)–(9) in the solid state with λexc = 400 nm, emission
spectra were obtained, showing a single broad band in the visible region. In complexes (7)
and (9), this band was observed at about 580 nm, while, in complex (8), at about 600 nm,
each was characterized by low quantum yields. When excited in a dilute solution of CHCl3
at 365 nm, only complex (8) demonstrated a strong emission band in the orange part of the
spectrum (λem = 615 nm) accompanied by a weak band at 433 nm. In contrast, complexes
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(7) and (9) exhibited only a single weak band each at 430 nm. Moreover, complex (8)
demonstrated the highest quantum yield (5%) in CHCl3 compared to complexes (7) and
(9). This complex stood out for its emission at λem = 615 nm, a feature not yet reported
in the literature for this type of tetranuclear platinum square, which typically emits at
wavelengths less than 600 nm [20,27].

Furthermore, complex (8) could be described as a dual-emitter (615 and 430 nm), a fea-
ture that set it apart from the other two complexes (7) and (9). In general, the dual-emitting
effect, arising from distinct excited states [25], could find application in the production
of white light [28]. Also, it is worth noting that while some of the literature highlights
platinum squares as exceptional emitters, our compounds exhibited lower quantum yields,
likely due to the rotational dynamics of phenyl rings leading to fluorescence quenching
effects [8,29].

2.2.2. Solvent Effect on Emission Spectra of Complexes (7)–(9)

The emission spectra of complexes (7)–(9) were recorded in various solvents (Figure 7
and Table 2), with different polarities to explore their emission profiles. Upon excitation
of their solutions at 365 nm, notable distinctions were observed. Specifically, complexes
(7) and (9) in acetone and CH2Cl2 exhibited two distinct emission bands: an emission
in the blue region and another one in the green (7) or red (9) region. Also, complex (9)
exhibited these bands in acetonitrile and ethyl acetate. However, in the other solvents,
they showed only a single band in the blue region (420–440 nm), with the exception of
the diethyl ether. In diethyl ether, both complexes displayed a shoulder at 450 nm, with
complex (7) additionally exhibiting a third band at 613 nm. These variations in emission
spectra across different solvents highlight the solvent-dependent photophysical behavior
of these complexes [21].
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Figure 7. Emission spectra of complexes (7) (a), (8) (b), and (9) (c) in different polarity solvents
(λexc. = 365 nm).

Table 2. λem of complexes (7)–(9) in solvents with different polarities. DMF: N,N′-dimethylformamide,
CH3CN: acetonitrile, MeOH: methanol, EtOH: ethanol EA: ethyl acetate, THF tetrahydrofuran, DE:
diethyl ether.

Complex Acetone CH2Cl2 CH3CN CHCl3 DE DMF DMSO EA EtOH MeOH THF

(7)
429 437

426 427
429
451
613

429 430 431 432 464
436

541 584 460

(8) 671
436

677
433 427 427 421

606
429 432 429

626 616 605 680 690 610 632 614

(9)
433 428 472

431
429

421 421
427

457 467
421

644 642 661 449 616 569
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Regarding complex (8), notable inconsistencies were evident upon changes in solvents.
Specifically, an orange-region band was observed at 605 nm in diethyl ether, while, in
DMSO, it shifted closer to the near infra-red region, at 700 nm. In most solvents, excluding
acetone, acetonitrile, and ethyl acetate, the complex exhibited two distinct emission bands:
one in the blue region and another one in the red-to-orange region. In acetone, acetonitrile,
and ethyl acetate, only one orange-red band was observed.

In conclusion, complexes (7)–(9) demonstrated varying shifts in the emission maxima
of their orange-red band across different solvents, a phenomenon commonly referred to as
fluorosolvatochromism. However, this magnitude of solvent-dependent variations was not
observed for the blue-region band.

3. Experiments
3.1. Materials and Methods

All solvents were of analytical grade and were used without further purification.
Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl, toluene was
distilled from CaH2, and they were stored over molecular sieves. 4,4′-bipyridine, 2,2′-
bipyridine, and 1,4-di(pyridin-4-yl)benzene were purchased from Fluorochem, while 4,4′-
di(pyridin-4-yl)-1,1′-biphenyl was purchased from TCI. Pt(COD)Cl2, Sn(CH3)3Cl, and
n-BuLi (2.5M in hexane) were purchased from Sigma. 4,4′′-diiodo-p-terphenyl was syn-
thesized according to the literature [30]. Also, 4,4′′-bis(trimethylstannyl)-p-terphenyl and
[Pt(COD)Cl]2(µ-terph) were synthesized following literature methods [1].

1H NMR spectra for all the compounds were recorded in a Bruker Avance NEO
spectrometer operating at 500.13 MHz or in a Bruker Avance II spectrometer operating at
400.13 MHz. The spectra were processed by Topspin 4.2 (Bruker Analytik GmbH, Ettlingen,
Germany). Two-dimensional COSY, TOCSY, and ROESY spectra were obtained following
standard Bruker procedures. High-resolution electrospray ionization mass spectra (HR-
ESI-MS) were recorded using a Thermo Scientific LTQ Orbitrap XL™ system. UV–vis
spectra of the complexes were recorded on an Agilent Cary 60 UV–vis spectrophotometer
with a xenon source lamp. Sonication of the reaction between [Pt(bpy)Cl]2(µ-terph) and
AgNO3 in CH3CN was accomplished using a Sonics & Materials 750 W instrument (Sonics
& Materials, Inc., Leicestershire, UK).

3.2. Fluorescence Emission Studies

Emission studies were conducted using a Jasco FP-8300 fluorometer (Jasco, Tokyo,
Japan), which was equipped with a xenon lamp and an integrated sphere for the solid
samples. The determination of the relative quantum yield for solutions employed the
formula Qs = Qr(Ar/As)(Es/Er)(ns/nr)2. ‘A’ denotes the absorbance of the solutions, ‘E’
denotes the integrated fluorescence intensity of the emission spectrum, and ‘n’ denotes the
refractive index of the solvents. Subscripts ‘r’ and ‘s’ indicate the reference and sample,
respectively. A water solution of [Ru(bpy)3]Cl2 served as the reference standard (Qr = 0.04).
The calculation of the relative quantum yield for the complexes in the solid state followed
the equation Q = S2/(S0 − S1), where ‘Q’ denotes the quantum yield of the solid state of
the complexes, ‘S2’ signifies the integrated emission intensity of the sample, and ‘S0’ and
‘S1’ refer to the excitation intensities of the standard and the sample, respectively.

3.3. Synthesis of Complexes (2)–(9)

[Pt(2,2′-bpy)Cl]2(µ-terph) (2): 56.1 mg of 2,2′-bpy (0.78 mmol) was added to 90 mL
of CH2Cl2 containing 60 mg (0.059 mmol) of the complex [Pt(COD)Cl]2(µ-terph). The
suspension was stirred for about 24 h at 30 ◦C. After 24 h, the suspension turned into a
bright yellow solution. The solvent was evaporated and the solid was washed with hexane
and diethyl ether. Yield: 85%. 1H NMR: (500 MHz, 298K, CD2Cl2, δ in ppm): H6: 9.66
(d, 2H, 3J = 5.1); H6′: 8.80 (d, 2H, 3J = 5.6); H44′: 8.20 (d, 4H, 3J = 7.6); H3′: 8.17 (t, 2H,
3J = 6.0); H3: 8.10 (t, 2H, 3J = 4.8); H5: 7.79 (t, 2H, 3J = 5.1); Hcc’: 7.77 (s,4H); Haa′: 7.53
(d, 4H, 3J = 8.1); AHbb′: 7.46 (d, 4H, 3J = 8.3); H5′: 7.41 (t, 2H, 3J = 7.0). HR-ESI-MS
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(5mL CH2Cl2 + 20 µL of DMSO), positive (m/z): found 1043.1487, calc. 1043.1411 for
[C40H34N4ClSO195Pt2]+, assignable to the cation {[Pt2(2,2′-bpy)2(DMSO)Cl](µ-terph)}+.

{[Pt(2,2′-bpy)(CH3CN)]2(µ-terph)}(NO3)2 (3): 11.2 mg of AgNO3 (0.066 mmol) was
added to a suspension containing 34 mg (0.033 mmol) of complex (2) in 20 mL acetonitrile.
The mixture was sonicated for 30 min in 375 W (1/2′′ probe) at 55 ◦C. After sonication, the
mixture was filtered and the solvent was evaporated. Yield: 99%. 1H NMR: (500 MHz,
298 K, DMSO-d6, δ in ppm): H6: 9.65 (d, 2H, 3J = 4.8); H33′: 8.82 (d, 4H, 3J = 8.1); H4: 8.51
(t, 2H, 3J = 8.0); H4′: 8.44 (t, 2H, 3J = 7.8); H5: 8.03 (t, 2H, 3J = 6.6); Hcc′: 7.86 (s, 4H)
H6′: 7.75 (d, 2H, 3J = 6.4); H5′: 7.72 (t, 2H, 3J = 5.9); Haa′: 7.64 (d, 4H, 3J = 8.3); Hbb′: 7.61
(d, 4H, 3J = 8.5). HR-ESI-MS (CH3CN), positive (m/z): found 506.1066, calc. 506.1058 for
[C42H34N6

195Pt2]2+, assignable to the cation {[Pt(2,2′-bpy)(CH3CN)]2(µ-terph)}2+.
{[Pt(2,2′-bpy)(4,4′-bpy)]2(µ-terph)}{PF6}2 (4): 46.3 mg (0.29 mmol) of 4,4′-bpy was

added to 50 mL acetonitrile containing 30 mg (0.029 mmol) of complex (3) {[Pt(2,2′-
bpy)(CH3CN)](µ-terph)}{NO3}2 and 10.7 mg (0.058) mmol of KPF6. The mixture was stirred
for 18 h at room temperature. After the evaporation of the solvent, the orange solid was
washed with H2O and diethyl ether. Yield: 60%. 1H NMR: (500 MHz, 298 K, DMSO-d6, δ in
ppm): H26(4,4′-bpy): 9.21 (d, 4H, 3J = 6.9); H3′: 8.80 (d, 2H, 3J = 8.4); H2′6′(4,4′-bpy): 8.78
(d, 4H, 3J = 6.2); H3: 8.76 (d, 2H, 3J = 8.0); H44′: 8.46 (t, 4H, 3J = 7.6); H6′: 8.35 (d, 2H,
3J = 5.9); H35(4,4′-bpy): 8.14 (d, 4H, 3J = 5.9); H6: 7.97 (d, 2H, 3J = 6.0); H3′5′(4,4′-bpy): 7.94
(d, 4H, 3J = 5.9); H5: 7.82 (t, 2H, 3J = 6.2); H5′: 7.74 (t, 2H, 3J = 6.7); Hcc′: 7.69 (s,4H); Haa′:
7.55 (d, 4H, 3J = 8.2); Hbb′: 7.43 (d, 4H, 3J = 8.2).

{[Pt(2,2′-bpy)(dpbz)]2(µ-terph)}{PF6}2 (5): 67.3 mg (0.29 mmol) of dpbz was added to
40 mL acetonitrile containing 30 mg (0.029 mmol) of complex (2) {[Pt(2,2-bpy)(CH3CN)](µ-
terph)}{NO3}2 and 10.7 mg (0.058) mmol of KPF6. The mixture was stirred for 22 h at
room temperature. After the evaporation of the solvent, the orange solid was washed
with acetone and diethyl ether. Yield: 75%. 1H NMR: (500 MHz, 298 K, DMSO-d6, δ in
ppm): H26(dpbz): 9.06 (d, 4H, 3J = 6.4); H3′: 8.71 (d, 2H, 3J = 7.5); H2′6′(dpbz): 8.68 (d,
4H, 3J = 6.0); H3: 8.66 (d, 2H, 3J = 8.6); H44′: 8.49 (t, 4H, 3J = 7.9); H6′: 8.35 (d, 2H, 3J = 5.9);
H35(dpbz): 8.21 (d, 4H, 3J = 6.6); Haa′bb′(dpbz): 8.28 (s,8H); H6: 8.21 (d, 2H, 3J = 6.1);
H3′5′(dpbz): 8.15 (d, 4H, 3J = 6.8); H5: 8.03 (t, 2H, 3J = 7.1); H5′: 7.98 (t, 2H, 3J = 7.2); Hcc′:
7.69 (s,4H); Haa′: 7.58 (d, 4H, 3J =7.5); AHbb′: 7.46 (d, 4H, 3J = 7.87).

{[Pt(2,2′-bpy)(dpbph)]2(µ-terph)}{PF6}2 (6): 90.5 mg (0.29 mmol) of dpbph was added
to 70 mL acetonitrile containing 30 mg (0.029 mmol) of complex (2) {[Pt(2,2-bpy)(CH3CN)](µ-
terph)}{NO3}2 and 10.7 mg (0.058) mmol of KPF6. The mixture was stirred for 24 h at room
temperature. After the evaporation of the solvent, the orange solid was washed with
THF and diethyl ether. Yield: 55%. 1H NMR: (500 MHz, 298 K, DMSO-d6, δ in ppm):
H26(dpbph): 8.98 (d, 4H, 3J = 7.2); H2′6′(dpbph): 8.89 (d, 4H, 3J = 6.8); H3′: 8.88 (d, 2H,
3J = 7.6); H3: 8.87 (d, 2H, 3J = 7.1); H44′: 8.43 (t, 4H, 3J = 7.2); H6′: 8.27 (d, 2H, 3J = 6.1);
H35(dpbph): 8.01 (d, 4H, 3J = 6.9); H6: 7.97 (d, 2H, 3J = 6.9); Haa′bb′cc’(dpbph): 7.92
(dd, 8H, 3J = 6.5); H5: 7.82 (t, 2H, 3J = 6.2); H5′: 7.75 (t, 2H, 3J = 7.2); Hcc′: 7.65 (s, 8H);
AHaa′: 7.49 (d, 4H, 3J = 8.4); AHbb′: 7.35 (d, 4H, 3J = 8.2).

The tetranuclear Pt(II) complexes (7)–(9) were synthesized similarly. In a typical
experiment, 1 eq. of complex (3) was added to 20–30 mL acetonitrile containing 1 eq. of the
binuclear complexes (4)–(6). The mixture was heated for 20–25 h at 60 ◦C. After 19 h, the
reaction mixture was evaporated to dryness under reduced pressure and the orange solid
was washed several times with dichloromethane and diethyl ether.

{[Pt(2,2′-bpy)]4(µ-terph)2(µ-(4,4′-bpy)2}{PF6}4 (7): 3.4 mg (0.020 mmol) of 4,4′-bpy was
added to 20 mL acetonitrile containing 32 mg (0.020 mmol) of complex (4). Yield: 55%.
1HNMR: (500 MHz, 298 K, DMSO-d6, δ in ppm): H26(4,4′-bpy): 9.30 (d, 8H, 3J = 6.5);
H3′: 8.82 (d, 4H, 3J = 8.4); H3: 8.78 (d, 4H, 3J = 8.5); H44′: 8.48 (tt, 8H, 3J = 7.6); H6′: 8.37
(d, 4H, 3J = 6.0); H35(4,4′-bpy): 8.26 (d, 8H, 3J = 6.9); H6: 7.88 (d, 4H, 3J = 4.9); H5: 7.81
(t, 4H, 3J = 7.1); H5′: 7.74 (t, 4H, 3J = 6.7); Hcc′: 7.63 (s, 8H); Haa′: 7.54 (d, 8H, 3J = 8.1);
Hbb′: 7.39 (d, 8H, 3J = 8.3). HR-ESI-MS, positive (m/z): found 543.3665, calc. 543.3646
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for [C96H72N12
195Pt4]4+; found 772.8104, calc. 772.8078 for [C96H72N12PF6

195Pt4]3+; found
1231.6974, calc. 1231.6940 for [C96H72N12P2F12

195Pt4]2+.
{[PtII(2,2′-bpy)]4(µ-terph)2(µ-dpbz)2}{PF6}4 (8): 3.2 mg (0.013 mmol) of dpbz was

added to 20 mL acetonitrile containing 5 mg (0.013 mmol) of complex (5). Yield: 68%.
1HNMR: (500 MHz, 298K, DMSO-d6, δ in ppm): H26(dpbz): 9.14 (d, 8H, 3J = 6.7); H3: 8.81
(d, 4H, 3J = 8.3); H3′: 8.77 (d, 4H, 3J = 8.6); H44′: 8.47 (tt, 8H, 3J = 7.0); H6′: 8.37 (d, 4H,
3J = 5.7); Haa′bb′(dpbz): 8.16 (s, 8H); H35(dpbz): 8.13 (s, 4H); H6: 7.99 (d, 8H, 3J = 5.6); H5:
7.81 (t, 4H, 3J = 6.7); H5′: 7.74 (t, 4H, 3J = 6.8); Hcc′: 7.67 (s, 8H); Haa′: 7.56 (d, 8H, 3J = 8.1);
Hbb′: 7.43 (d, 8H, 3J = 8.4). HR-ESI-MS, positive (m/z): found 581.3825, calc. 581.3803 for
[C108H80N12

195Pt4]4+; found 823.4971, calc. 823.4953 for [C108H80N12PF6
195Pt4]3+.

{[PtII(2,2′-bpy)]4(µ-terph)2(µ-dpbph)2}{PF6}4 (9): 5.1 mg (0.016 mmol) of dpbph was
added to 30 mL acetonitrile containing 31 mg (0.016mmol) of complex (6). Yield: 50%.
1HNMR: (500 MHz, 298 K, DMSO-d6, δ in ppm): H26(dpbph): 9.10 (d, 8H, 3J = 6.1); H3: 8.81
(d, 4H, 3J = 8.2); H3′: 8.77 (d, 4H, 3J = 8.4); H44′: 8.47 (t, 4H, 3J = 8.4); H6′: 8.38 (d, 4H,
3J = 5.8); H35(dpbph): 8.09 (dd, 8H, 3J = 6.8); Haa’bb’(dpbph): 8.08 (dd, 8H, 3J = 7.3);
H6: 8.02 (d, 4H, 3J = 5.0); H5: 7.83 (t, 4H, 3J = 7.5); H5′: 7.75 (t, 4H, 3J = 6.3); Hcc′: 7.70 (s,
8H); Haa′: 7.56 (d, 8H, 3J = 8.1); Hbb′: 7.45 (d, 8H, 3J = 8.2). HR-ESI-MS, positive (m/z):
found 619.3976, calc. 619.3959 for [C120H88N12

195Pt4]4+; found 874.1847, calc. 874.1828 for
[C120H88N12PF6

195Pt4]3+.

4. Conclusions

In conclusion, the tetranuclear complexes {[Pt(2,2′-bpy)]4(µ-terph)2(µ-4,4′-bpy)2}{PF6}4
(7), {[Pt(2,2′-bpy)]4(µ-terph)2(µ-dpbz)2}{PF6}4 (8), and {[Pt(2,2′-bpy)]4(µ-terph)2(µ-dpbph)2}
{PF6}4 (9) were synthesized through a stepwise method and characterized by NMR and
HR-ESI mass spectrometry. The photophysical properties of these complexes were in-
vestigated both in the solid state and in various solvents. All complexes, (7)–(9), dis-
played solvent-dependent photophysical behavior, altering their emissions based on the
solvent, a phenomenon known as fluorosolvatochromism. Complex (8) demonstrated
a pronounced dependence of the emission λmax on the polarity [31] of several solvents
used, DMSO ≈ DMF ≈ CH3CN > Acetone > CH2Cl2 > CHCl3 > EA ≈ DE, following the
general trend of increasing λmax by the increase in solvent polarity.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/inorganics12050132/s1: Figure S1: 1HNMR of complex [Pt(COD)Cl]2
(µ-terph) (1) in CD2Cl2 in 500 MHz 298 K. Figure S2: Aromatic region of 1HNMR of complex [Pt(2,2′-
bpy)Cl]2(µ-terph) (2) in CD2Cl2 in 500 MHz 298 K. Figure S3: Aromatic region of 1H-1H COSY
spectrum of complex [Pt(2,2′-bpy)Cl]2(µ-terph) (2) in CD2Cl2 in 500 MHz 298 K with assignment cross-
peaks. Figure S4: Aromatic region of 1H-1H ROESY spectrum of complex (2) in CD2Cl2 in 500 MHz
298 K with assignment cross-peaks. Figure S5: HR-ESI MS spectrum of complex [Pt(2,2′-bpy)Cl]2(µ-
terph) (2). Figure S6: HR-ESI MS spectrum of complex {[Pt(2,2′-bpy)(CH3CN)]2(µ-terph)}(NO3)2 (3).
Figure S7: Aromatic region of 1H-1H COSY (a) and 1H-1H TOCSY (b) spectra of complex {[Pt(2,2′-
bpy)(CH3CN)]2(µ-terph)}(NO3)2 (3) in DMSO-d6 in 500 MHz 298 K with assignment cross-peaks.
Figure S8: Aromatic region of 1H-1H COSY (a) and 1H-1H TOCSY(b) spectra of complex {[Pt(2,2′-
bpy)]4(µ-terph)2(µ-(4,4′-bpy)2}{PF6}4 (7) in DMSO-d6 in 500 MHz 298 K with assignment cross-peaks.
Figure S9: Aromatic region of 1H-1H ROESY spectra of complexes (8) (a) and (9) (b) in DMSO-d6 at
298 K in 500 MHz with assignment at inter-ligand cross-peaks.
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