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Abstract: 17β-Estradiol (E2) is a widely present trace pollutant in aquatic environments. However,
its impact on microbial communities in aerobic lake waters, which are crucial for methane (CH4)
production, remains unclear. This study conducted an E2 contamination experiment by constructing
laboratory-simulated aerobic microecosystems. Using 16S rRNA high-throughput sequencing, the
effects of E2 on bacterial and archaeal communities were systematically examined. Combined with
gas chromatography, the patterns and mechanisms of E2’s impact on CH4 emissions in aerobic aquatic
systems were uncovered for the first time. Generally, E2 contamination increased the randomness of
bacterial and archaeal community assemblies and weakened microbial interactions. Furthermore,
changes occurred in the composition and ecological functions of bacterial and archaeal communities
under E2 pollution. Specifically, two days after exposure to E2, the relative abundance of Proteobacteria
in the low-concentration (L) and high-concentration (H) groups decreased by 6.99% and 4.01%,
respectively, compared to the control group (C). Conversely, the relative abundance of Planctomycetota
was 1.81% and 1.60% higher in the L and H groups, respectively. E2 contamination led to an
increase in the relative abundance of the methanogenesis functional group and a decrease in that of
the methanotrophy functional group. These changes led to an increase in CH4 emissions. This study
comprehensively investigated the ecotoxicological effects of E2 pollution on microbial communities
in aerobic water bodies and filled the knowledge gap regarding aerobic methane production under
E2 contamination.

Keywords: aquatic pollutant; bacterial and archaeal community; aerobic methane production;
aquatic environment

1. Introduction

According to reports, 17β-Estradiol (E2) is considered one of the most potent natural
estrogens [1]. Its widespread presence in various aquatic environments has sparked global
concerns as it can have significant impacts on aquatic organisms and human health, even
at extremely low concentrations [2–5].

Current research has primarily focused on exploring the impacts of estrogens on
higher organisms, while comparatively less attention has been given to investigating
the ecotoxicological effects of estrogens on microorganisms. However, recent studies
have confirmed that E2 has significant impacts on microbial communities in various
environments. For instance, Chun et al. [6] conducted E2 contamination experiments
in laboratory soil, revealing that E2 can alter the soil microbial community, with effects
correlating with soil properties. Zhang et al. [7] suggested that E2 in soil may act as a
nutrient for microbes, thereby stimulating the growth of certain bacteria. In river water,
E2 concentrations ranging from 1 to 100 ng/L were found to significantly enhance the
growth of heterotrophic nitrifying bacteria [8]. Additionally, the growth characteristics of
Enterobacteriaceae were observed to change under E2 pollution [9]. However, information
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regarding the influence of E2 on microbial communities in aerobic lake waters remains
extremely limited.

Water microbial communities play a crucial role in driving elemental biogeochemical
cycles, facilitating the cycling of carbon, nitrogen, sulfur, phosphorus, and other essential
elements [10,11]. Lakes, due to their capacity for storage, transport, and transformation
of substantial carbon quantities [12], have emerged as focal points for carbon cycling
dynamics and greenhouse gas emissions. Despite covering less than 4% of the Earth’s
surface, lake ecosystems significantly contribute to methane (CH4) emissions, exerting
pivotal influences on the global carbon cycle [13]. CH4 is not only a primary component of
greenhouse gases but can also accumulate substantially in lakes, potentially leading to gas
eruptions that cause significant human and animal fatalities. For instance, Lake Kivu in
East Africa, known for its high CH4 content in deep, anoxic waters, is considered one of
the most dangerous freshwater lakes [14]. Traditionally, CH4 production in lakes has been
attributed primarily to methanogens in anaerobic environments. However, in recent years,
evidence has been accumulating regarding CH4 production in aerobic water bodies [15,16],
a phenomenon known as the “methane paradox”. Early studies on the “methane paradox”
primarily focused on marine environments, proposing various hypotheses based on mech-
anisms involving methanogenic microorganisms to explain CH4 supersaturation in the
presence of oxygen [17–19]. Recent research suggests that aerobic microbial conversion of
methylphosphonate (MPn) may be a significant contributor to CH4 production in marine
and freshwater environments [20–22], providing direct evidence for the existence of aer-
obic methanogenic microorganisms. Our previous studies showed that E2 significantly
influenced CH4 emission rates in both simulated natural and anaerobic systems, with its
effects being constrained by major environmental factors [23–25]. However, the influence
of E2 on CH4 emissions in aerobic lake waters remains unclear.

Based on these considerations, this study established aerobic simulated microecosys-
tems in the laboratory. Different concentrations of E2 were added to the systems to conduct
pollution experiments aiming to: (1) investigate the impact of E2 pollution on CH4 emis-
sions in aerobic lake waters; (2) assess the ecotoxicological effects of E2 pollution on
microbial communities in aerobic lake waters; and (3) elucidate the microbiological mecha-
nisms by which E2 affects CH4 emissions. These findings will provide a theoretical basis for
future water pollution control and aid in more accurately predicting and assessing methane
emissions in lake water bodies.

2. Materials and Methods
2.1. Experimental Design

The sediment and overlying water samples used in this study were obtained from
Longxu Lake in Anhui Province, China, an ecologically protected area where no estrogen
was detected. The sediment samples underwent a series of treatments including air-drying,
grinding, sieving (100 mesh), and homogenization. Methylphosphonic acid was added
to the water samples to achieve a final concentration of 1 mmol/L. Approximately 100 g
of treated sediment and 150 mL of treated overlying water were placed in 500 mL conical
flasks. Subsequently, these flasks were covered with membranes (air flux: 1020 m3/m2·h
at 0.01 MPa) with a pore size of 0.2–0.3 µm, ensuring system aeration while preventing
the introduction of external microbes. Nine laboratory-simulated aerobic microecosystems
were established using the described method and were placed in constant temperature
incubators at 30 ◦C, shielded from light, well-ventilated, and agitated at 100 rpm. After
three days, the gas emission rates of each system stabilized and exhibited uniformity; this
was followed by the initiation of E2 pollution treatment on the systems. Stock solutions
of E2 were prepared by dissolving E2 (99%, CAS 50-28-2, Thermo Scientific, Waltham,
MA, USA) in ethanol. Volumes of 30 µL of these stock solutions were added at different
concentrations to the systems to achieve final E2 concentrations of 0 ng/L (control group,
C), 100 ng/L (low-concentration group, L), and 10,000 ng/L (high-concentration group, H).
Each group consisted of three replicate samples.
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2.2. Sample Collection and Measurement

The date of E2 solution addition was designated as Day 0. Prior to E2 contamination,
gas and slurry–water mixture samples were collected once. Subsequently, gas samples
were collected every 24 h, and slurry–water mixture samples were collected every 48 h.
The specific collection method involved using a sterile syringe to puncture the septum and
collect 5 mL of headspace gas samples, followed by sealing the system for incubation. After
2.5 h of incubation, another 5 mL of headspace gas samples were collected using a sterile
syringe. Then, each system was thoroughly mixed, and 10 mL of slurry–water mixture
samples were collected and stored in a −80 ◦C freezer.

The experimental period lasted for 7 days. Gas samples collected daily were analyzed
for CH4 concentration using gas chromatography (GC-7890B, Agilent Technologies, Santa
Clara, CA, USA). A total of 36 slurry–water mixture samples collected on the 0th, 2nd, 4th,
and 6th days were subjected to high-throughput sequencing.

2.3. DNA Extraction, Amplification, and Sequencing

The DNA from the slurry–water mixture samples was extracted using the TGuide
S96 Magnetic Soil/Stool DNA Kit (Tiangen Biotech (Beijing) Co., Ltd., Beijing, China).
Subsequently, the DNA concentration of the samples was measured using the Qubit
dsDNA HS Assay Kit and Qubit 4.0 Fluorometer (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA). The V4-V5 region of the 16S rRNA gene was amplified in each
sample using the 515F primer (5′-GTGYCAGCMGCCGCGGTAA-3′) and the 926R primer
(5′-CCGYCAATTYMTTTRAGTTT-3′). Sequencing adapters were attached to the ends of
the primers for PCR amplification, and the resulting products underwent purification,
quantification, and normalization to create sequencing libraries. After passing quality
control assessment, the libraries were sequenced using Illumina Novaseq 6000 (Illumina,
Santiago, CA, USA). Additionally, raw data have been uploaded to the NCBI SRA database
(No. PRJNA1097048).

2.4. Bioinformatic Analysis

The raw reads obtained from sequencing were filtered using Trimmomatic (version
0.33). Primer sequences were identified and removed to obtain clean reads using Cutadapt
(version 1.9.1). Subsequently, the clean reads underwent feature classification using dada2,
resulting in the generation of amplicon sequence variants (ASVs) [26]. ASVs with relative
abundances of less than 0.005% were filtered out. Taxonomic annotation of the filtered
ASVs was conducted using the Naive Bayes classifier [27] based on the Silva.138 reference
database [28].

Alpha diversity indices of the samples were calculated using the QIIME2 software [27].
Beta diversity was evaluated through Principal Coordinates Analysis (PCoA) based on
the Bray–Curtis distance [29]. The relative importance of microbial community assembly
processes was determined using the iCAMP model [30]. Molecular Ecological Networks
(MENs) were established using Random Matrix Theory (RMT), and subsequent analy-
sis was carried out with the Molecular Ecological Network Analysis Pipeline (MENAP,
http://mem.rcees.ac.cn:8081 accessed on 1 May 2023) [31]. Gephi (version 0.9.2) was uti-
lized for visualizing all networks. Functional groups within the samples were predicted
using FAPROTAX [32], and the results were visualized with the R package pheatmap to
generate heat maps. Redundancy analysis (RDA) was conducted using vegan (version
2.3-0), with significance tested via Monte Carlo permutation tests (permu = 999).

2.5. Analysis of Methane Emission Rates

The specific formula for calculating CH4 emission rates is as follows:

v = ((c2 − c1) × Vh × 1/22.4 × 273/(273 + T) × P/101325)/(Vs × t), (1)

http://mem.rcees.ac.cn:8081


Toxics 2024, 12, 373 4 of 15

v: the CH4 emission rate (µmol·L−1·h−1);
c1: the CH4 volume concentration before sealing (ppm);
c2: the CH4 volume concentration after 2.5 h of sealing (ppm);
Vh: the headspace volume (mL);
T: the gas temperature (◦C);
P: the gas pressure (Pa);
Vs: the sample volume (mL);
t: the sealing time (h).

2.6. Statistical Analysis

Permutational Multivariate Analysis of Variance (PERMANOVA) was utilized to
examine disparities in microbial community structures among different groups. The
Student’s t-test was employed to assess the statistical significance of differences between
two samples. Differences were considered statistically significant if the p-value was less
than 0.05.

3. Results
3.1. The Impact of 17β-Estradiol Pollution on Methane Emission Patterns

The study tracked the changes in CH4 emission rates within each treatment group over
7 days post E2 pollution (Figure 1A). The results revealed differences in CH4 emission rates
among the groups only during the first 2 days, with the low-concentration group signifi-
cantly higher than the control group on day 2 (p = 0.0013). Subsequently, from days 3 to 7,
all groups showed a gradual decline in CH4 emissions without significant discrepancies. To
further investigate the inter-group disparities, an analysis of CH4 emission rate increments
was performed (Figure 1B). Within the first 2 days, fluctuations were observed in the rate
increments across all treatment groups. Notably, on day 1, both pollution groups had higher
rate increments compared to the control group, with particularly the low-concentration
group displaying a significant increase over the control group (p = 0.047). By days 3 to
7, CH4 emissions had stabilized in all groups, with rate increments approaching zero. In
conclusion, E2 was found to stimulate short-term CH4 production in aerobic water systems.
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Figure 1. Temporal changes in methane emission rate (A) and rate increment (B). The rate increment
is calculated by subtracting the previous day’s rate from the current day’s rate. C represents the
control group, L represents the low-concentration group, and H represents the high-concentration
group. The significance markers in Figure 1A and 1B represent the results of the Student’s t-test
comparing the C and L groups on day 2 and day 1, respectively.

3.2. Response of Bacterial and Archaeal Community Diversity to 17β-Estradiol Pollution

Sequencing of 36 samples yielded a total of 562 ASVs, classified into 25 phyla, 133 fam-
ilies, and 186 genera. Bacteria accounted for 82.55–99.54%, archaea for 0.04–8.94%, and
unassigned organisms for 0.42–17.29% of the community. The study treated bacterial and
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archaeal communities as a unified entity. Following E2 pollution, there were no significant
differences in Chao1 and Shannon indices of bacterial and archaeal communities among the
three treatment groups (Figure 2A,B). This indicates that E2 pollution did not significantly
impact the species richness and diversity of bacterial and archaeal communities within
the system.
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Figure 2. Chao1 (A) and Shannon (B) indices of bacterial and archaeal communities in each group
after E2 contamination. C represents the total of samples from the control group collected on days 2,
4, and 6; L represents the total of samples from the low-concentration group collected on days 2, 4,
and 6; H represents the total of samples from the high-concentration group collected on days 2, 4,
and 6. “ns” indicates no significant difference.

To evaluate the impact of E2 on bacterial and archaeal community structure, we
conducted Principal Coordinate Analysis (PCoA) on the community compositions of the
three treatment groups on different dates. The results showed no significant differences in
community structures among the three treatment groups on day 0 (Figure 3A), indicating
homogeneity before E2 pollution. However, on day 2, a significant difference emerged
between the control group and the two pollution groups (PERMANOVA, p = 0.0497)
(Figure 3B), suggesting a notable effect of E2. On days 4 and 6, the community structures
of all three groups were similar, showing no significant differences (Figure 3C,D). Overall,
these findings suggest that under aerobic conditions, the influence of E2 on bacterial and
archaeal communities may be transient.
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3.3. Exposure to 17β-Estradiol Alters Taxonomic Composition of Bacterial and
Archaeal Communities

Exposure to E2 significantly impacted the composition of bacterial and archaeal com-
munities. During E2 pollution, Proteobacteria (29.3–39.0%) and Bacteroidota (18.3–38.3%)
were dominant in all three treatment groups (Figure 4A). However, the relative abundance
of these dominant phyla gradually decreased over the incubation period. To compare the
differences in community compositions among the three groups, particular attention was
given to analyzing the second day, where significant differences in community structure
were observed. Analysis of variance (ANOVA) revealed that on day 2, three phyla among
the top ten in relative abundance showed significant differences among the groups. In
the two pollution groups, the relative abundance of Proteobacteria was lower than that
of the control group, especially with the low-concentration group showing a significant
decrease compared to the control group (Figure 4C). This suggests that the addition of E2
reduced the dominance of Proteobacteria. Furthermore, in the pollution groups, the relative
abundances of Planctomycetota and Bdellovibrionota were higher than those in the control
group, especially with Planctomycetota in the low-concentration group and Bdellovibrionota
in the high-concentration group showing significantly higher relative abundances than
in the control group. Therefore, E2 significantly increased the relative abundances of
Planctomycetota and Bdellovibrionota in aerobic water bodies.

At the genus level, Flavisolibacter was consistently the most abundant genus in both
the control group and low-concentration group throughout the experiment (12.1–27.3%,
15.8–26.5%), followed by Ideonella (7.9–11.0%, 5.2–9.2%) (Figure 4B). In the high-concentration
group, Flavisolibacter remained dominant in relative abundance (9.4–25.1%), but Ideonella
dropped to fourth and seventh place on day 4 and day 6, indicating a threat to the dom-
inance of Ideonella posed by high concentrations of E2. Particularly noteworthy is that
on day 2, Ideonella in the low-concentration group was significantly lower than in the
control group (Figure 4D), suggesting that even low concentrations of E2 reduced the
dominance of Ideonella. Additionally, in both pollution groups, Ellin6067, Bryobacter, and
Gemmata had higher relative abundances compared to the control group, with this differ-
ence being more pronounced in the high-concentration group (Figure 4D). Conversely,
Massilia and Novosphingobium had lower relative abundances in both pollution groups, with
a more significant decrease observed in the high-concentration group (Figure 4D). This
indicates that E2 significantly increased the relative abundances of Ellin6067, Bryobacter,
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and Gemmata while markedly decreasing those of Massilia and Novosphingobium, particu-
larly under high-concentration conditions. Furthermore, Pseudolabrys and Pajaroellobacter
showed no significant differences in relative abundance compared to the control group
in the low-concentration group but exhibited significantly higher relative abundances in
the high-concentration group (Figure 4D), indicating that E2 only promotes the growth of
Pseudolabrys and Pajaroellobacter at high concentrations.
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3.4. The Influence of 17β-Estradiol Pollution on Community Assembly

iCAMP was used to quantify the assembly of bacterial and archaeal communities after
adding E2 solution. The dominant process across all three treatment groups was drift (DR,
68.3–81.3%) in stochastic processes, followed by homogeneous selection (HoS, 11.4–18.4%)
in deterministic processes (Figure 5A). Consequently, the assembly of bacterial and archaeal
communities in all groups was primarily governed by stochastic processes. Nevertheless,
variations were observed among the ecological processes within the three treatment groups.
Specifically, in the low-concentration group, HoS was significantly lower compared to the
control group (Cohen’s d = 3.53, p = 0.0004), while DR was significantly higher (Cohen’s
d = −4.27, p = 0.002) (Figure 5B). Similarly, in the high-concentration group, HoS and
DR displayed comparable trends to the control group, although the differences were not
statistically significant. These findings suggest that E2 significantly impacts the principal
ecological processes of bacterial and archaeal communities within the system, leading to a
notable increase in the stochasticity of community assembly (Cohen’s d = −3.57, p = 0.0004)
(Figure 5B).
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from the control group collected on days 2, 4, and 6; L represents the total of samples from the
low-concentration group collected on days 2, 4, and 6; H represents the total of samples from the
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(|d| ≤ 0.2) effect sizes of E2 pollution based on Cohen’s d.
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3.5. Molecular Ecological Network Analysis

The impact of E2 on microbial interactions within bacterial and archaeal communities
was revealed through molecular ecological network analysis (MENs). The visualization
of networks before and after E2 pollution is shown in Figure 6, with specific network
properties detailed in Table S1. The node connectivity of the four networks conformed to a
power-law distribution (R2 = 0.89–0.95), indicating that these networks were all scale-free
networks. Additionally, with average path lengths ranging from 6.39 to 6.92 and close
approximation of the logarithm of the total number of nodes, the networks exhibited typical
small-world characteristics. Furthermore, all the networks demonstrated modularity values
between 0.774 and 0.804, significantly higher than those of corresponding random networks,
indicating the presence of modular features in the constructed networks.
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Compared to the initial state, the three treatment groups exhibited a significant in-
crease in network nodes and links following the addition of E2 solution, indicating an
enhancement in network complexity. This improvement may be attributed to ethanol acting
as a solvent, resulting in more nutrients being provided to bacteria and archaea, thereby
boosting microbial activity and diversity and, consequently, enhancing network complexity.
In contrast to the control group, the two pollution groups showed notably fewer links,
suggesting simpler network structures. Furthermore, both pollution groups had lower
average degree (avgK) and average clustering coefficient (avgCC) values than the control
group, indicating weaker node connectivity and reduced closeness and clustering among
nodes in pollution networks. These results suggest that E2 could reduce the complexity
and stability of bacterial and archaeal community networks in aerobic water bodies.

Based on the within-module connectivity (Zi) and among-module connectivity (Pi),
nodes are categorized into network hubs, module hubs, connectors, and peripherals [33].
The first three types are regarded as keystone taxa, playing a pivotal role in the system’s
resilience against external disturbances or species invasions [34]. Each network has distinct
connectors and module hubs (Figure S1). Before pollution, the network had three connec-
tors. Following E2 contamination, the control group showed four module hubs and three
connectors, the low-concentration group had four module hubs and eight connectors, and
the high-concentration group had four module hubs and four connectors. Therefore, the
introduction of E2 led to an increase in the number of keystone taxa within the network.
The specific classification of these keystone ASVs is detailed in Table S2. In the control
group, over half of the keystone ASVs belonged to Proteobacteria, indicating their potential
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importance as the predominant phylum in the system. However, in the low-concentration
group, only two keystone ASVs were from Proteobacteria, accounting for 16.7% of the total
keystone ASVs, while two keystone ASVs were identified as Planctomycetota, which were
absent among the keystone taxa in the control group. In the high-concentration group, 50%
of the keystone ASVs belonged to Planctomycetota. This suggests that with increasing E2
concentration, the interactions between Proteobacteria and other microorganisms gradually
weaken, while the significance of Planctomycetota in the network increases. At the family
level, both pollution groups had keystone ASVs belonging to Gemmatimonadaceae, Gemmat-
aceae, and Isosphaeraceae. However, in the control group, there were no keystone ASVs from
these three families. Therefore, the addition of E2 could enhance the interactions between
Gemmatimonadaceae, Gemmataceae, Isosphaeraceae, and other microorganisms.

3.6. The Influence of 17β-Estradiol Contamination on Ecological Functions

Functional predictions were conducted using Faprotax for bacterial and archaeal com-
munities on day 2. Out of 562 ASVs, 83 were assigned to at least one functional group.
The most abundant functional groups in all three treatment groups were chemoheterotro-
phy (26.3–28.5%), followed by aerobic_chemoheterotrophy (23.4–25.5%) and nitrate_reduction
(20.4–25.9%) (Figure 7). Significant variations in the relative abundances of major func-
tional groups were observed among the three treatment groups. Both pollution groups
exhibited higher levels of aerobic_chemoheterotrophy and chemoheterotrophy compared to
the control group, while nitrate_reduction was lower in the pollution groups (Figure S2).
Moreover, functional groups associated with methane production, such as methanogenesis,
methanogenesis_by_CO2_reduction_with_H2, and hydrogenotrophic_methanogenesis, were most
abundant in the high-concentration group, followed by the low-concentration group. The
methane oxidation functional group, methanotrophy, was enriched in the control group
(Figure S2). Hence, E2 has the potential to influence microbial carbon and nitrogen cycling
within the system.
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4. Discussion
4.1. Ecological Toxicological Effects of 17β-Estradiol on Bacterial and Archaeal Communities

Based on the findings, E2 has disrupted the original structure of bacterial and ar-
chaeal communities in aerobic water bodies. The molecular ecological network analysis
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revealed that both pollution groups exhibited lower links, avgK, and avgCC compared to
the control group. This indicates that the introduction of E2 weakened interactions among
microorganisms, impacting information flow and material cycling within the ecosystem,
and consequently, reducing ecosystem stability. Additionally, the iCAMP analysis demon-
strated a significant increase in the proportion of stochasticity in community assembly due
to E2 pollution, suggesting heightened uncertainty in the formation and evolution of micro-
bial community structures. This could be attributed to variations in species’ adaptability to
E2. The introduction of E2 decreased the dominance of the major phylum Proteobacteria,
providing additional resources and available space for other microorganisms, and thereby
amplifying the randomness in community assembly [35]. Overall, within aerobic water
bodies, E2 contamination led to microbial communities becoming more unpredictable
and unstable.

However, the impact is only effective in the short term. Beta diversity analysis revealed
significant differences in the bacterial and archaeal community structures of the three
treatment groups only on the second day after E2 contamination, with no notable variances
on the fourth and sixth days. This suggests that the influence of E2 contamination on the
structure of bacterial and archaeal communities is transient. Over time, the community
structure may gradually revert to its original state. This recovery capability could be
attributed to keystone taxa within the community [31]. The number of keystone taxa in the
pollution groups was notably higher than that in the control group, indicating that under
the pressure of E2 contamination, specific microbial taxa began to assume more critical
roles, exerting essential regulatory effects on maintaining the structure and function of the
entire community [36]. Notably, the significance of Planctomycetota in the network increased
gradually, with two family-level members, Gemmataceae and Isosphaeraceae, identified as
specific keystone taxa in the pollution groups. These bacterial families exhibit robust
hydrolytic potential, enabling them to utilize a broad spectrum of organic substances [37,38]
and potentially participate in E2 degradation. Therefore, Planctomycetota may exhibit higher
adaptability, enabling it to play a dominant role under E2 contamination and facilitate the
community’s recovery towards a relatively stable state by degrading E2.

Moreover, E2 contamination altered the composition of bacterial and archaeal com-
munities. Specifically, E2 significantly increased the relative abundance of Ellin6067 and
Bryobacter, with a more pronounced effect observed at higher concentrations. Additionally,
high concentrations of E2 notably stimulated the growth of Pseudolabrys. Bryobacter exhibits
chemoheterotrophic activity, enabling it to degrade organic compounds [39,40]. Research
by Liu et al. has indicated that Ellin6067 is capable of degrading organic pollutants [41]. Ad-
ditionally, Pseudolabrys demonstrates strong adaptability to extreme environments [42] and
possesses significant potential in removing nitrogen compounds, and degrading organic
pollutants like chlorinated alkanes, chlorinated alkenes and benzoic acid [43]. These find-
ings suggest that these three genera may participate in aerobic pathways for E2 degradation
in aquatic environments. Overall, following E2 contamination, the relative abundance of
bacteria associated with E2 degradation significantly increased, with a more pronounced
effect observed at higher E2 concentrations. This indicates that E2 may be degraded by
microorganisms as an organic pollutant in the system, thereby impacting bacterial and
archaeal community structures.

4.2. Mechanism of 17β-Estradiol in Promoting Methane Emission

Traditionally, CH4 production was attributed primarily to anaerobic methanogenic
archaea. However, evidence accumulated over the past three decades suggests that CH4
can also be generated in aerobic environments [15,16], a phenomenon termed the “methane
paradox”. The “methane paradox” has been extensively documented and is considered
to contribute significantly to the biogeochemical cycle of CH4 [44]. Currently, two main
perspectives prevail regarding CH4 production under aerobic conditions: (1) Methanogens
can survive in aerobic conditions by utilizing their self-synthesized antioxidant pathways,
leading to the production of CH4 [45,46]. (2) Certain bacteria and fungi can metabolize
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methylphosphonic acid under aerobic conditions, producing CH4 through demethylation
processes [20–22].

In the aerobic microecosystems, both the CH4 emission rate and the structure of the
bacterial and archaeal communities were significantly affected within two days after E2
pollution. Therefore, CH4 emissions may be influenced by changes in the composition of
bacterial and archaeal communities. This hypothesis was validated through Redundancy
analysis (RDA), as depicted in Figure S3. The Monte Carlo test results indicate that
both the CH4 emission rate and E2 concentration were significantly correlated with the
structure of bacterial and archaeal communities (p < 0.05) (Table S3). This suggests that
E2 has a noteworthy impact on the bacterial and archaeal communities, thereby affecting
CH4 production.

The functional prediction results suggest that E2 increased the relative abundance of
the methanogenesis functional group. The ASVs assigned to methanogenesis belonged to the
genus Methanoregula. Methanoregula are hydrogenotrophic methanogens whose growth
is inhibited even under low oxygen levels [47]. Additionally, studies have indicated that
small molecular heat shock proteins play a crucial role in tolerating oxidative stress. The
absence of these genes resulted in lower oxygen tolerance in Methanoregula [48]. Therefore,
the presence of Methanoregula in the system could be attributed to anaerobic microenvi-
ronments created by sediment facilitating their survival. The higher relative abundance of
the methanogenesis functional group in the pollution groups might suggest that E2 or its
metabolites promoted the growth of Methanoregula, thus enhancing CH4 production.

To investigate the correlation between bacteria and CH4 production in aerobic systems,
we utilized a heatmap to visualize the relationship between the relative abundance of the
top ten phyla and CH4 emission rates (Figure 4E). The results demonstrated a significant
positive correlation between Planctomycetota and CH4 emission rates. Methylphosphonic
acid could be utilized by microorganisms through various pathways, but only the C-P
cleavage pathway could release CH4 [49]. In Escherichia coli, the C-P cleavage pathway
was encoded by 14 genes (phnC-phnP) [50,51]. Zhi et al. [52] found that Planctomycetota
carried key genes involved in organic phosphonate metabolism, such as phnM and phnI.
Therefore, Planctomycetota might have the potential to produce CH4 from methylphosphonic
acid under aerobic conditions. The promoting effect of E2 pollution on the growth of
Planctomycetota contributed to increased CH4 production in the system.

The emission of CH4 is the result of the combined processes of CH4 production and
CH4 oxidation. The methanotrophy functional group, which is capable of consuming CH4,
was enriched in the control group, indicating that the addition of E2 reduced the relative
abundance of methanotrophic bacteria in the system, thereby decreasing CH4 consumption.
The ASVs assigned to methanotrophy all belonged to Proteobacteria, and Proteobacteria exhib-
ited a significant negative correlation with CH4 emission rates (Figure 4E). Additionally, E2
significantly decreased the dominance of Proteobacteria. Hence, the inhibitory effect of E2
on methanotrophic bacteria is also a key factor contributing to the higher CH4 emissions in
the pollution groups.

5. Conclusions

In conclusion, E2 contamination significantly disrupted the community structure of
bacteria and archaea in aerobic water bodies, leading to a reduction in microbial interac-
tions and a notable increase in the stochasticity of community assembly. This resulted
in heightened unpredictability and instability within the communities. Specifically, the
most dominant Proteobacteria phylum experienced a decline in its advantageous position
due to E2 pollution. Conversely, Planctomycetota demonstrated a strong adaptability to E2
contamination, as evidenced by a marked increase in relative abundance, and played a
crucial role in community recovery. At the genus level, there was a substantial rise in the
relative abundance of bacteria associated with E2 degradation, including Ellin6067, Bryobac-
ter, and Pseudolabrys. Furthermore, E2 contamination promoted CH4 emissions through
three pathways: stimulating the growth of Methanoregula in anaerobic microenvironments;
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boosting the abundance of Planctomycetota capable of utilizing methylphosphonate for
methane production; and inhibiting the growth of methanotrophic bacteria. This study
filled the theoretical gap between E2 metabolism and methane metabolism in aerobic waters
and contributed to enriching the ecotoxicological theory of E2.
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treatment groups on day 2; Figure S3: Redundancy analysis (RDA) of the correlation between ASVs
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empirical networks and random networks; Table S2: Taxonomic classification of keystone ASVs;
Table S3: Results of Monte Carlo permutation test.
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