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Abstract: Nanoplastics, created by the fragmentation of larger plastic debris, are a serious pollutant
posing substantial environmental and health risks. Here, we developed a polystyrene nanoparticle
(PS-NP) exposure model during mice pregnancy to explore their effects on embryonic development.
We found that exposure to 30 nm PS-NPs during pregnancy resulted in reduced mice placental
weight and abnormal embryonic development. Subsequently, our transcriptomic dissection unveiled
differential expression in 102 genes under PS-NP exposure and the p38 MAPK pathway emerged as
being significantly altered in KEGG pathway mapping. Our findings also included a reduction in
the thickness of the trophoblastic layer in the placenta, diminished cell invasion capabilities, and an
over-abundance of immature red cells in the blood vessels of the mice. In addition, we validated our
findings through the human trophoblastic cell line, HTR-8/SVneo (HTR). PS-NPs induced a drop in
the vitality and migration capacities of HTR cells and suppressed the p38 MAPK signaling pathway.
This research highlights the embryotoxic effects of nanoplastics on mice, while the verification results
from the HTR cells suggest that there could also be certain impacts on the human trophoblast layer,
indicating a need for further exploration in this area.

Keywords: nanoplastics; exposure during pregnancy; placenta

1. Introduction

Nanoplastics are formed from the degradation of larger plastic debris, initially into
microplastics and eventually into nanoparticles that are less than 100 nm in size (Figure 1) [1,2].
This process is instigated by environmental factors such as ultraviolet radiation, oxygen,
and mechanical abrasion from waves and sand, and can be influenced by temperature and
certain microorganisms [3]. Over time, these factors gradually break down microplastics into
nanoplastics. The main types of nanoplastics include polymers such as polyethylene (PE),
polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC).

The pollution caused by nanoplastics is indeed severe and poses various environ-
mental and health issues. Due to their small size, nanoplastics have the ability to pervade
different environmental compartments, including water, air, and soil. Unfortunately, as
it stands currently, specific data on the global scale of nanoplastics pollution are limited.
This is largely because nanoplastics are difficult to detect, measure, and isolate, given how
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extremely small they are. Even the most cutting-edge scientific methods have difficulty
measuring nanoplastics accurately. However, to give a sense of the broader scale of plastic
pollution, a study estimated that 8.3 billion tons of plastic have been produced since the
1950s, and about 60% of that plastic has ended up in either a landfill or the natural envi-
ronment [4]. Meanwhile, the number of microplastic particles in our oceans is a massive
51 trillion [5]. While these figures do not provide a direct measure of nanoplastics, they
underscore the seriousness of the broader plastic pollution issue, and these plastics will
eventually break down into microplastics and nanoplastics in the environment, posing a
greater potential hazard to the environment [6].

Toxics 2024, 12, x FOR PEER REVIEW 2 of 15 
 

 

This is largely because nanoplastics are difficult to detect, measure, and isolate, given how 
extremely small they are. Even the most cutting-edge scientific methods have difficulty 
measuring nanoplastics accurately. However, to give a sense of the broader scale of plastic 
pollution, a study estimated that 8.3 billion tons of plastic have been produced since the 
1950s, and about 60% of that plastic has ended up in either a landfill or the natural envi-
ronment [4]. Meanwhile, the number of microplastic particles in our oceans is a massive 
51 trillion [5]. While these figures do not provide a direct measure of nanoplastics, they 
underscore the seriousness of the broader plastic pollution issue, and these plastics will 
eventually break down into microplastics and nanoplastics in the environment, posing a 
greater potential hazard to the environment [6]. 

 
Figure 1. The sources, formation, and impact pathways of microplastics and nanoplastics on living 
organisms. 

Microplastics and nanoplastics can easily enter the food chain as they can be ingested 
by small organisms and subsequently reach larger ones, potentially impacting wildlife 
and human health (Figure 1). A 2019 World Wildlife Fund report reveals that globally, 
each person ingests an average of 2000 microplastic particles weekly, weighing the same 
as a credit card [7]. Scientists have estimated the volume of microplastics inhaled by hu-
mans within a 24 h period to be approximately 272 particles, according to air samples 
taken from three apartments and a constructed human model [8]. However, nanoplastics 
originate from the degradation of plastic fragments, and it is estimated that the concen-
tration of these fragments is 1014 times higher than that of the microplastics currently 
found in the aquatic environment [9]. Nanoplastics enter the human body mainly through 
the respiratory tract, the digestive tract, and the skin, and they can produce toxic effects 
on the corresponding tissues and organs through particle internalization or migration. 
Nanoplastics have been reported to exert toxic effects on the digestive, neurological, res-
piratory, immune, and reproductive endocrine systems by physically damage, causing an 
imbalance in intestinal flora, altering enzyme activity, activating immune cells, inducing 
oxidative stress, and interfering with endogenous hormones [10,11]. In animal experi-
mental studies, it was found that exposure to nanoplastics can lead to thickening of mouse 
alveolar walls and pulmonary interstitial fibrosis, causing changes in lung structure [12]. 
Concurrently, they also cause liver damage, characterized by the infiltration of immune 
cells, hepatocyte vacuolization, nuclear shrinkage, and enlargement of hepatic sinusoidal 
spaces. The damage to the kidneys is primarily manifested in the form of renal tubule and 
glomerular atrophy accompanied by an inflammatory response. Exposure to nanoplastics 
also causes neurotoxicity in zebrafish, leading to abnormal behavior in zebrafish [13]. Na-
noplastics can also disrupt the composition and function of the zebrafish gut microbiota, 
accompanied by immune system dysfunction [14]. This disrupts the brain–gut axis, me-
diated by alterations in neurotransmitter metabolites. Moreover, nanoplastics can act as 

Figure 1. The sources, formation, and impact pathways of microplastics and nanoplastics on living
organisms.

Microplastics and nanoplastics can easily enter the food chain as they can be ingested
by small organisms and subsequently reach larger ones, potentially impacting wildlife and
human health (Figure 1). A 2019 World Wildlife Fund report reveals that globally, each
person ingests an average of 2000 microplastic particles weekly, weighing the same as a
credit card [7]. Scientists have estimated the volume of microplastics inhaled by humans
within a 24 h period to be approximately 272 particles, according to air samples taken from
three apartments and a constructed human model [8]. However, nanoplastics originate
from the degradation of plastic fragments, and it is estimated that the concentration of these
fragments is 1014 times higher than that of the microplastics currently found in the aquatic
environment [9]. Nanoplastics enter the human body mainly through the respiratory tract,
the digestive tract, and the skin, and they can produce toxic effects on the corresponding
tissues and organs through particle internalization or migration. Nanoplastics have been
reported to exert toxic effects on the digestive, neurological, respiratory, immune, and
reproductive endocrine systems by physically damage, causing an imbalance in intestinal
flora, altering enzyme activity, activating immune cells, inducing oxidative stress, and
interfering with endogenous hormones [10,11]. In animal experimental studies, it was
found that exposure to nanoplastics can lead to thickening of mouse alveolar walls and
pulmonary interstitial fibrosis, causing changes in lung structure [12]. Concurrently, they
also cause liver damage, characterized by the infiltration of immune cells, hepatocyte
vacuolization, nuclear shrinkage, and enlargement of hepatic sinusoidal spaces. The
damage to the kidneys is primarily manifested in the form of renal tubule and glomerular
atrophy accompanied by an inflammatory response. Exposure to nanoplastics also causes
neurotoxicity in zebrafish, leading to abnormal behavior in zebrafish [13]. Nanoplastics can
also disrupt the composition and function of the zebrafish gut microbiota, accompanied by
immune system dysfunction [14]. This disrupts the brain–gut axis, mediated by alterations
in neurotransmitter metabolites. Moreover, nanoplastics can act as carriers for other
pollutants, as they have a large surface area that can adsorb harmful substances such as
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heavy metals and persistent organic pollutants [15–17].When ingested by organisms, these
substances can be released and cause further harm.

Embryonic development is a crucial stage in an organism’s life, during which the
organism undergoes rapid growth and cell division. It is agreed upon in many scientific
studies that the embryo is often more sensitive to various environmental stressors, including
pollution, as compared to adults. Regarding nanoplastics, little is known about their specific
effects on embryonic development. However, given that nanoplastics can have harmful
effects on adult organisms [10], it is reasonable to hypothesize that embryos, being in a
more vulnerable and sensitive stage, might be even more adversely affected by nanoplastics
exposure. A few experimental studies on aquatic organisms have indicated that exposure
to nanoplastics during the embryonic stage could cause developmental abnormalities [18].
Polystyrene nanoplastic particles (PS-NPs) reduced nutrient accumulation and led to
inhibition of gonadal development in juvenile river prawns [19]. PS-NPs also induce
neurotoxicity (decreased spontaneous contraction frequency), cardiotoxicity (bradycardia),
and morphological changes in the eyes and head of zebrafish embryos, leading to impaired
embryonic development [20,21]. In addition, population studies have found higher levels
of nanoplastic particles in the chorionic tissue of patients, with unexplained recurrent
miscarriage (RM) relative to healthy individuals [22]. However, more research is needed to
conclusively determine the risks and understand how nanoplastics could affect embryos.

In this research, our primary objective was to unravel the potential toxicological
mechanisms of polystyrene nanoparticles (PS-NPs) on ICR mice during pregnancy and
human trophoblast cells. We constructed a model of PS-NP (30 nm) exposure during
pregnancy in mice to explore the effects and specific mechanisms of PS-NP exposure during
pregnancy on dams and offspring. Through this study, we aimed to validate our argument
that a certain concentration of small-sized PS-NPs is toxic to embryonic development and
to probe potential mechanisms responsible for this toxicity.

2. Materials and Methods
2.1. Nanoplastics and Characterization

Polystyrene nanoplastic particles (PS-NPs) were purchased from Rigor Science (Wuxi,
China), with a diameter of 30 nm and a mass percentage of 2.5 wt%. The TEM images
were obtained using a JEM-2000EX microscope (JEOL, Tokyo, Japan). The size and zeta
potential of PS-NPs were determined using a Zetasizer Nano (ZS90, Worcester, UK). Each
measurement was made three times at a controlled temperature of 25 ± 1 ◦C.

2.2. In Vivo Experiments
2.2.1. Modeling of PS-NP Exposure during Pregnancy in ICR Mice

The study was conducted using 8-week-old ICR mice of the Specific Pathogen Free
(SPF) category, provided by the Experimental Animal Center of Xuzhou Medical University,
with ethical approval granted by the Xuzhou Medical University Ethics Committee (Ethical
Approval Number: 202305T002). The ICR mice were kept in an SPF-grade animal room
with controlled temperature conditions (22 ± 2 ◦C), and subjected to alternating 12 h light
and dark cycles. They had unrestricted access to food and water. One week was allocated
prior to the experiment for the mice to adjust to their surroundings.

Female and male mice were co-housed in a 2:1 ratio and vaginal plug checks were
carried out each morning. The identification of a vaginal plug is a conventional sign
used in reproductive biology to designate that mating has occurred in mice. The day
a plug is observed is defined as gestational day 0.5 (GD0.5). The study used 30 nm
diameter PS-NPs and divided the pregnant mice (n = 20) randomly into four groups for the
experiment: control group (corn oil), low-dose group (0.1 mg/kg/d), medium-dose group
(1 mg/kg/d), and high-dose group (10 mg/kg/d), comprising 5 mice each. Following
pregnancy confirmation, gavage of PS-NP solution was conducted based on the body
weight of the pregnant mice, while also documenting their food and water intake. This
continued until GD18.5, when the pregnant mice were euthanized.
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2.2.2. Histopathology

Upon euthanizing the pregnant mice on GD18.5, organs such as the placenta and liver
were harvested for subsequent pathological examination. Using tweezers, the placenta
and fetuses were dissected, cleaned in physiological saline, weighed, and recorded. Five
placentas per group (one placenta corresponding to each fetus) were then placed in a 4%
paraformaldehyde solution to fix. After a process of gradient dehydration with ethanol,
embedding, and sectioning, Hematoxylin and Eosin (H&E) staining was performed. Under
the microscope, changes in the placental tissue pathology were observed.

2.2.3. Placental Transcriptome Sequencing

The placentas collected from both the control group and the PS-NP exposure group
were used for transcriptome sequencing (3:3); the specific steps were similar to those in
previous studies and are briefly described below [23,24]. The transcriptome profiling
protocol commenced with the isolation and purification of the total RNA from the pla-
cental tissues using TRIzol reagent (Invitrogen, Waltham, MA, USA) in accordance with
the manufacturer’s instructions. Subsequently, cDNA libraries were prepared for next-
generation sequencing using a NEBNext® Ultra™ RNA Library Prep Kit for Illumina®

(New England Biolabs, Ipswich, MA, USA) following the manufacturer’s recommenda-
tions, which subsequently generated extensive transcriptome data. The raw data were
initially processed through in-house Perl scripts and clean data were obtained. There-
after, all downstream analyses were based on clean data with high quality. Q20, Q30, and
GC contents of the raw data were calculated. We utilized the Majorbio Cloud Platform
(https://cloud.majorbio.com/ (accessed on 05 January 2024)) to analyze the aligned reads.
When the false discovery rate (FDR) < 0.01 and Fold Change ≥ 2, differentially expressed
genes (DEGs) were identified between the control and PS-NP-exposed placentas. Finally,
the classification and functional enrichment of the DEGs were analyzed using Kyoto Ency-
clopedia of Genes and Genomes (KEGG) databases and Gene Ontology (GO) databases.
Multiple testing corrections were made using FDR and only those pathways having an
adjusted p-value < 0.05 were considered to be significantly enriched.

2.3. In Vitro Experiments
2.3.1. Cell Sources and Cultures

HTR-8/SVneo cells, abbreviated as HTR, were used for cell experiments (bought from
HyCyte, Suzhou, China). HTR-8/SVneo cells were obtained by transfecting cells grown
from human early gestation placental villous explants with a gene encoding the simian
virus 40 large T antigen, and can be used to study trophoblast and placental biology [23,24].
The cells were cultured in RPMI-1640 Medium (P/S) (KeyGEN BioTECH, Nanjing, China)
with added PS-NP solution and 10% fetal bovine serum (ZETA, Spring House, PA, USA).
The concentrations of PS-NPs used were 0, 10, 20, 50, and 100 µg/mL.

2.3.2. Cell Proliferation Assays

Cell proliferation vitality was evaluated using a CCK8 assay. The seeding density
of HTR was 2.5 × 104 mL−1. After 24 h, PS-NPs were added to the culture medium for
another 24 h. As per the manufacturer’s instructions, a cell proliferation and cytotoxicity
kit-8 (CCK8) was used (Abbkine Scientific, Wuhan, China). After incubation for 2 h, cell
viability was determined under 450 nm absorbance with an enzyme-linked immunosorbent
assay to assess the cell proliferation rate.

2.3.3. Cell Migration Assay

The migration ability of HTR cells was evaluated using a cell scratch test. Fully grown
HTR cells were evenly inoculated into a six-well plate. After incubation for 24 h, once the
cells were fully merged, a scratch was made using a 20 µL sterile pipette tip. After washing
with warm PBS to remove floating cells, images were taken at the 0 h mark. The PBS was
then removed from the six-well plate, and PS-NPs were added to the fetal bovine serum

https://cloud.majorbio.com/


Toxics 2024, 12, 370 5 of 14

containing the culture medium. According to the standard of 2 mL per well, this was added
to the six-well plate for further cultivation. After 24 h, scratch images were taken at the
same location. The scratch area was then measured using ImageJ 1.53e software (Wayne
Rasband, Bethesda, MA, USA)

2.4. RNA Extraction and Reverse Transcription-Quantitative Polymerase Chain Reaction
(qRT-PCR)

Total RNA was extracted from cells and tissues using TRIzol reagent Vazyme BioTech
(Nanjing, China), following the manufacturer’s provided method. The total RNA was then
quantitated using the nanodrop 2000c system (Thermo Fisher Scientific, Waltham, MA,
USA). The RNA was then reverse transcribed into cDNA using HiScript II Q RT SuperMix
for qPCR (+gDNA wiper) Vazyme BioTech (China), and amplified with ChamQ SYBR
qPCR Master Mix (Applied Biosystems, Los Angeles, CA, USA) at a volume of 10 µL.
Real-time fluorescence quantitative PCR was carried out based on the ChamQ SYBR qPCR
Master Mix (Vazyme BioTech, China). The data were normalized using GAPDH. The
primer sequences can be seen in the Supplementary Material, Table S1.

2.5. Western Blotting

After treating the cells with PS-NPs at concentrations of 0, 10, 20, 50, and 100 µg/mL
for 24 h, the HTR cells were lysed with RIPA lysis buffer (Beyotime Biotechnology, Shanghai,
China) containing proteinase and phosphatase inhibitors (Beyotime Biotechnology, China).
Protein concentration was measured using a BCA reagent kit and proteins were denatured
by adding SDS and PBS and heating at 100 ◦C for 5 min. After gel electrophoresis, the
proteins were separated and transferred to a polyvinylidene fluoride (PVDF) membrane.
QuickBlock Western Blocking Solution (Beyotime Biotechnology, China) was used for
blocking for 20 min. After incubation with the primary antibody at 4 ◦C overnight, the
membranes were washed with TBST (Servicebio, Wuhan, China), and then subjected to
incubation with the secondary antibody for 1 h before being washed again with TBST.
Finally, the PVDF membranes were imaged using a Bio-Rad ChemiDocXRS+ (Bio-Rad,
Hercules, CA, USA). Protein band grayscale values on the images were calculated using
Image J.

2.6. Statistical Analysis

The data collected from this experiment were analyzed using SPSS 21.0 statistical
software. All data are represented as mean ± standard deviation. A test for homogeneity of
variance was first conducted, followed by the t-test, Mann–Whitney U test, and Friedman
test. Graph Pad Prism 5.0 was used for statistical plotting. A p-value below 0.05 indicates
a statistically significant difference. The mechanism figure was drawn using Figdraw 2.0
(ResearchHome, Hangzhou, China).

3. Results
3.1. Characteristics of PS-NPs

The transmission electron microscope results revealed that the original particle size of
PS-NPs was about 30 nm. They were in the form of spherical particles with good dispersion
(Supplementary Material, Figure S1A). The hydrodynamic diameter of the PS-NPs was
167.7 ± 0.22 nm, larger than their original particle size, indicating a slight agglomeration of
PS-NPs in water (Supplementary Material, Figure S1B). The zeta potential of the PS-NPs
was −23.0 ± 5.0 mV (Supplementary Material, Figure S1C). At the same time, the Polymer
Dispersion Index (PDI) of PS-NPs was less than 0.5, indicating good dispersion. These
results demonstrate that PS-NPs possess common nanoparticle characteristics and meet the
experimental requirements; thus, they could be used for subsequent experiments.
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3.2. Embryonic Developmental Toxicity of PS-NPs in ICR Mice

Compared with the control group, there was no significant change in the body weight
of pregnant mice fed with different doses of PS-NPs (Supplementary Material, Figure S2A).
The body weight changes among all four pregnant mice groups (from GD0.5 to GD18.5)
showed a steady increasing trend with no significant differences (Supplementary Material,
Figure S2B). In addition, there was no difference in food and water intake during the expo-
sure period between different dose groups and the control group (Supplementary Material,
Figure S2C,D).

Compared with the control group, both the placental weight and diameter in the
10 mg/kg/d group decreased, although the placental weight and diameter in the 1 mg/kg/d
group increased, and the differences were not statistically significant (Figures 2A,B and 3).
Meanwhile, the number of embryos in each exposure group showed no significant differences
compared to in the control group (Figure 2C). At the same time, the high-dose group showed
a significantly higher rate of fetal death and absorbed fetuses compared to the control group
(Figure 2D).
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By observing the morphological structures of the placenta via HE staining, it was
found that in the PS-NP exposure group, the nourishing layer of the placenta became
thinner, the invasion of nourishing cells was insufficient, and there was a large number
of immature red blood cells in the blood vessels (Figure 4). All these results suggest that
exposure to PS-NPs during pregnancy may lead to poor placental development, which
could further cause embryonic development obstacles.
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3.3. Screening of Differentially Expressed Genes in Placental Tissues Exposed to PS-NPs
during Pregnancy

In order to investigate the cause of placental underdevelopment due to PS-NP expo-
sure, we employed transcriptome sequencing to identify differentially expressed genes post-
PS-NP exposure in placental tissue. Gene expression differences were examined using DE-
Seq, setting the filtering criteria for differentially expressed genes as |log2FoldChange| > 2
and FDR < 0.05. The results revealed an upregulation of 39 genes and downregulation of
63 genes in the placental tissue post PS-NP exposure, giving a total of 102 differentially ex-
pressed genes. A volcano plot was used to illustrate the overall differential distribution and
aid in the selection of such genes (Figure 5A). Cluster analysis suggested that genes within
each sample with similar expression patterns clustered together, with distinct separation
between the two groups, indicating no layered confusion (Figure 5B).
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Red, blue, and black dots represent DEG upregulated, DEG downregulated, and no differentially
expressed genes, respectively. (B) Cluster analysis plot of mRNA differentially expressed genes.
(C) KEGG pathway enrichment analysis bubble plot. (D) KEGG pathway enrichment analysis bar
graph.

We performed a KEGG pathway enrichment analysis on genes linked with PS-NP
exposure using the KEGG database. Based on the results from the KEGG enrichment
analysis of the differentially expressed genes, we selected the top 10 most significantly
enriched pathways (those with the smallest p-value) (Figure 5C,D). The enrichment of
differentially expressed genes was most significant in the MAPK signaling pathway. The
downregulation of the MAPK signaling pathway is closely linked to embryonic growth and
development, suggesting that regulatory factors related to this pathway may be associated
with embryonic developmental delay induced by NP exposure. Further bioinformatics
results are available in the Supplementary Material, Figure S3. Subsequently, we selected
four genes, MAP2K6, Cacng4, Flt1, and Dtx3l, which showed differential expression in the
sequencing results, for qRT-PCR validation. The results were consistent with the sequencing
data (Supplementary Material, Figure S4).
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3.4. Effects of PS-NPs on Trophoblast Cells

To further corroborate the correlation between the impact of PS-NPs on placental func-
tion and trophoblast cells, we exposed HTR cells to PS-NPs. The CCK8 assays demonstrated
a significant reduction in HTR cells’ viability, with the high-dose group experiencing an
inhibition rate of up to 20% due to PS-NPs (Figure 6A). Moreover, an exposure to 100 µg/L
of PS-NPs detrimentally impacted HTR cells’ migration, as evidenced by the scratch tests
(Figure 6B,C).
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Figure 6. Exposure of PS-NPs inhibits HTR cell viability, migration, and invasion in vitro. (A) Twenty-
four-hour cell viability of HTR cells exposed to the indicated doses was determined by Cell Counting
Kit-8 assay. (B) Quantitative results of wound healing assay control and high-dose groups. (C) PS-NP
exposure reduces the migration distance of HTR cells. Scale bar = 100 µm. Data are presented as the
mean ± SD of three independent assays. * p < 0.05, **** p < 0.0001.

MAP2K6, a vital gene within the MAPK pathway, exhibited reduced expression levels
in placental tissues upon exposure to PS-NPs, as discovered through the transcriptome
sequencing and qRT-PCR results (Figure 7A). To pinpoint the mechanism underlying the
impact of PS-NP exposure on trophoblast cells’ proliferation and migration, we examined
the expression levels of MAP2K6. We determined that NP exposure led to diminished
mRNA and protein levels of MAP2K6 in the trophoblast cells (Figure 7B). In addition,
MAP2K6 is involved in p38 phosphorylation. Normally, an activated MAP2K6, or MKK6,
uniquely phosphorylates and activates p38 MAP kinase. The Western blot tests on HTR
cells indicated that NP infection reduced the expression of phosphorylated p38 protein, but
did not alter the overall p38 expression (Figure 7C).
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and p-p38 in HTR cells exposed to PS-NPs was analyzed by Western blot. Data are presented as the
mean ± SD of three independent assays. * p < 0.05, **** p < 0.0001.

4. Discussion

The widespread detection of nanoplastics has raised concerns about their exposure
risks to the environment and human health. In recent years, several studies have demon-
strated the toxicity of nanoplastics to mammals [25–29]. Nanoplastics can accumulate in the
liver, kidneys, and intestines of mice, causing disruption of energy and lipid metabolism
as well as oxidative stress [25]. Exposure to PS-NPs can induce gut microbiota dysbio-
sis, intestinal barrier dysfunction, and metabolic disorder in mice [27]. Moreover, it has
been discovered that exposure to PS-NPs during pregnancy and lactation can modify the
function, structure, and cellular makeup of the offspring’s neural stem cells. This leads to
neurophysiological and cognitive impairments. In male mice, this exposure also triggers
testicular dysgenesis, subsequently influencing their fertility [30,31]. However, studies on
the potential harmful effects of nanoplastic exposure during pregnancy on placental em-
bryos are still limited. Therefore, we established a pregnancy exposure model for PS-NPs in
ICR mice and screened for differentially expressed genes in placental tissue after exposure
to PS-NPs during pregnancy. In addition, we conducted corresponding verifications in the
human trophoblast cell line (HTR) and further explored its possible mechanisms.

In mice experiments, exposure to PS-NPs during pregnancy had little effect on the
weight, or food and water consumption, of the dams, and did not affect the survival rate
or gender ratio of their offspring, which is consistent with the research results of Luo and
others [32,33]. However, by weighing and measuring the diameter of the mother mouse’s
placenta and embryos, it was found that exposure to PS-NPs during pregnancy reduced
the diameter and weight of the placenta. At the same time, pathological sections of the
placenta showed that the trophoblastic layer of the treated group was thin, with insufficient
invasion of trophoblastic cells, and a large number of immature red cells in the blood
vessels. These results all indicate that PS-NPs may break the placental barrier and affect
the growth and development of the offspring, and these adverse effects may be related
to pathological changes in the placenta. Research indicates that microplastics have now
infiltrated the human placenta, with a detection rate as high as 100% in samples taken after
2021 [34]. Furthermore, exposure to PS-NPs can stimulate oxidative stress in placental
cells in vitro, increasing the production of ROS, inducing DNA damage, suppressing cell
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vitality, increasing cell apoptosis, and blocking the cell cycle, and the cytotoxicity of PS-NPs
is related to particle size and whether it carries a charge [35,36]. All of these results suggest
that exposure to PS-NPs during pregnancy adversely affects embryonic development.

Based on the impact of prenatal PS-NP exposure on the placenta, we further explored
the gene changes in the placenta after prenatal exposure to PS-NPs using RNA-seq tech-
nology. Results showed that a total of 102 genes in the placental tissue exhibited different
expression after prenatal exposure to PS-NPs, indicating that PS-NP treatment can induce
significant changes in the overall gene transcription profile of the placenta. Moreover,
KEGG enrichment analysis showed differences in the MAPK signaling pathway, bile se-
cretion, pancreatic secretion, Notch signaling pathway, gastric acid secretion, and thyroid
hormone synthesis, among which the MAPK signaling pathway was particularly notewor-
thy. Therefore, we targeted the p38 MAPK signaling pathway to explore the molecular
mechanism of PS-NPs’ toxicity.

In the p38 MAPK signaling pathway, MAP2K6 serves as a crucial regulatory switch
in the cellular response to cytokines and growth factors [37–39]. Once activated, MAP2K6
phosphorylates p38 MAPK, thereby activating p38. The active form of p38 can then transfer
these signals to the downstream targets, which then modulate various cellular activities
such as inflammation, cell proliferation, differentiation, and apoptosis. In essence, MAP2K6
serves as a molecular switch to relay the signals to the appropriate response points in the cell
when it receives a stimulus from cytokines and growth factors. It is this precise regulation
by MAP2K6 that ensures the cells react correctly to these external stimuli [37]. The potential
mechanism of the MAP2K6/p38 MAPK axis in cell growth, differentiation, apoptosis,
movement, and inflammation has garnered widespread attention. Multiple studies show
that a decline in the expression level of MAP2K6 can inhibit the phosphorylation of p38,
leading to a reduction in the level of phospho-p38 (p-p38), which in turn causes a reduction
in cell proliferation and migratory invasion capabilities. By using transfection to decrease
the level of MAP2K6 in human gastric cancer cells, the phosphorylation of p38 can be
inhibited, affecting autophagy in GC cells, inducing a G2 phase cell cycle block, and
suppressing cell proliferation and migration [40]. The use of MAP2K6 inhibitors can
suppress the growth of esophageal cancer cells both in vitro and in vivo [41]. Moreover,
the p38 protein plays a pivotal role in embryonic development by regulating the initial
differentiation of trophoblast cells and participating in the formation of the placental blood
vessels, to the extent that a significant deficiency in p38 phosphorylation can result in fetal
death within the uterus [42–44]. After exposure to PS-NPs, we found a decrease in the
expression of MAP2K6 in the placentas of pregnant ICR mice and a decrease in cell vitality
and migration ability in HTR cells. These results suggest that exposure to PS-NPs induces a
decrease in the expression of MAP2K6 in the placenta and trophoblastic cells, thus inhibiting
the phosphorylation of p38, and affecting the proliferation and migration of trophoblastic
cells, leading to inhibition of placental and embryonic growth. Therefore, PS-NPs may affect
placental embryonic growth and development by regulating the MAP2K6/p38 MAPK axis.

5. Conclusions

In conclusion, this study investigated the biological effects of PS-NPs on the embryos
in the placenta of pregnant mice and HTR cells. The findings suggest that exposure to
PS-NPs during pregnancy may not significantly affect the biological responses of the
dams, but can notably impact the growth and development of the mice placenta and
embryo. The harm inflicted on the placenta by PS-NPs mainly manifests as an inhibition of
trophoblast cell proliferation and migration, potentially achieved through the impediment
of p38 phosphorylation, regulated by MAP2K6 (Figure 8). This study provides a possible
molecular mechanism for understanding the potential embryonic developmental toxicity
induced by PS-NPs. The verification results from the HTR cells suggest that there could also
be certain impacts on the human trophoblast layer, indicating a need for further exploration
in this area.
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Activated Protein Kinase Kinase 6; p38, p38 mitogen-activated protein kinase; p-p38, Phospho-p38
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