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Abstract: Improper mechanical stress may induce side effects during orthodontic treatment. If the
roots and alveolar bones are extensively resorbed following excess mechanical stress, unplanned
tooth mobility and inflammation can occur. Although multiple factors are believed to contribute
to the development of side effects, the cause is still unknown. Sonic hedgehog (Shh), one of the
hedgehog signals significantly associated with cell growth and cancer development, promotes
osteoclast formation in the jawbone. Shh may be associated with root and bone resorptions during
orthodontic treatment. In this study, we investigated the relationships between Shh, RANKL, and IL-6
in human periodontal ligament (hPDL) cells exposed to improper mechanical force. Weights were
placed on hPDL cells and human gingival fibroblasts (HGFs) for an optimal orthodontic force group
(1.0 g/cm2) and a heavy orthodontic force group (4.0 g/cm2). A group with no orthodontic force was
used as a control group. Real-time PCR, SDS-PAGE, and Western blotting were performed to examine
the effects of orthodontic forces on the expression of Shh, RANKL, and IL-6 at 2, 4, 6, 8, 12, and 24 h
after the addition of pressure. The protein expression of Shh was not clearly induced by orthodontic
forces of 1.0 and 4.0 g/cm2 compared with the control in HGFs and hPDL cells. In contrast, RANKL
and IL-6 gene and protein expression was significantly induced by 1.0 and 4.0 g/cm2 in hPDL cells for
forces lasting 6~24 h. However, neither protein was expressed in HGFs. RANKL and IL-6 expressions
in response to orthodontic forces and in the control were clearly inhibited by Shh inhibitor RU-SKI 43.
Shh did not directly link to RANKL and IL-6 for root and bone resorptions by orthodontic force but
was associated with cell activities to be finally guided by the production of cytokines in hPDL cells.
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1. Introduction

The human periodontal ligament (hPDL) and the alveolar bone are parts of the pe-
riodontium, which is a complicated structure that supports a tooth. The alveolar bone
and periodontal tissues formed in conjunction with a tooth are linked to the root surface
by collagen fibers of the PDL [1,2]. Fibroblasts are the main cell type of the PDL, which
additionally includes epithelial cells and undifferentiated mesenchymal stem cells [3]. PDL
cells have been extensively studied in vitro for their differentiation into osteoblast-like cells
and their supportive role in osteoclastogenesis. These cells can contribute to both osteoge-
nesis and osteoclastogenesis [4]. Human PDL cells have the characteristic phenotype of
osteoblast-like cells [5] and can initiate mineral-like nodules in vitro [6]. PDL fibroblasts
(PDLFs) can attract osteoclast and odontoblast precursor cells, and these cells move to the
bone and root surfaces and can cause bone and root resorption [7–9].

Orthodontic tooth movement (OTM) by orthodontic forces is based on the principle
that a tooth moves into a bone. Excess mechanical stress may induce side effects during
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orthodontic treatment. If the roots and alveolar bones are extensively resorbed following
excess mechanical stress, unplanned tooth mobility and inflammation can occur. Although
multiple factors are thought to contribute to the development of side effects, the cause is
still unknown.

The palmitoylation of the hedgehog (Hh) family of morphogens, named sonic hedge-
hog (Shh), desert hedgehog (Dhh), and Indian hedgehog (Ihh), is important for effective
short-range and long-distance signal transmission. Hedgehog acyltransferase (Hhat) links
palmitic acid molecules to Hh. Therefore, the variation in Hhat causes the expansion of the
phenotype. Hh are members of the secretion signal transmission protein family mediating
growth and pattern formation during embryo generation [10,11]. These proteins function as
morphogens and form a signal transmission incline for long-distance and short-range inter-
action [12]. This phenomenon is developed by differentiation of intestinal epithelium cells,
and Ihh and Shh send a signal to a patched (PTCH) receptor. The active form for the Hh
ligand reduces the inhibition effect on the G-protein-coupled receptor Smoothened (SMO)
when interacting with PTCH and activates the zinc finger glioma-associated oncogene
transcription factor (GLI). The Hh signal transmission derives the maturity of the osteoclast
indirectly and promotes bone resorption [13]. In another in vitro study, Shh upregulated
the Osx expression in the osteoblastic stock [14] and increased the production of osteoblasts,
and it raised the activity of the osteoclast indirectly. As a result, bone resorption increased,
and it was shown that bone strength decreased [13–15]. The extreme expression of Hh and
the Wnt/β- catenin signal transmission causes either ectopic ossification in insufficient
osteoplasty or soft tissue in frame-like osteoporosis.

The osteoblasts promote differentiation of the osteoclast by producing receptor activa-
tor nuclear factor κB (RANK) and interacting nuclear factor κB receptor activation factor
ligand (RANKL) on the surface of the osteoclast progenitor cell [16,17]. However, these cells
express osteoprotegerin (OPG), which is the decoy receptor of the RANKL. OPG inhibits
activation of NF-κB, which is a central and fast-acting transcription factor for differentiation
to the osteoclast in immune stimulation, and the precursor cell by binding to RANKL [18]. It
has been reported that cytokines, IL-6 in particular, affect the RANK-RANKL-OPG system
to promote differentiation of the osteoclast [16].

Mammalian Hh with the broadest expression pattern including developing nervous
system, limbs bud, skin, and the bowels has been studied in Shh. The Shh pathway plays
an important role in activation with differentiation of the osteoclast [19]. The Ihh signal
pathway is a development and an important adjustment factor of homeostasis [20], and
it is necessary to strengthen Ihh signal transmission to promote bone formation [21]. The
expression of Dhh is mainly found in the gonads and testes, and some expression is found in
peripheral nerves and the pancreas. Among Hhs, Shh may be associated with root and bone
resorptions in the development of side effects during orthodontic treatment. However, the
relationships Shh has with the production of IL-6 and RANKL, which are involved in root
resorption and bone resorption, have not been clearly demonstrated in previous studies. In
this study, we investigated the stress responses of PDLF cells and the relationships between
Shh, RANKL, and IL-6 in PDLFs exposed to weights corresponding to optimal and heavy
orthodontic forces in vitro. As a control, human periodontal gingival fibroblast (HGF),
which does not play a role in root resorption, was also used for the research of responses
to mechanical stresses. The relationships were indicated by changes in cell morphology,
cell activity, and expression of the RANKL and IL-6 genes and proteins. These results may
be helpful for clarification of the mechanisms involved in the development of side effects
caused by mechanical stress during orthodontic treatment. Therefore, it may be possible to
identify targets for the prevention of the side effects of orthodontic treatment.

2. Materials and Methods
2.1. Cell Culture and Application of Compression Force

We purchased cells of human PDLFs (Number: 2630, Lot: 22328, ScienCell Research
Laboratory, Carlsbad, CA, USA) and human periodontal gingival fibroblasts (HGFs, KF-
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4309, Kurabo, Osaka, Japan), as typical cells, which are isolated from human periodontal
tissue. A cells were used as an another PDLF. The A cells were collected from the roots of
premolars extracted from one young volunteer (21 years old) during course of orthodontic
treatment after obtaining informed consent from the donor, and the PDLFs were used
according to a protocol examined by the Ethical Review Board of Nihon University School
of Dentistry at Matsudo (EC 20-036). Human gingival epithelial Ca9-22 cells were also
obtained from the JCRB cell bank (RIKEN, Saitama, Japan) and used as a second control.
Second- to fifth-passage human PDL cells were seeded in duplicate into a Petri dish
(100-mm) and cultured to confluence prior to further experimental stimulation in α-MEM
containing 10% fetal bovine serum and 1% antibiotics (diluted from a stock solution
containing 10,000 U/mL of penicillin and 10,000 U/mL of streptomycin; Biochrom AG,
Berlin, Germany) at 37 ◦C in an atmosphere of 100% humidity, 95% air, and 5% CO2 [22].
The culture medium was changed to 1% FBS α-MEM with penicillin and streptomycin, and
a cover glass and weights were placed—for the optimal orthodontic force group (1.0 g/cm2)
and the heavy orthodontic force group (4.0 g/cm2)—on the top of the PDLF and HGF cell
layers for 2, 4, 6, 8, 12, and 24 h cultures [23,24]. A cover glass (0.052 g/cm2) was only
placed for the control of the weight, and a combination of no glass and no weight was also
used as a negative control. For clarification of the role played by Shh in the effect of weight
on the production of RANKL and IL-6, 10 mM of Shh inhibitor (RU-SKI 43, Med Chem
Express, Monmouth Junction, NJ, USA) was added in the culture of PDLFs with weight
and the controls [25]. RU-SKI 43 is a potent and selective hedgehog acyltransferase (Hhat)
inhibitor with an IC50 of 850 nM. RU-SKIs inhibit Shh palmitoylation in vitro [25]. RU-SKI
43 decreases proliferation and the Gli-1 activation of the cancer cells of the pancreas through
noncanonical signal transmission not dependent on Smoothened [26]. Therefore, RU-SKI 43
was selected among the inhibitors because RU-SKI 43 is an inhibitor of the sonic hedgehog
signal and inhibits the first signal of sonic hedgehog. After 24 h, 2.0 × 106 of CA9-22 cells,
1.6 × 106 of hPDLF cells, and 1 × 106 of A cells and HGF cells were propagated on the dish.

2.2. Measurement of Lactate Dehydrogenase (LDH)

LDH is widely used both in vivo and in vitro as a marker of cell death. The release
of LDH to a tissue culture nutrient medium exactly reflects in vitro cell survival rate. We
investigated the relationship between cell density and total LDH activity in cell culture
supernatant samples. LDH was measured by the Cytotoxicity LDH Assay kit-WST (Dojindo
Molecular Techbologies, Inc., Kumamoto, Japan).

2.3. Measurement of Cell Viability by MTT

Four ml of MTT (Sigma Chemical Co., Dorset, UK), 500 µg/mL in PBS were added
to HGF, PDLF, A cells, and Ca9-22 cells in each Petri dish at 24 h after incubation. The
cells were incubated for 3–4 h at 37 ◦C, under CO2. After 3–4 h, these cells turned a
purple color from the formal form of the cells. MTT was discarded, two mL of dimethyl
sulfoxide (Wako Pure Chemical Industries Ltd., Osaka, Japan) was added to each Petri
dish. The plate was wrapped using aluminum foil, left for 24 h at room temperature, and
then re-absorption of 492 nm was performed using a microplate absorbance meter (Corona
Electronic, Ibaraki, Japan).

2.4. SDS-PAGE and Western Blotting

At 6 h after culture start, culture supernatants were extracted as a 0~6 h sample and
fresh 10%FBS α-MEM were added, and the culture was continued. At 18 h after culture
re-start, culture supernatants were extracted as a 6~24 h sample. Therefore, the 0~6 h
sample included products from cell stimulation for 0~6 h. The 6~24 h sample included
products from cell stimulation for 6~24 h. Before electrophoretic analysis, these culture
supernatants were concentrated by a centrifugal filter (Amicon®Ultra-15, 50 kDa, Merk
Millipore Ltd., Burlington, MA, USA) with more than 50 kDa and diluted to 100 µg in
10 µL with an equal volume of SDS-PAGE buffer {0.06 M Tris-HCl (Amersham Pharmacia
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Biotech, Buckinghamshire, UK), pH 6.8 of the UK, 20% glycerol (Wako), 1% (w/v) SDS
(Wako), 1% 2-mercaptoethanol (2-ME, Merck kGaA, Darmstadt, Germany), and 0.0012% of
bromophenol blue (Wako)}. The SDS-PAGE sample was heated to 100 ◦C for 5 min before
it was loaded to a gel. The samples were then separated into 12.5% polyacrylamide gel
(e-PAGEL, ATTO Corp., Tokyo, Japan) in 0.025 M Tris-HCl, 192 mM glycine (Wako) and
0 or 0.1% (w/v) SDS. The separation by electrophoresis of the protein was carried out at
25 mA for 80 min. The staining of the gels was performed with Coomassie Brilliant Blue
(CBB, Wako).

After SDS-PAGE, the proteins in the gel were transferred to Immobilon PVDF mem-
branes (Millipore, Bedford, MA, USA), and the membrane were blocked with 2.0% skimmed
milk in TBST (50 mM Tris, 2.7 mM KCl, 0.138 M NaCl, 0.05% Tween 20, pH 7.6) for 1 h at
room temperature. The membranes were applied with anti-Shh antisera (Bioss Antibod-
ies, Woburn, MA, USA), anti-RANKL antisera (Bioss Antibodies), and anti-IL-6 antisera
(Protein Tech Group Inc., Rosemont, IL, USA) from rabbit in 1.0% skimmed milk/TBST
overnight at 4 ◦C. After washing with TBST, HRP-labeled anti-goat secondary antibodies
to rabbit IgG (Merck kGaA) were also applied to react with the target proteins. Optical
emission responses to the target proteins were identified by chemiluminescence (ECL
Plus Western Blotting Substrate, Thermo Scientific, Southfield, MI, USA) and detected by
exposure to X-ray film (FUJI FILM, Kanagawa, Japan) for different times. Protein bands
were quantitatively measured by ImageJ, 1.53t (NIH, MD, USA). The measurement range
of brightness was set according to the area of each Shh, RANKL, or IL-6 band, and various
controls, weights, and time conditions were compared and examined.

2.5. Quantitative Measurement of RNAKL and IL-6

The productions of RNAKL and IL-6 in culture supernatants were detected by ELISA
kit (RANKL: Abcam, Cambridge, UK and IL-6; Wako).

2.6. Total RNA Extraction and Real-Time PCR

PDLF cells were collected following force loading. After incubation for various times,
total RNA was taken by an RNeasy Mini Kit (Qiagen, Hilden, Germany). Next, 0.5 µg
of total RNA was reverse-transcribed using the Prime ScriptTM RT Reagent Kit (TaKaRa
BioInc., Shiga, Japan) to obtain complementary DNA (cDNA).

Quantitative reverse transcription PCR (RT-qPCR) was performed using an ABI
QuantStudio 7 Flex (Applied Biosystems, Warrington, UK) using the Power SYBR Green
PCR master mix (Applied Biosystems), as previously described [27]. The expression levels
of the genes were measured by the relative quantitative comparative threshold cycling
method (∆∆CT). The two kinds of cycling conditions were as follows: initial denaturation
cycling conditions of 10 min at 95 ◦C, 40 cycles of 15 s at 95 ◦C, and 60 s at 60 ◦C for
the gene of Shh; and 5 min at 95 ◦C, 45 cycles of 10 s at 95 ◦C, and 20 s at 60 ◦C for the
genes of RANKL and IL-6. The expression levels were normalized to the GAPDH mRNA
(endogenous control). The primers used for qPCR are listed in Table 1.

Table 1. Primers of target genes.

Gene Forward (5′-3′) Reverse (5′-3′)

Shh GGACAGGCTGATGACTCAGA GCCCTCGTAGTGCAGAGACT

RANKL GCCTTTCAAGGAGCTGTGCAAAA GAGCAAAAGGCTGAGCTTCAAGC

IL-6 AGACAGCCACTCACCTCTTCAG TTCTGCCAGTGCCTCTTTGC

GAPDH GTCAGTGGTGGACCTGACCT TGCTGTAGCCAAATTCGTTG

2.7. Statistical Analysis

Statistical analyses were performed using Statistical Package for Social Sciences (SPSS)
statistics 24 (IBM Corporation, Armonk, NY, USA). The results are presented as the mean
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and standard deviation (SD). The statistical significance of differences between the negative
control (no glass and no weigh), the control (glass only), and the 1.0 g/cm2 and 4.0 g/cm2

groups was determined in 2~24 h using one-way analysis of variance (ANOVA) and
Bonferroni (IBM SPSS statistics 24) tests. The statistical significance was set at p < 0.05.

3. Results
3.1. Effects of Orthodontic Force on the Cell Activities, Adherence, and Morphology

To clarify the effects of compressive force on the expression of Shh, RANKL, and IL-6
in HGF and PDLF, an optimal orthodontic force (1.0 g/cm2) and a strong orthodontic force
(4.0 g/cm2) were placed on the fibrosed layers of HGF and the PDLF cells and incubated
for 2, 4, 6, 8, 12, and 24 h. The heavy force may repress cell viability and increase the
mortality rate of hPDL [24]. First, we observed whether these compression forces damage
the cells. HGFs were slightly and strongly detached by 1.0 g/cm2 and 4.0 g/cm2 weights
after 24 h of culture, respectively (Figure 1A). In particular, cells were widely removed
from the surface of the Petri dish and principally around the center at 24 h. The PDLF cells
were largely detached by 1.0 g/cm2 and 4.0 g/cm2 weights in various places and the areas
of the detached cells were fused at 24 h of culture (Figure 1B). The levels of the detached
areas were larger in the 4.0 g/cm2 weight group than in the 1.0 g/cm2 group. There were
no detached cells at 2–12 h in all conditions after culture in either cell line. Therefore,
the weight and the pressure time were associated with the removal of the HGF and the
PDLF cell fibrosed layers on the surface of the Petri dishes. However, both cell types were
not detached by controls (glass only weight and no glass and no weight) (Figure 1A,B).
Next, to confirm whether cell morphology was associated with the detachment of cells
by weights, we observed PDLFs using an optical microscope after 24 h culture. The cells
attached to the Petri dish in the form of fibers, but we confirmed that the number of
white round cells appeared to be dependent on the weight (Figure 2A–C). The number
of white round cells was significantly higher when a 4.0 g/cm2 weight was placed on
the cells than when a 1.0 g/cm2 weight was placed on the cells. The number of white
round cells increased, and this change might be the trigger for the detachment of the cells
(Supplemental Figures S1 and S2). Therefore, the detachment of the cells is not only due to
the physical force when removing the glass but also because the cell shape changes from
fibrous to spherical due to the weight. The change in cell morphology may be associated
with cell damage induced by the pressure. To confirm whether the detached cells are living
or dead cells, we recultured the detached cells in fresh 10%FBS α-MEM on a Petri dish. The
cells removed from the 1.0 g/cm2 and 4.0 g/cm2 groups were largely reattached, increased,
and showed a fibrous form on the Petri dish (Figure 3). This finding indicates that the
detached cells were not dead. LDH, which is released when the cell membrane ruptures
and the cells die, was measured in the culture supernatants from PDLF cultures placed with
the controls and the 1.0 g/cm2 and 4.0 g/cm2 groups. LDH was not significantly produced
in any of the cultures (Figure 4). Total RNA, as an indicator of the activity of the cells, was
measured in the cells. However, total RNA was not found in the cells detached from the
PDLFs with 1.0 g/cm2 and 4.0 g/cm2 weights (Figure 5). Therefore, the removed cells are in
suspended animation and can be reverted to live cells when cultured in fresh medium. To
measure cell viability in conditions with weights, an MTT assay was performed in gingival
fibroblast (HGF), periodontal ligament fibroblasts (PDLFs and A cells), and epithelial cells
(Ca9-22) at 24 h. Viability was significantly decreased by cover glass only (C) compared
with NC in all cells, and decreased further still by placement of a 1.0 g/cm2 weight on
the cover glass in Ca9-22 and by placement of a 4.0 g/cm2 weight in HGF, PDLF, A cells,
and Ca9-22 cells (Supplemental Figure S3). Cell activity was significantly decreased by
mechanical stress, including by a light weight such as the glass plate. The decreased levels
compared with C were higher for the 4.0 g/cm2 weight than the 1.0 g/cm2 weight, and
between C and the 4.0 g/cm2 weight were higher in HGF and Ca9-22 than PDLF and A
cells. Cells removed after 24 h of culture with the 4.0 g/cm2 weight were slightly stained by
MTT in Ca9-22 and HGF but not in PDLF and A cells. Therefore, the live cells were slightly
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removed by the weights in Ca9-22 and HGF. In contrast, the active cells remained after 24 h
in PDLF and A cells with the 4.0 g/cm2 weight. To confirm the viabilities of white round
cells stained by MTT in PDLF cells compressed by weights, the observation was performed
using a strong magnification (×200) for the microscope. White round cells both stained
and not stained by MTT were observed in the PDLF cells with the 1.0 g/cm2 and 4.0 g/cm2

weights but, white round cells that were not stained with MTT were not observed in the
control (Figure 6).
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Figure 1. Effects of compression force on the fibrosed layers of HGF and the PDLF cells. The optimal
orthodontic force (1.0 g/cm2, a and b) and the strong orthodontic force (4.0 g/cm2, c and d) were, in
duplicate, placed on HGF (A) and PDLF (B) confluent cells in Petri dishes. Glass was only used as a
control. No glass and no weights was also used as a negative control. After 24 h, the HGF and PDLF
cells were photographed and observed using a camera. The white area shows the cells that remained
and the black area shows the PDLF cells that were removed from the Petri dish. Representative data
from more than three independent experiments are presented in the form of pictures.
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Figure 2. Observation of white round cells under a compression force on the fibrosed layers of PDLF
cells. An optimal orthodontic force (1.0 g/cm2) and a strong orthodontic force (4.0 g/cm2) were
placed on PDLF-confluent cells in Petri dish. No glass and no weights was also used as a negative
control (NC). Glass was only placed as a control (C). After 24 h, the PDLF cells were observed and
pictures were taken using a microscope (A). Representative data from more than three independent
experiments are presented in the pictures. White round cells in the HGF (B) and PDLF (C) cells were
counted in 2.16 × 1.6 mm2 pictures. The scale bar indicates 0.17 mm. At least five pictures were
taken in each experiment. The data indicate the mean ± SD of three independent experiments. The
asterisks indicate a significant difference at 24 h after the culture in the NC, C, 1.0 g/cm2 group, and
4.0 g/cm2 group (NC, C, and 1.0 g/cm2 vs. 4.0 g/cm2 group, *: p < 0.05, NC and C vs. 1.0 g/cm2,
**: p < 0.05).
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was added and the culture was continued. At 18 h after culture re-start, culture supernatants were 
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Figure 3. Observation of PDLF cells removed by compression force on the fibrosed layers of PDLF
cells. The optimal orthodontic force (1.0 g/cm2, c and d), the strong orthodontic force (4.0 g/cm2,
e and f), and control (glass only (a and b)) were placed on PDLF-confluent cells in a Petri dish. No
glass and no weights was also used as a negative control. After 24 h, the PDLF cells were detached
when removing the glass and washing with fresh medium. The detached cells were re-incubated
on the Petri dish in fresh 10%FBS α-MEM. Some of the grown cells were attached and observed by
microscope. The scale bar indicates 0.07 mm. Representative data from more than three independent
experiments are presented in the pictures.
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Figure 4. Quantitative analysis of LDH in the culture supernatant of PDLF cells with 1.0 g/cm2 and
4.0 g/cm2 weights. The optimal orthodontic force (1.0 g/cm2, c and d) and the strong orthodontic
force (4.0 g/cm2, e, f and g) were placed on PDLF-confluent cells in Petri dishes. Glass only was used
as a control (a and b). No glass and no weight was also used as a negative control. At 6 h after the
start of the culture, culture supernatants were extracted as a 0~6 h sample and fresh 10%FBS α-MEM
was added and the culture was continued. At 18 h after culture re-start, culture supernatants were
extracted as a 6~24 h sample. The cells were lysed by lysis buffer and the lysed cells were used as a
positive control. LDH was measured in all samples. The data indicate the mean ± SD of triplicate
experiments. The independent experiments were performed three times, with similar results obtained
in each experiment.
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tions at various times in the 4.0 g/cm2 group (one way ANOVA analysis, *: p < 0.05). 

 
Figure 6. Observation of white round cells in PDLF cells stained by MTT. Cell viabilities were ob-
served using the MTT method. The optimal orthodontic force (1.0 g/cm2) and the strong orthodontic 
force (4.0 g/cm2) were placed on various cells in Petri dishes. The glass plate only was only used as 
a control. After 24 h, the cells were observed and pictures were taken using a microscope (×200 
magnification). White round cells stained (black arrow) and not stained (white arrow) by MTT were 
observed in PDLF cells under 1.0 g/cm2

 
and 4.0 g/cm2 weights. The scale bar indicates 0.04 mm. At 

least five pictures were taken in each experiment. Representative data from two independent exper-
iments were presented in the pictures. 

3.2. Effects of Orthodontic Force on the Expression of Shh, RANKL, and IL-6 from PDLF Cells 
In the HGF and PDLF cell cultures with 1.0 g/cm2 and 4.0 g/cm2 weights, we exam-

ined how Shh, RANKL, and IL-6 are produced by weight stimulation. To measure the 
protein production of Shh, RANKL, and IL-6, we performed Western blotting of the cul-
ture supernatant samples from the PDLF culture with no weight, control (glass only 
weight) and the 1.0 g/cm2 and 4.0 g/cm2 groups. The culture supernatant samples were 
concentrated to 50 kDa by filtration and prepared for SDS-PAGE and Western blotting. 
Moreover, the samples below 50 kDa that passed through the filter were used to compare 
to the more than 50 kDa sample in experiments. A protein band of around 150 kDa was 

Figure 5. RNA concentration at various times after culture in PDLF cells with weights. The optimal
orthodontic force (1.0 g/cm2) and the strong orthodontic force (4.0 g/cm2) were placed on PDLF-
confluent cells in Petri dishes. Glass only was used as a control. No glass and no weights was also
used as a negative control (NC). At 2, 4, 6, 8, 12, and 24 h after culture start, total RNA was extracted
from the attached PDLF cells and the removed cells at 24 h. The data indicate the mean ± SD of three
independent experiments. The asterisks indicate a significant difference between RNA concentrations
at various times in the 4.0 g/cm2 group (one way ANOVA analysis, *: p < 0.05).
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Figure 6. Observation of white round cells in PDLF cells stained by MTT. Cell viabilities were observed
using the MTT method. The optimal orthodontic force (1.0 g/cm2) and the strong orthodontic force
(4.0 g/cm2) were placed on various cells in Petri dishes. The glass plate only was only used as
a control. After 24 h, the cells were observed and pictures were taken using a microscope (×200
magnification). White round cells stained (black arrow) and not stained (white arrow) by MTT were
observed in PDLF cells under 1.0 g/cm2 and 4.0 g/cm2 weights. The scale bar indicates 0.04 mm.
At least five pictures were taken in each experiment. Representative data from two independent
experiments were presented in the pictures.

3.2. Effects of Orthodontic Force on the Expression of Shh, RANKL, and IL-6 from PDLF Cells

In the HGF and PDLF cell cultures with 1.0 g/cm2 and 4.0 g/cm2 weights, we exam-
ined how Shh, RANKL, and IL-6 are produced by weight stimulation. To measure the
protein production of Shh, RANKL, and IL-6, we performed Western blotting of the culture
supernatant samples from the PDLF culture with no weight, control (glass only weight) and
the 1.0 g/cm2 and 4.0 g/cm2 groups. The culture supernatant samples were concentrated
to 50 kDa by filtration and prepared for SDS-PAGE and Western blotting. Moreover, the
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samples below 50 kDa that passed through the filter were used to compare to the more than
50 kDa sample in experiments. A protein band of around 150 kDa was mainly detected
by anti-hedgehog antibodies in the 1.0 g/cm2 weight group and was similar to that in
the control (glass only) group in both cells (Figure 7). In contrast, the 150 kDa protein
band was poorly expressed in the 4.0 g/cm2 group, except for one protein band of PDLFs
at 6~24 h. In RANKL, approximately 80 kDa protein bands were mainly detected and
protein expression levels were not higher in the 1.0 and 4.0 g/cm2 weight groups than in
the control (glass only) weight group at 0~6 and 6~24 h after culture in HGF and at 0~6 h
in PDLFs (Figure 7). The expression of RANKL proteins was higher in the 1.0 g/cm2 and
4.0 g/cm2 groups than in the control (glass only) weight group at 6~24 h after culture in
PDLFs. For IL-6, approximately 10 kDa protein bands were mainly detected, and protein
expression levels were significantly higher in the 1.0 and 4.0 g/cm2 weight groups than
in the control (glass only) weight group at 6~24 h after culture in PDLF cells (Figure 7).
There were no positive bands in HGF and PDLF cells at 0~6 h, and in HGF at 6~24 h after
culture. Positive bands were not detected in the less than 50 kDa samples. To measure
the proteins quantitatively, the expression levels of these protein bands in Figure 7 were
analyzed by ImageJ. In HGF, there were no significant differences in any proteins in the
various conditions (Figure 8). In contrast, the protein bands of RANKLs were significantly
expressed in the 1.0 g/cm2 and 4.0 g/cm2 groups in the 6~24 h after culture samples. The
protein band of IL-6 was significantly expressed in the 1.0 g/cm2 group at 6~24 h after
culture. If the protein is expressed, the gene must also have previously been expressed.
To measure the gene expression of Shh, RANKL, and IL-6 in PDLFs, we collected total
RNA samples, and their concentrations were first measured in all conditions. The amounts
of total RNA significantly decreased in a time-dependent manner, and lower levels were
significantly detected at 12 and 24 h at the 4.0 g/cm2 weight (Figure 5). The amounts of
RNA also decreased in a time-dependent manner at the 1.0 g/cm2 weight, but the decease
was not significant. The amounts of RNA were not largely changed at 2~12 h and decreased
at 24 h, whereas there were no significant changes in the controls. Next, the gene expression
levels of Shh, RANKL, and IL-6 were quantitatively measured and compared between the
1.0 g/cm2 and 4.0 g/cm2 weight groups and the control (glass only) weight group. Data
are shown as relative quantity (RQ) to GAPDH of the control (glass only) weight group.
The gene expression of Shh was significantly lower at 2 h after incubation in the 4.0 g/cm2

group, increased and was significantly higher at 6 h, and then decreased at 8 h and was
significantly lower in the 1.0 g/cm2 and 4.0 g/cm2 weight groups than in the control (glass
only) weight group at 24 h after incubation (Figure 9A). The gene expression of RANKL
was higher at 2 and 4 h with no significant differences, decreased at 6 h, and was signif-
icantly higher at 24 h after incubation with the 4.0 g/cm2 weights than with the control
(glass only) group (Figure 9B). There was no significant difference in gene expression of
RANKL between the 1.0 g/cm2 weight and the control at 24 h after incubation. The gene
expression of IL-6 was higher at 2 and 4 h with no significant differences, decreased at
6 h, and was significantly higher at 24 h after incubation with the 4.0 g/cm2 weight than
with the 1.0 g/cm2 weight and the control (glass only) weight (Figure 9C). There were no
significant differences in the gene expression of IL-6 between the 1.0 g/cm2 weight and
the control.
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HGF and the PDLF cells under different weights. The optimal orthodontic force (1.0 g/cm2) and the 
strong orthodontic force (4.0 g/cm2) were, in duplicate, placed on HGF and PDLF-confluent cells in 
Petri dishes. Glass only was used as a control (C). No glass and no weights was also used as a neg-
ative control (NC). At 6 h after culture start, culture supernatants were extracted as a 0~6 h sample 
and fresh 10%FBS α-MEM was added and the culture was continued. At 18 h after culture re-start, 
culture supernatants were extracted as a 6~24 h sample. SDS-PAGE and Western blotting using an-
tibodies for Shh, RNAKL, and IL-6 were performed for the 0~6 h and 6~24 h samples, and positive 
bands were presented and compared each other. Representative data from more than three inde-
pendent experiments are presented in the pictures. 

Figure 7. Observation of protein bands for Shh, RANKL, and IL-6 in culture supernatants of the HGF
and the PDLF cells under different weights. The optimal orthodontic force (1.0 g/cm2) and the strong
orthodontic force (4.0 g/cm2) were, in duplicate, placed on HGF and PDLF-confluent cells in Petri
dishes. Glass only was used as a control (C). No glass and no weights was also used as a negative
control (NC). At 6 h after culture start, culture supernatants were extracted as a 0~6 h sample and
fresh 10%FBS α-MEM was added and the culture was continued. At 18 h after culture re-start, culture
supernatants were extracted as a 6~24 h sample. SDS-PAGE and Western blotting using antibodies
for Shh, RNAKL, and IL-6 were performed for the 0~6 h and 6~24 h samples, and positive bands
were presented and compared each other. Representative data from more than three independent
experiments are presented in the pictures.
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of the HGF (black bar) and the PDLF (white bar) cells under different weights. Protein bands in 
Figure 7 were quantitatively measured by ImageJ. Glass only was used as a control (C). No glass 
and no weights was also used as a negative control (NC). The results of brightness were expressed 
as the means ± SD of three independent experiments. The asterisks indicate a significant difference 
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Figure 8. Quantitative analysis of protein bands for Shh, RANKL, and IL-6 in culture supernatants
of the HGF (black bar) and the PDLF (white bar) cells under different weights. Protein bands in
Figure 7 were quantitatively measured by ImageJ. Glass only was used as a control (C). No glass and
no weights was also used as a negative control (NC). The results of brightness were expressed as
the means ± SD of three independent experiments. The asterisks indicate a significant difference in
brightness of the 1.0 g/cm2 group or the 4.0 g/cm2 group (vs. NC and C, *: p < 0.05).
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Figure 9. The gene expression of Shh, RANKL, and IL-6 at various times after culture in PDLF cells 
under different weights. The optimal orthodontic force (1.0 g/cm2) and the strong orthodontic force 
(4.0 g/cm2) were placed on PDLF-confluent cells in Petri dishes. Glass only was used as a control. 
After extraction of total RNA, real-time PCR was performed to detect the gene expression of Shh 
(A), RANKL (B), and IL-6 (C). The results are expressed as the means ± SD of three independent 
experiments. The asterisks indicate a significant difference among RNA concentration at various 
times (control vs. 1.0 g/cm2 or 4.0 g/cm2 group, *: p < 0.05, 1.0 g/cm2 vs. 4.0 g/cm2 group, **: p < 0.05). 

3.3. Effects of Shh on the Expression of RANKL and IL-6 from PDLF Cells 
To clarify the relationship between Shh and the protein production of RANKL and 

IL-6, we added RU-SKI 43, an inhibitor of Shh signaling, to the culture of PDLFs with and 
without weights, and SDS-PAGE and Western blotting were performed. RU-SKI 43 did 
not inhibit the production of Shh but equally inhibited the production of RANKL and IL-
6 in all conditions (Figure 10). The effects of RU-SKI 43 on the production of RANKL and 
IL-6 in the culture samples were quantitatively analyzed by ELISA. The inhibition by RU-
SKI 43 on IL-6 production was significantly confirmed, but not for RANKL because the 
concentration of RANKL was too low to detect the protein in ELISA (Figure 11). RANKL 
was largely expressed on the cell surface and the production levels were low. The inhibi-
tion was not specific to responses to the production of RANKL and IL-6 elevated with the 
1.0 g/ cm2 and 4.0 g/cm2 weights. 

Figure 9. Cont.
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Figure 9. The gene expression of Shh, RANKL, and IL-6 at various times after culture in PDLF
cells under different weights. The optimal orthodontic force (1.0 g/cm2) and the strong orthodontic
force (4.0 g/cm2) were placed on PDLF-confluent cells in Petri dishes. Glass only was used as a
control. After extraction of total RNA, real-time PCR was performed to detect the gene expression of
Shh (A), RANKL (B), and IL-6 (C). The results are expressed as the means ± SD of three independent
experiments. The asterisks indicate a significant difference among RNA concentration at various times
(control vs. 1.0 g/cm2 or 4.0 g/cm2 group, *: p < 0.05, 1.0 g/cm2 vs. 4.0 g/cm2 group, **: p < 0.05).

3.3. Effects of Shh on the Expression of RANKL and IL-6 from PDLF Cells

To clarify the relationship between Shh and the protein production of RANKL and
IL-6, we added RU-SKI 43, an inhibitor of Shh signaling, to the culture of PDLFs with and
without weights, and SDS-PAGE and Western blotting were performed. RU-SKI 43 did not
inhibit the production of Shh but equally inhibited the production of RANKL and IL-6 in all
conditions (Figure 10). The effects of RU-SKI 43 on the production of RANKL and IL-6 in
the culture samples were quantitatively analyzed by ELISA. The inhibition by RU-SKI 43 on
IL-6 production was significantly confirmed, but not for RANKL because the concentration
of RANKL was too low to detect the protein in ELISA (Figure 11). RANKL was largely
expressed on the cell surface and the production levels were low. The inhibition was not
specific to responses to the production of RANKL and IL-6 elevated with the 1.0 g/cm2

and 4.0 g/cm2 weights.
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of the PDLF cells under different weights. The optimal orthodontic force (1.0 g/cm2) and the strong
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orthodontic force (4.0 g/cm2) were placed on PDLF-confluent cells. The cultures were performed
with and without RU-SKI 43, an Shh signal inhibitor. Glass only was used as a control. At 6~24 h after
culture, culture supernatants were extracted, and SDS-PAGE and Western blotting using antibodies
to Shh, RNAKL, and IL-6 were performed in the 6~24 h samples. Positive bands were presented and
compared to each other. Representative data from more than three independent experiments are
presented in the pictures.
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Figure 11. Quantitative measurement of IL-6 in culture supernatants of the PDLF cells under different
weights. The optimal orthodontic force (1.0 g/cm2) and the strong orthodontic force (4.0 g/cm2)
were placed on PDLF-confluent cells. The culture samples with and without RU-SKI 43, an Shh
signal inhibitor, in Figure 10 were quantitatively measured by ELISA. Glass only was used as a
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4. Discussion

The various activities of cells in tissues are induced by light to heavy physiological
pressures during orthodontic treatments. PDLFs are responsible for mechanical stress [28].
The tissue reactions are dependent on the amount of biomechanical load; whereas, moderate
pressure is an integral part of periodontal tissue homeostasis, mechanical overload leads
to cell damage associated with an increase in the PDLF death rate and dysregulation of
bone remodeling [28–30]. According to various reports, the most favorable and efficient
static compression magnitude is 2.0 g/cm2 (0.5 g/cm2 to 4.0 g/cm2) [31]. One point
zero g/cm2 CF is within an optimal mechanical stress range for facilitating osteogenesis
in osteoblasts by increasing type I collagen, bone sialoprotein, and bone morphogenetic
protein expression levels; whereas, excessive mechanical stress (e.g., 4.0 g/cm2) attenuates
these processes [32,33]. In this study, 1.0 g/cm2 and 4.0 g/cm2 weights were placed as an
optimal orthodontic force and a strong orthodontic force on both PDLFs and HGFs with
reference to previous research [23,24], respectively. The 1.0 g/cm2 and 4.0 g/cm2 weights
did not lead to clear cell death and promoted suspended animation in PDLFs. In particular,
the 4.0 g/cm2 weights resulted in greater quantities of detached cells than the 1.0 g/cm2

weights in both types of cells. We considered that weight would cause damage regardless
of cell type. For the first 6 h after culture with weights in medium with 1% FBS, the effect
of weight was less likely to be observed as a result of the influence of nutrient-rich medium
with 10% FBS before the start of culture with weights.

Western blotting, a highly sensitive detection method using ECL Plus Western Blot-
ting Substrate (Thermo Scientific) and X-ray film, was used to detect target substances.
Production of soluble RANKL and IL-6 was clearly detected by Western blotting in the



Dent. J. 2024, 12, 108 15 of 19

PDLF culture supernatant samples with weights. However, the production of RANKL was
not measured due to the low production of soluble RANKL in the PDLF culture samples
with weights. ELISA is a high-sensitivity immunoassay but has the limitation that samples
need to fall within the range of the standard curve. Therefore, in these samples, Western
blotting was more effective in measuring RANKL than ELISA. In the 6~24 h culture with
weights, these cytokines were significantly expressed and produced compared to those
of the control (glass plate only) group. In another report, under compression, the mRNA
expression of IL-6 was upregulated in the first 24 h [23,24,34] and gradually decreased, with
no significant differences from controls in the latter 24 h [35]. Therefore, the responses to
sublethal stress depending on weight are common in PDLFs and involved in the production
of RANKL and IL-6 in confluent PDLFs cultured for 6~24 h.

In periodontal tissue, PDLFs attach cement to neighboring alveolar bones, and fibrous
connective tissue is involved in this process; 100s of collagen fibers, such as Sharpey’s
and oxytalan fibers, are included [36]. PDLFs react sensitively to mechanical stimulation
through interaction with the fiber-formed matrix [37–39]. In this study, HGFs, which were
used as a control, reacted to mechanical stimulation, but the reactivities to weights for the
production of RANKL and IL-6 were weaker than those of PDLFs. Therefore, the form,
behavior, and function of PDLFs are strongly influenced by the structure of neighboring
fibers and their location in PDLFs, including Sharpey’s or oxytalan fibers. The structure of
PDL fibers is sensitively altered in response to a mechanical force, in which the crosslinks
in collagen fibers and microfibrils are disrupted or condensed depending on compressive
or tensile force application [36,40]. When PDLFs were exposed to compressive force on
a tissue culture plate, some of the PDL collagen fibers showed a disrupted morphology.
PDLF cultures under compressive mechanical force preferably induced morphological
changes in cells and stimulated osteoclastic activity such as the production of RANKL and
IL-6 rather than osteogenic differentiation. Hypofunctional periodontium is one of the
major factors leading to dental root and bone resorption [8,9]. In this study, white round
cells might have been induced by weight as a result of changes in fibrous morphology
(Figure 12). White round cells are the shape of the cell when the PDLF is detached.

This shows the state in which fibroblasts return to their original form while floating
when they detach and lose their ability to bind to the surface layer due to the force of
physical weight. This may include cells with lost viability and cells having a high enough
activity to produce cytokines for the induction of osteoclast. We considered that pressures
such as those resulting from 1.0 g/cm2 and 4.0 g/cm2 weights would result in gene
expression and produce cytokines for the induction of osteoclasts in sublethal responses,
and, moreover, that the heavy force of a 4.0 g/cm2 weight might show more cell damage
than the optimal force of a 1.0 g/cm2 weight. Then, PDLFs might be employed for their
supportive role in osteoclastogenesis or odontoclastogenesis before induction in suspended
animation because the white round cells that remained after 24 h of culture with 4.0 g/cm2

weights were stained by MTT and included active PDLF cells.
Hh signaling regulates several cellular processes that are critical to bone develop-

ment [41]. The role of Hh signaling in regulating osteoclastogenesis is likely complicated
in various tissues [42]. Shh is a key signaling molecule in the morphogenesis of various
vertebrate organs, such as the limbs, the lower jaw, the heart tube, and the teeth [43–46].
Shh signaling has previously been shown to be involved in cell morphological changes
and cell motility via Rho pathway-dependent myosin phosphorylation [47,48]. Myosin-
dependent force generation not only increases Rac activity (the Rho family of GTPases) but
also specifically increases lamellipodia along the sides and tail to decrease polarity [49].
Mechanical forces trigger multiple signaling pathways and result in the activation of the
GTPase RhoA under the activity of integrins [50,51] (Figure 12). RhoA, a member of the
Rho family, has been widely implicated in mechanosensitive signaling pathways [52,53].
The Shh signal transduction pathway downstream of SMO is mainly mediated by the
activation of RhoA and is referred to as noncanonical type II signaling [54]. The RhoA
protein plays a regulatory role in cytoskeletal components and contributes to osteoclast
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adhesion, podosome positioning, and differentiation [55]. Osteoclasts and odontoclasts are
the most common mechanical sensors among these cells due to their structure and location
in the bone and tooth matrix. Osteoclasts have been shown to sense damage-associated
molecular patterns released by necrotic osteocytes [56]. Thus, mechanical loading RhoA-
associated bone or root loss might be a result of crosstalk between PDLF and osteoclasts
or odontoclasts.
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The gene expression of Shh was not significantly associated with the gene expression
of RANKL and IL-6 at time points after culture in PDLFs under weights. However, RU-SKI
43, which is an inhibitor of Shh signaling, inhibited the protein production of RANKL and
IL-6, but not Shh itself, regardless of weight. For NKX6-1, a transcription factor that plays
a critical role in pancreatic β cell function and proliferation, overexpression in LMS cells
treated with RU-SKI43 resulted in cell growth inhibition [57]. The inhibition of Hh signaling
in rats with arthritis using cyclopamine, another inhibitor of Shh, reduced the expression
of TNFα, IL-1β, and IL-6 [41]. Shh indirectly increased osteoclast activity, resulting in
increased bone resorption and decreased bone strength [11–13]. These reports support the
indirect contribution of Shh to the effects of weight in the production of cytokines. The
production of RANKL and IL-6 depending on weight might be mediated by RhoA in a
mechanically sensitive signaling pathway; however, Shh is associated with cell growth and
activity, ultimately guiding the production of cytokines in PDLFs.

Improper mechanical stress may induce morphological changes in PDLFs and the
production of RANKL and IL-6 for bone and root resorption during orthodontic treatment.
A heavy orthodontic force, such as the 4.0 g/cm2 weight, may cause more changes in
morphology and root resorptions as a side effect, and induce unplanned tooth mobility
and cause inflammation. However, Shh was not directly linked to signals for the weight-
dependent production of cytokines. The study of Shh signal-independent systems, such
as noncanonical type II signaling or the Shh signal transduction pathway downstream of
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SMO, is needed for the clarification of heavy weight-dependent cytokine production from
PDLFs and side effects during orthodontic treatment. It is clear which signaling effects
of noncanonical type II signaling or the Shh signal transduction pathway downstream of
SMO are activated in response to weights, and targets may be identified to prevent side
effects during orthodontic treatment.

5. Conclusions

PDLF cultures under compressive mechanical force preferably induced morphological
changes in cells and stimulated osteoclastic activity. Shh did not directly link with signals
for production of RANKL and IL-6 for root and bone resorptions by orthodontic force but
was associated with cell activities that were finally guided by the production of cytokines
in PDLFs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/dj12040108/s1, Figure S1: Observation of white round cells
and removed area. Figure S2: Observation of white round cells and removed area in different
magnifications. Figure S3: Observation of cell viability.
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