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Abstract: Climate change is significantly altering precipitation patterns, leading to spatiotemporal
changes throughout the world. In particular, the increased frequency and intensity of extreme
weather events, leading to heavy rainfall, floods, and droughts, have been a cause of concern. A
comprehensive understanding of these changes in precipitation patterns on a regional scale is essential
to enhance resilience against the adverse effects of climate change. The present study, focused on the
state of Bihar in India, uses a long-term (1901–2020) gridded precipitation dataset to analyze the effect
of climate change. Change point detection tests divide the time series into two epochs: 1901–1960
and 1961–2020, with 1960 as the change point year. Modified Mann–Kendall (MMK) and Sen’s
slope estimator tests are used to identify trends in seasonal and annual time scales, while Centroidal
Day (CD) analysis is performed to determine changes in temporal patterns of rainfall. The results
show significant variability in seasonal rainfall, with the nature of pre-monsoon and post-monsoon
observed to have flipped in second epoch. The daily rainfall intensity during the monsoon season
has increased considerably, particularly in north Bihar, while the extreme rainfall has increased by
60.6 mm/day in the second epoch. The surface runoff increased by approximately 13.43% from
2001 to 2020. Further, 13 Global Climate Models (GCMs) evaluate future scenarios based on Shared
Socioeconomic Pathways (SSP) 370 and SSP585. The suitability analysis of these GCMs, based on
probability density function (PDF), monthly mean absolute error (MAE), root mean square error
(RMSE) and percentage bias (P-Bias), suggests that EC-Earth3-Veg-LR, MIROC6, and MPI-ESM1-2-LR
are the three best GCMs representative of rainfall in Bihar. A Bayesian model-averaged (BMA)
multi-model ensemble reflects the variability expected in the future with the least uncertainty. The
present study’s findings clarify the current state of variability, patterns and trends in precipitation,
while suggesting the most appropriate GCMs for better decision-making and preparedness.

Keywords: Bihar; climate change; global climate models; rainfall

1. Introduction

Rainfall is a crucial component of the Earth’s hydrological cycle, which describes
water’s continuous movement and transformation between the atmosphere, oceans, land,
and living organisms [1]. Alterations to rainfall patterns because of climate change can
significantly impact water resources, ecosystems, agriculture, and human societies [2,3].
Spatio-temporal variations in rainfall patterns can lead to changes in intensity, frequency,
and duration of precipitation [4], while further affecting stream flow patterns, soil moisture,
water availability, and increasing the risk of droughts and floods. In the Indian context,
various authors have reported spatiotemporal variations in precipitation patterns across
India [5,6]. The pre-monsoon rain has been reported to have increased, with the dry
spells having increased all over the country [7]. A negative or decreasing trend in annual
rainfall is observed [8], but the heavy rainfall days show a non-significant increase [9]. The
frequency of daily rainfall with an intensity greater than 150 mm/day has increased by
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about 75% [10,11]. An increase in the frequency of localized heavy precipitation has been
reported [11]. Interestingly, a weakening of the southwest monsoon [11–13] around the
1950s has also been observed, which can be attributed to the increase in global surface
temperature in two periods, namely 1910–1946 and 1976 onwards [14].

For the state of Bihar, a significant decreasing trend in annual and monsoon rainfall has
been reported in the post-1960 period, which is in contrast to the increasing trend observed
in the pre-1960 period [15–18]. The pre-monsoon rainfall also shifted in nature before and
after the reported change point of 1960 [10,15,17]. An increase in negative (drought-like)
events is evident, with 19 negative (0 positive) extreme events reported from 1957–2002,
compared to 5 negative (17 positive) events from 1901–1956. An increase in dry events may
prompt more drought events in the future [17], as the state lacks an efficient water resource
management plan for sustainable agriculture [19,20]. The monsoonal and annual dry days
range from 72–76 and 280–289, respectively, with a significant increasing trend observed in
the number of dry days across the state [15]. A significant increasing trend in pre-monsoon
rainfall and an increase in monsoonal rainfall intensity, especially over urban areas in Patna
district, has increased flood risk in cities [21]. An increase in annual rainfall and rainfall
intensity has been observed over the Kosi river catchment [22]. A significant decreasing
trend in total rainfall is seen for 1983–2016, which might amplify Bihar’s water-related
issues [18].

Analyzing the daily rainfall pattern reveals an increase in daily rainfall intensity
throughout the state [15,20], potentially raising the risk of floods, particularly urban floods,
and further impacting groundwater recharge negatively. Bihar is India’s worst state,
affected by the hydrological extremes of flood and drought. Densely populated districts
like Patna, Muzaffarpur and Bhagalpur have been classified as susceptible to very high
flood risk [23]. The Indian flood inventory [24] has recorded a total of 136 flood events in
Bihar. As per the flood archives, these floods have displaced more than 75 million people.
The years of 2007 and 2016 saw a record eight and nine different flood events, respectively.
These floods have led to massive loss of life, livestock, croplands, and property throughout
the state. Several authors [25–28] have reported extreme rainfall during the monsoon
season to be the primary cause of floods. Reports indicate that droughts primarily impact
the southern regions of Bihar, resulting in significant crop losses and frequently leading to
prolonged periods of low flow [29,30].

It is critical to understand and adjust to changing precipitation patterns for sustainable
water resource management, and to enhance communities’ capacity to become resilient
to extreme weather events [16], specifically in a state like Bihar, where hydrometeorolog-
ical extremes are on the rise. Cultivated lands heavily depend on rainfall, primarily the
southwest monsoon [31], with rain-fed agriculture significantly contributing to irrigation
in Bihar [32]. Erratic and low annual rainfall results in water deficits across all seasons in
South Bihar, heightening climate variability-induced vulnerability in the region [33]. The
variations in precipitation pattern in the area [26] have implications for cropping systems
in the state, especially the Kharif crops, as the magnitude and pattern of variation might
impact soil water storage, crop evaporation, surface runoff, crop water requirement, growth
periods and crop yield [20]. Climate change impacts and flood damage are responsible for
migration from north Bihar [34].

Hence, research on climate change and precipitation, and their subsequent impacts
assessed through Global Climate Models (GCMs), is imperative in predicting future climate
conditions and regional climate feedback, as well as informing policy and decision-making.
The latest Coupled Model Intercomparison Project (CMIP6) GCMs incorporate Shared
Socioeconomic Pathways (SSP) based on the Intergovernmental Panel on Climate Change
(IPCC) Sixth Assessment Report (AR6). Future projections using 20 GCMs from the CMIP5
framework predict a 0–25% increase in annual rainfall in central and east Bihar by the
end of the 21st century [35]. A significant increasing trend in rainfall is projected for the
state using the Representative Concentration Pathway (RCP) 2.6, RCP 6.0, and RCP 8.5
scenarios for the duration 2020–2059 [36]. The projected increase in rainfall, almost 12%
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by 2050, demonstrates strong spatial and temporal variations under RCP 4.5 and RCP
8.5 [20]. Variations in the rainfall pattern from 2011–2100 using four GCMs are anticipated
to affect cropland suitability for rice and wheat [37]. Analysis through three CMIP5 models
indicates a potential impact on drought conditions in the region [26]. However, there is
lack of existing studies for Bihar based on CMIP6 models to analyze precipitation. Further,
none of the studies have attempted to identify the statistically best-performing GCM for
the region.

We have undertaken this study because there is a dearth of thorough research on
rainfall analysis and CMIP6 models in the water-sensitive region of Bihar. The present
study has specific objectives. The first is to investigate the annual and seasonal rainfall
shifts and trends across the study area. Second, to identify changes in the spatiotem-
poral pattern of precipitation and the frequency and intensity of extreme events. Third,
to identify the three best GCMs for the region and assess the future scenario using a
multi-model ensemble.

The sections in this article are organized as follows, with the introduction outlining the
research gaps and the study’s objectives. The “Study area, Materials, and Methods” section
describes region of interest, the data, and the analysis involved. The results are presented
in the “Results” section, followed by the “Discussion” section. Finally, the concluding
statements are presented in the “Conclusions” section.

2. Study Area, Materials, and Methods
2.1. Study Area

Bihar, the 3rd most populous state in eastern India, with a population of over 120 million,
has been taken up as the area of interest (Figure 1). The state is divided into 37 districts
for administrative purposes. Bihar lies between 24◦37′58′′ N to 27◦33′86′′ N latitude and
between 83◦21′47′′ E to 88◦19′41′′ E longitude. The Ganges River bifurcates the landlocked
state, flowing from west to east. The states of Uttar Pradesh, West Bengal, and Jharkhand
are in the west, east, and south, respectively, and the country of Nepal is in the north,
which surrounds the state of Bihar. The state’s topography is relatively flat, with the
climatic conditions remaining hot and humid for most of the year, as the state falls in the
subtropical and temperate zone. The region has four seasons, namely the cold weather
season (December to February), hot weather season (March to May), southwest monsoon
(June to September), and retreating southwest monsoon (October to November). The state’s
economy is primarily agriculture-driven, with rice being the primary crop. Bihar is the
most flood-prone state in India [38], particularly in the northern parts, where the Kosi River
is infamously dubbed as the ‘Sorrow of Bihar’. In contrast, the southern parts of Bihar are
drought-prone [29]. The composite water index [19] depicts the state’s poorest performance
in achieving the sustainable development goals (SDGs) [39].

2.2. Precipitation Data

Global climate change significantly impacts precipitation, making it a crucial parameter
for analysis. The India Meteorological Department Gridded Precipitation (IMDGP) data
(0.25◦ × 0.25◦) at all the one hundred thirty-three grids in the study area, was obtained
(https://www.imdpune.gov.in (accessed on 1 March 2022)) for the years 1901–2020 [40].
The data was prepared by interpolating the rainfall data from 6955 stations across India [40];
hence, there is no missing value. Preprocessing is performed in the Python programming
environment to prepare a time series for each grid point. The trend tests were performed
using the Pymannkendall library. The topo-to-raster interpolation technique is used to
interpolate hydrologically correct raster surfaces from the results in ArcGIS 10.4.

https://www.imdpune.gov.in
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Figure 1. Geographical location of the study area along with color defined elevation levels and
major rivers.

2.3. Global Climate Models

Global climate models (GCMs) are an essential tool for analyzing scenario-based pre-
cipitation variability patterns, which is essential for planning water resource management,
agricultural practice, and flood risk assessment. Thirteen global climate models from the
latest Coupled Model Intercomparison Project Phase 6 (CMIP6) are used in the present
study (https://cds.climate.copernicus.eu (accessed on 21 December 2023)). The present
analysis utilizes the CMIP6s first ensemble member r1i1l1f1 and the historical, SSP370, and
SSP585 scenarios. The GCMs are chosen such that all the historical and future scenario
data are available for the study area. Information about the GCMs (model name and
spatial resolution) chosen for this study is provided in Table 1. The data from GCMs is
processed in a Python programming environment using the xarray library. This library is
robust in dealing with the Network Common Data Format (netCDF), which is essentially
multi-dimensional arrays commonly used as climate model output format. The GCMs are
checked for consistency with the Gregorian calendar to ensure that leap days are considered
during preprocessing.

https://cds.climate.copernicus.eu
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Table 1. Information about the GCMs used in the present study.

Sl. No. GCM Institution, Country Resolution

1 ACCESS-CM2 Australian Community Climate and Earth System Simulator, Australia 1.9◦ × 1.3◦

2 BCC-CSM2-MR Beijing Climate Center, China 1.1◦ × 1.1◦

3 CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.8◦ × 2.8◦

4 CNRM-CM6-1 National Centre for Meteorologic Research, France 1.4◦ × 1.4◦

5 EC-Earth3-Veg-LR Europe 0.7◦ × 0.7◦

6 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA 1.3◦ × 1.0◦

7 IITM-ESM Indian Institute of Tropical Meteorology 1.91◦ × 1.87◦

8 INM-CM4-8
Marchuk Institute of Numerical Mathematics, Russia

2.0◦ × 1.5◦

9 INM-CM5-0 2.0◦ × 1.5◦

10 MIROC6
The University of Tokyo, National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology, Japan 1.4◦ × 1.4◦

11 MPI-ESM1-2-LR Max Plank Institute, Germany 1.9◦ × 1.9◦

12 MRI-ESM2-0 Meteorological Research Institute, Japan 1.1◦ × 1.1◦

13 NorESM2-MM Norwegian Meteorological Institute, Norway 0.94◦ × 1.25◦

2.4. Shared Socioeconomic Pathways

The Shared Socioeconomic Pathways (SSP) [41]) have replaced the Representative
Concentration Pathways (RCP) scenarios within the CMIP6 framework. Unlike their prede-
cessors, the RCP, the SSP scenarios integrate socioeconomic factors into climate projections
and align with specific radiative forcing levels for 2100. The five SSPs provide distinct
narratives that span a wide range of possible future developments, with SSP1 assuming
a sustainable path and SSP5 assuming a world heavily reliant on fossil fuels and high
greenhouse gas emissions. In the present study, SSP370 and SSP585 have been considered
for analysis, which depict futures with less emphasis on environmental sustainability. The
scenarios are chosen as they represent the trajectory of developing countries like India,
which are in a phase of significant economic transformation and often rely on fossil fuels
for growth. SSP370 is a scenario of high challenges to mitigation and medium challenges to
adaptation, with a radiative forcing of 7.0 W/m2 by the end of the century. At the same
time, SSP585 represents a future with very high greenhouse gas emissions, characterized
by a heavy reliance on fossil fuels.

2.5. Methodology

The methods used in the study are presented in this section. Locally weighted scat-
terplot smoothing (LOWESS) was applied to the IMDGP dataset for the initial detection
of trends in the long-term dataset. A smooth curve is fitted through the dataset using
weighted regression in this method. Based on further change point detection tests, the time
series is split into two epochs, and the Modified Mann–Kendall trend test is performed
for trend analysis. Centroidal day analysis is performed to assess the temporal pattern of
rainfall, while multivariate clustering is performed to analyze spatiotemporal variations in
the region. All the GCMs are downscaled to the IMDGP spatial resolution (0.25◦ × 0.25◦)
using bilinear interpolation, which transforms all GCMs into finer data through interpola-
tion from the four adjoining grid points and compared using probability density function
(PDF) curves. The methods applied in this study are discussed further as follows.

2.5.1. Centroidal Day (CD)

Climate variations may cause a redistribution of rainfall throughout the year, resulting
in temporal shifts. CD (Equation (1)) investigates such temporal shifts in annual (CDann)
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and monsoonal (CDmon) rainfall. CD may be considered the mean day for the annual or
monsoonal rainfall over the entire year.

CD =
∑365

i=1 i × ri

∑365
i=1 ri

(1)

Here, ri is the daily rainfall on the ith day of the year or the monsoon season. CDs are
calculated starting from 1 January every year. Equation (2) gives the shift in CD.

Shift in CD= length of time series × slope of CD trendline (2)

2.5.2. Modified Mann–Kendall Trend Test and Sen’s Slope Estimator

Non-parametric approaches, namely Modified Mann–Kendall (MMK) and Sen’s slope
estimator, were carried out at a 5% significance level (α) to identify trends and slope in the
datasets. The Mann–Kendall (MK) test does not depend on the distribution of the dataset
while detecting monotonic trends. The test also has low sensitivity to abrupt changes
in inhomogeneous datasets. A positive (negative) value of the normalized test statistic
Zs indicates an increasing (decreasing) trend. The null hypothesis that no significant
trend exists in the dataset is rejected if |ZS| > 1.96. However, autocorrelated time series
datasets need to be corrected for autocorrelation [42] between the rank of the observations
ρk. The magnitude of the identified trend is estimated using the non-parametric method
of Sen’s slope estimator [43]. A detailed description of the equations is given in the
Supplementary Materials.

2.5.3. Extreme Event Analysis

The maximum rainfall values at all the IMDGP points for each year are computed for
extreme event analysis. The spatial average of these maximum values for a particular year
gives the average maximum rainfall for the two epochs. Let Rij be the rainfall at the ith grid
during the jth year. Then,

Mj = max
(

R1j, R2j, . . . , RNj
)

(3)

where Mj is the maximum rainfall recorded in the jth year across all the N grid points.
Hence, the average maximum yearly rainfall M and the overall maximum rainfall Mmax
for a total of Y years can be given by

M =
1
Y ∑Y

j=1 Mj (4)

Mmax = max(M1, M2, . . . , MY) (5)

2.5.4. Bayesian Model Averaging

A multi-model ensemble predicts future scenarios using Bayesian Model Averaging
(BMA). Root Mean Square Error (RMSE) and Percentage Bias (P-bias) are utilized as the
performance metrics for each GCM. The metrics are integrated into the BMA to calculate
weights for each model, reflecting their relative performance. The metrics are first nor-
malized for consistency (Equation (6)), then combined to create a combined performance
metric (Equation (7)) by taking the average of the normalized values of RMSE and P-bias
for each model.

Normalized Metrici =
1

Metrici − min(Metric) + 1
(6)

Combined Metrici =
Normalized RMSEi + Normalized P − biasi

2
(7)

The combined metric calculates the BMA weights (Equation (8)). The weight for each
model is computed by dividing its combined metric by the sum of the combined metrics
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for all the models. The weights are finally applied to each model to create the weighted
ensemble average for BMA (Equation (9)).

Weighti =
Combined Metrici

∑n
j=1 Combined Metricj

(8)

Ensemble BMA = ∑n
i=1 Weighti × Datai (9)

3. Results
3.1. Change Point Detection

Pettitt, SNHT, and Buishand range tests are carried out at a 5% significance level to
detect abrupt change points in the long-term rainfall time series at all the IMDGP points.
We took the year 1960 as the change point based on the results of these tests. LOWESS
curves for different seasons and their variation pre- and post-1960 are shown in Figure 2.
The results show marked shifts, especially during the pre-monsoon and post-monsoon
seasons, suggesting that the rainfall had no monotonous trend; instead, there was some
shift/change in the nature of the trend. Furthermore, the findings are in coherence with
other studies related to change points [11,17,18] for the study area. Based on the identified
change point, the time series is split into two epochs, first half (1901–1960) and the second
half (1961–2020) for further analysis.
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Figure 2. LOWESS curve on (a) annual rainfall, (b) monsoon rainfall, (c) pre-monsoon rainfall,
(d) post-monsoon rainfall, and (e) winter rainfall, with the horizontal dotted line representing the
year of change point.

3.2. Overview of Rainfall in the Two Epochs

Figures 3a and 3b, respectively, show the state’s annual and monsoonal spatial rain-
fall distribution. The northeastern parts of Bihar have the highest annual rainfall values
(>2000 mm), while the rest of the area experiences an average annual rainfall of 1250 mm.
Since monsoon months predominantly bring rainfall to the area, they also show a similar
spatial trend in rainfall. Regions with low mean annual and monsoonal rainfall (<1000 mm)
have expanded significantly in the second epoch, especially in the southwestern regions.
The variability of annual and monsoonal rainfall is determined by the coefficient of vari-
ation (CV) (Figure 3a,b). There is a stark contrast in the variability between the first and
second epochs, where the second epoch is predominated by higher values of CV that are
absent in the first epoch. The annual and monsoonal variability seems to have increased
by approximately 10% in all the districts in the second epoch. The districts of Patna,
Vaishali, Samastipur, Darbhanga, Muzaffarpur, Sitamarhi, and Madhubani show more than
40% variability.
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3.3. Shift in Annual and Monsoonal Rainfall

Figure 4 displays the annual (CDann) and the monsoonal (CDmon) shifts in rainfall.
The results show definite shifts in the CDann values in the second half. The total rainfall can
be assumed to have entered the state from the northeastern corner at around 201–203 days,
and then progressed westwards in the first half. However, in the second half, the CDann
values start at around 209–211 days, shifting on average by around 8–10 days. The nature
of annual rainfall has completely changed between the two epochs. The contours appear
to have increased values in the southward direction in the second half, as opposed to the
earlier westward direction. Given the similar nature of annual and monsoonal rainfall,
a correlation test between CDann and CDmon is carried out. The results show a stronger
correlation between the two in recent years, particularly in the southern parts of the state,
compared to the northern parts.
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3.4. Trends in Annual and Seasonal Rainfall

The MMK test assesses the spatio-temporal trends for the annual and seasonal rainfall,
and Figure 5 displays the percentage variability. Comparing the temporal variation in
rainfall pre– and post–1960, a 4.4% increase in variability is seen for annual rainfall for
the entire state. In total, 25 of the 37 districts in the state showed an increase in mean
annual rainfall variability as compared to 19 for the mean monsoon rainfall. A significant
decreasing trend is seen at 30 IMDGP points in the second epoch, compared to 51 in the
first. A similar trend is observed for the monsoon rainfall, where 59 IMDGP points have a
significant decreasing trend in the first epoch, compared to 31 in the second epoch. The
eastern part of the state shows positive variability compared to the western regions.

Interestingly, the absolute variability of monsoon rainfall of approximately 5% is less
than the annual average rainfall. In the second epoch, the pre-monsoon rainfall showed
a 58.6% increase in temporal variability, with all districts showing significant changes.
Notably, Khagaria and Munger have more than 100% variability. We observe a trend where
the variability shifts from negative in the first epoch to positive in the second. However,
all districts observe a change of –46.35% in the mean post-monsoon rainfall, indicating
the opposite trend in variability. The mean winter rainfall shows mixed variability across
all the districts. The northeastern corner of the state, occupied by the Kishanganj district,
exhibits the least variability in rainfalls.
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3.5. Trends in Extreme Rainfall Events and Rainfall Intensity

The MMK test is carried out to assess trends in the maximum one-day (1D), three-day
(3D) and five-day (5D) rainfall. The results show a significantly increasing trend at twenty-
three IMDGP points along the northeastern parts of the state, while the southwestern
part recorded a significantly decreasing trend at twenty-three IMDGP points. A similar
trend is observed for the 3D maximum rainfall. However, for the 5D maximum rainfall,
a significant decreasing trend is observed at fifty-one IMDGP points, almost 40% of the
total IMDGP points in the study area. The district of Bhagalpur, classified as prone to very
high flood risk, shows the maximum increase in 1D (24.73%), 3D (23.57%), and 5D (21.69%)
rainfall variability.

The annual and monsoonal daily mean rainfall intensity is computed because the ex-
treme rainfall analysis does not reveal changes in rainfall intensity. The total rainfall, when
divided by the number of wet days (rainfall ̸= 0), gives the daily rainfall intensity. We ob-
serve a significant increase (almost 20 days) in the number of annual dry days (rainfall = 0)
for Gaya, Aurangabad, Darbhanga, Muzaffarpur, and Begusarai, while the monsoonal dry
days have increased by approximately ten days for almost all the districts in the state in the
second epoch. The southwestern parts show the most prominent increase in dry days, ex-
hibiting a clear westward pattern. Comparing the annual rainfall intensity (AR) (Figure 6a),
an increase in higher intensity (rainfall > 20 mm/day) areas is seen in north Bihar in the
second epoch, while south Bihar is characterized by low intensity (rainfall < 10 mm/day)
areas. However, changes in monsoonal rainfall intensity (MAR) (Figure 6b) are quite signif-
icant, with the entire rainfall characteristics observed to have changed. Almost the entire
state shows a 50–75% increase in monsoonal rainfall intensity, which is consistent with the
increase in the number of dry days. In particular, the northern districts of Bihar Paschim
Champaran, Purba Champaran, Sitamarhi, Supaul, Araria, Kishanganj, and parts of Bha-
galpur show an increase of more than 100%. Interestingly, although the average maximum
precipitation (Figure 6c) for all the IMDGP points has increased by only 3 mm/day in the
second epoch, the intensity and frequency of extreme rainfall events (Figure 6d) in the
second epoch is considerably higher. Overall, a 60.6 mm/day (25.59%) increase in extreme
rainfall is seen across the state.

3.6. Changes in Regions with Homogeneous Rainfall

The precipitation pattern has changed across Bihar in the second epoch. Hence, a
multivariate clustering approach brings out homogeneous precipitation regions using the
mean annual rainfall for the two epochs. For clustering, the optimal number of clusters
is determined by the silhouette score, a metric to estimate the goodness of the clustering
technique. The optimal number of clusters corresponds to the silhouette score’s highest
value. The analysis revealed the optimal number of clusters as four, corresponding to
a silhouette score of 0.276 (Figure 7a,b). The results (Figure 7d) show that northeastern
regions fall under similar clusters for the two epochs, with an approximate increase of
250 mm in mean annual rainfall (Figure 7c); however, moving westwards, the homogeneity
patterns appear to have been altered in the second epoch. Cluster 3 appears to have shifted
westwards in the second epoch, giving way to Cluster 1, thereby homogenizing the areas
under Cluster 3. The low rainfall cluster 1 region shows a decrease in mean annual rainfall
of almost 84 mm.
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3.7. Comparison of GCMs with IMD Precipitation

Thirteen different GCMs are assessed in the present study to encompass a wide
range of climate sensitivities, focusing on the relatively extreme SSP370 and the extreme
SSP585 scenarios. Before forecasting future scenarios, it is imperative to understand the
performance of GCMs compared to IMDGP. A baseline period of 1985–2014 is selected for
assessing the performance of GCMs. The mean absolute error (MAE), probability density
function (PDF), root mean square error (RMSE), and percentage bias (P-bias) analyze
the comparison of the mean monthly precipitation of GCMs with the observed IMDGP
dataset. PDF analysis suggests BCC-CSM2-MR, INM-CM4-8, INM-CM5-0, MIROC6, and
NorESM2-MM tend to overestimate the precipitation, indicating that they predict higher
rainfall more frequently. BCC-CSM2-MR, CanESM5, CNRM-CM6-1, EC-Earth-Veg-LR,
GFDL-ESM4, IITM-ESM, MRI-ESM2-0, and MPI-ESM1-2-LR tend to underestimate rainfall,
as evident by the left shift of the PDF curve compared to the IMD dataset. ACCESS-CM2
has a strong right skewness, which means it is better at predicting heavy rain events than
BCC-CSM2-MR, CESM2, INM-CM4-8, and NorESM2-MM, which are also right-skewed.

MIROC6 and EC-Earth3-Veg-LR provide the best results, indicating that they closely
follow the observed data in average conditions, but slightly overpredict the extreme rainfall
values, as indicated by the peak and spread of the PDF curve.

The standard deviation for IMDGP is found to be 127.11. The values of standard
deviation for GCMs (Table 2) ranges from 46.91 for CanESM5 to 160.07 for NorESM-
MM indicating the uncertainty and model sensitivity. It is, hence, imperative to make
future predictions after carefully selecting best performing models using statistical metric.
Furthermore, we compute MAE, RMSE, and P-bias (Table 2) to evaluate the performance
of GCMs in predicting average monthly rainfall values (Figure 8b). Standard deviation
quantifies the uncertainty in model output. RMSE indicates the model’s accuracy, with
lower values indicating better performance. P-bias measures the average tendency of
the models to be larger or smaller than the observed data, with values closer to zero
representing more accurate model bias.

Table 2. Comparison of the 13 GCMs with the IMD gridded data using root mean square error
(RMSE) and percentage-bias (P-bias).

Global Climate Models Std. Dev. MAE RMSE P-Bias

1 ACCESS-CM2 96.94 66.99 105.37 −32.54

2 BCC-CSM2-MR 124.50 81.36 121.11 17.47

3 CanESM5 46.91 83.74 130.93 −55.05

4 CNRM-CM6-1 84.46 62.11 99.70 −38.33

5 EC-Earth3-Veg-LR 109.24 46.11 73.74 −14.97

6 GFDL-ESM4 104.29 53.12 87.5 −26.29

7 IITM-ESM 67.35 62.95 102.63 −41.86

8 INM-CM4-8 156.73 93.37 125.29 60.78

9 INM-CM5-0 142.44 74.71 105.01 38.07

10 MIROC6 117.99 52.20 79.74 4.51

11 MPI-ESM1-2-LR 91.59 47.78 78.52 −23.58

12 MRI-ESM2-0 100.19 57.75 88.98 −22.4

13 NorESM2-MM 160.07 69.99 113.34 12.64
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EC-Earth3-Veg-LR, GFDL-ESM4, MIROC6, and MPI-ESM1-2-LR have the lowest MAE
values of 46.11, 53.12, 52.20, and 47.78, respectively, suggesting closer agreement with the
IMDGP data. CanESM5 has relatively high MAE (83.74) and RMSE (130.93), suggesting less
accuracy in rainfall predictions. INM-CM4-8 and INM-CM5-0 have a significant positive
P-bias, 60.78 and 38.07, respectively, indicating an overestimation of rainfall. CanESM5
(−55.05) and IIT-ESM (−41.86), on the other hand, underestimate rainfall, as evident by
their low P-bias values.

ACCESS-CM2, BCC-CSM2-MR, CanESM5, IITM-ESM, INM-CM4-8, and INM-CM5-0
exhibit comparatively higher RMSE and P-Bias values compared to other GCMs. EC-
Earth3-Veg-LR has the lowest RMSE (73.74), suggesting that its predictions are closest to
the observed values and a relatively low P-bias (−14.97). NorESM2-MM has the second
lowest P-bias (12.64), but has a higher RMSE value (113.34). MIROC6 shows a good balance
between the RMSE (79.74) and P-bias (4.51), indicating minimal bias in the predictions.
MPI-ESM1-2-LR has a slightly high negative P-bias (−23.58), but a low RMSE (78.52). The
low bias of the EC-Earth3-Veg-LR, MIROC6, and MPI-ESM1-2-LR compared to others
indicates their robustness in accurately simulating rainfall patterns across the different
months. To make reliable climate predictions, a multi-model ensemble of the three models,
EC-Earth-Veg-LR, MIROC6, and MPI-ESM1-2-LR, is performed using Bayesian model
averaging (BMA), as explained in Section 2.5.4.

3.8. Bayesian Multi-Model Ensemble for Future Prediction

Figures 9 and 10 show the mean annual precipitation in form of anomaly for the
duration of 2015–2045, 2046–2075, and 2076–2099 for the multi model ensemble for the three
models, EC-Earth3-Veg-LR, MIROC6, and MPI-ESM1-2-LR, using BMA under the SSP370
and SSP585 scenarios, respectively. We observe a general increase in rainfall across the state
compared to the current trends, as shown by Figure 9. Interestingly, a low average annual
rainfall (<750 mm) region in southwestern Bihar is seen for the duration of 2015–2045 for
SSP370, as evident by the negative anomaly (Figure 9). For the subsequent duration, the
region will, however, have a positive anomaly, except for the region over the Bhagalpur
district (central-east), which is expected to have a negative anomaly. Regions in northern
Bihar will continue to have a higher rainfall anomaly (>20%) under SSP370 and SSP585
scenarios, as evident by positive anomalies. The region of these positive anomalies will
expand with the progress of time, with significant increase seen for SSP585 (Figure 10). The
increase in region of very high anomaly (>30%) in both north and south Bihar is prominent
for SSP585. However, even for SSP585, the central eastern and central western parts of
Bihar show a negative rainfall anomaly (<−10%).
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4. Discussion

Statistical analysis of rainfall in Bihar reveals substantial changes in spatiotemporal
rainfall characteristics. Change point detection tests divide the time series into two epochs.
The identification of 1960 as the change point year underlines the importance of historical
climate data in understanding the regional impacts of global climate change. The analysis
reveals a stark contrast between the precipitation patterns and seasonality of the first and
second epochs. The second epoch is characterized by higher spatiotemporal variability,
shifts in rainfall patterns, and an increase in the intensity and frequency of extreme events.
For instance, the southwestern regions receive relatively low rainfall (<1000 mm), and this
region of relatively low rainfall has expanded significantly (by almost 14 times) in the last
30 years compared to earlier years. The changes in rainfall patterns can explain why it
is now one of the most drought-prone regions in the state [29]. Similarly, the increase in
intense precipitation events by 25.6% has led to severe flooding in the state almost every
year, calling for measures to enhance infrastructure resilience and disaster preparedness. In
contrast, the high correlation values between CDann and CDmon indicate the dominance of
monsoons as the source of rainfall and the diminishing contribution of rainfall from other
seasons in southern Bihar. Consequently, strong reliance on monsoons for rainfall and the
decreasing trends of annual rainfall have increased the drought risk in these regions. This is
supported by the findings of rainfall intensity, where an increase in higher intensity rainfall
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(rainfall > 20 mm/day) areas is seen in north Bihar, while south Bihar sees an increase in
low intensity (rainfall < 10 mm/day) rainfall areas.

Intense rainfall events and declining rainfall in southwestern Bihar could reduce water
availability and drought-like conditions. This is a serious cause for concern as the drought-
prone south primarily relies on rainfall for agriculture. Agriculture is a significant part of
Bihar’s economy, contributing 26.51% to the state GDP [44] and supporting almost 90%
of the population, directly or indirectly. These variabilities have put Bihar in a unique
place, i.e., it can experience floods and drought at the same time, and despite being home
to massive river systems, the state ranks worst in water resource management. The stark
contrast in rainfall variability between the two epochs underscores the accelerating impact
of climate change over time, and emphasizes the regional manifestation of the global
climate phenomenon.

To further understand the implications of precipitation variability on hydrological
components, alterations in water storage, surface runoff depth, and evapotranspiration are
analyzed. The National Resources Soil Conservation-Curve Number (NRSC-CN) model
is used to estimate total runoff across the state from 2001 to 2020. The equivalent water
thickness from Gravity Recovery and Climate Experiment’s (GRACE) monthly mass grids
is used to obtain water storage data for 2002–2017. Further, the MOD16A2.006 Terra
Net Evapotranspiration (ET) 8-Day Global data at 500 m spatial resolution are used for
ET estimation.

An approximately 60 mm (13.43%) increase in average runoff in Bihar is seen from 2001
to 2020 (Figure 11), during which the annual rainfall mainly decreases. Such a trend can be
explained by the rapid urbanization and increase in agricultural lands; land use features
that result in higher runoff as compared to vegetation and forest. Coupling the increase in
surface runoff with the increase in rainfall intensity, especially along the northern parts of
Bihar, would lead to more significant flood risks. In 2019, severe flooding inundated more
than 35% of the districts of Patna and Bhagalpur. A decrease of 242.3 mm in water storage
is seen during the 2002–2017 period, which correlates strongly (0.56) with annual rainfall
during that period. NITI Aayog’s composite water index study ranked the state last due
to its failure to achieve sustainable development goals (SDGs), poor management of river
basins, and lack of regulation over water exploitation.

Figure 11. Variation in water storage (GRACE data), evapotranspiration (AET) and runoff with
rainfall for 2001−2020.

Further observations reveal a 118.86 mm decrease in ET, an essential component of the
hydrological cycle. Water availability (mainly precipitation) controls ET over the region,
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with annual precipitation and ET weakly correlated by a value of 0.28. The analysis reveals
the sensitive state of rainfall in Bihar and the need to pave the way for more robust water
resource management in the region.

Consequently, analyzing GCMs, especially the extreme scenarios of SSP370 and SSP585,
is critical to planning adequate water management policies for the future. The extreme
scenarios are chosen, as they represent the upper bounds of plausible future pathways
of a developing region like Bihar. The minimal difference in minimum values across the
thirteen GCMs analyzed using PDF suggests that most models can capture low precipitation
events similarly to the IMD-gridded dataset. However, EC-Earth3-Veg-LR, INM-CM4-8,
INM-CM5-0, MIROC-ES2L, and MPI-ESM1-2-LR cannot capture the extremes well. EC-
Earth3-Veg-LR, MIROC6, and MPI-ESM1-2-LR are the best-performing models for the
region, as indicated by the low MAE, RMSE, and P-Bias values. A Bayesian multi-model
ensemble for these three GCMs is prepared to capture a broader range of possible outcomes
and reduce uncertainty. The rainfall anomaly derived from the multi-model ensemble
predicts increased precipitation in the flood-prone northern region for both SSP370 and
SSP585 scenarios, indicating a likely increase in flood risk in the sensitive region. The
region under a very high rainfall anomaly (>30%) will increase in area for SSP585 in both
south and north Bihar. For SSP370, the increase in regions of low annual rainfall in the
drought-prone south and southwest of Bihar for 2015–2045 might increase the agricultural
drought risk.

Overall, the significant findings of the study can be elucidated as:

1. An evident change in precipitation trend was observed around the year 1960. There is
a clear shift in the trend of southwest monsoons over the region, as evidenced by the
rainfall variability during the different seasons pre- and post-1960. The nature of the
pre-monsoon and post-monsoon seasons has flipped over the area in recent years.

2. The nature of annual rainfall has completely changed between the two epochs, as
evident by CDann.

3. An increase in dry days has increased in monsoonal rainfall intensity. The frequency
and intensity of extreme rainfall increased in the second epoch. Overall, the state
experienced an increase in extreme rainfall of 60.6 mm/day (25.59%). Further, an
increase in higher intensity (rainfall > 20 mm/day) areas is seen in north Bihar, while
south Bihar sees an increase in low intensity (rainfall < 10 mm/day) areas.

4. There is a marked variability in the state as one goes from east to west in terms of
homogeneity (defined by clusters) and hydrological extremes as one goes from north
to south. This leaves Bihar in a unique position, with an imminent need to combat the
climate variability-induced risk to water resources for sustainable development.

5. EC-Earth3-Veg-LR, MIROC6 and MPI-ESM1-2-LR are the best-performing models for
the region. A Bayesian multi-model ensemble suggests that south Bihar will receive
low rainfall for the duration of 2015–2045, hence increasing the drought risk.

5. Conclusions

The present study gives a comprehensive spatiotemporal evaluation of the variability
of rainfall; trends in annual, seasonal, and extreme rainfall; changes in rainfall patterns and
the reliability of GCMs in predicting the rainfall variability over the state of Bihar in India;
and its implications on surface runoff and agriculture. We observe significant spatiotem-
poral variations in rainfall, with the change point year indicating a divergence in rainfall
trends and characteristics, including a shift in seasonality across all seasons, particularly
during the monsoon. The observed changes might be attributed to the combined impact of
increased urbanization and the associated climate change, though further investigation is
necessary to delineate their respective contribution. The study highlights an increase in
extreme dry and wet events, suggesting prolonged droughts and more frequent flooding.
Projections based on the SSP370 scenario of the BMS multi-model ensemble indicate a de-
crease in rainfall until 2045, followed by an increase until 2100. The predictions underscore
the importance of informed water resource management policies for a sustainable future.
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The findings further suggest that larger climate phenomena exert a cyclic effect on rainfall
over the state, as evidenced by examining climate scenarios, which need further assessment
for a deeper understanding of the regional climatic variability. Additionally, exploring
the role of El-Nino Southern Oscillation and Indian Ocean Dipole could provide valuable
insights into the observed cyclic nature of regional rainfall.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/hydrology11040050/s1, File S1: Supplementary—Mann-Kendall
test.
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