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Abstract: (1) Background: The difficulty of pelvic operation is greatly affected by anatomical con-
straints. Defining this difficulty and assessing it based on conventional methods has some limitations.
Artificial intelligence (AI) has enabled rapid advances in surgery, but its role in assessing the difficulty
of laparoscopic rectal surgery is unclear. This study aimed to establish a difficulty grading system to
assess the difficulty of laparoscopic rectal surgery, as well as utilize this system to evaluate the relia-
bility of pelvis-induced difficulties described by MRI-based AI. (2) Methods: Patients who underwent
laparoscopic rectal surgery from March 2019 to October 2022 were included, and were divided into a
non-difficult group and difficult group. This study was divided into two stages. In the first stage, a
difficulty grading system was developed and proposed to assess the surgical difficulty caused by the
pelvis. In the second stage, AI was used to build a model, and the ability of the model to stratify the
difficulty of surgery was evaluated at this stage, based on the results of the first stage; (3) Results:
Among the 108 enrolled patients, 53 patients (49.1%) were in the difficult group. Compared to the
non-difficult group, there were longer operation times, more blood loss, higher rates of anastomotic
leaks, and poorer specimen quality in the difficult group. In the second stage, after training and
testing, the average accuracy of the four-fold cross validation models on the test set was 0.830, and
the accuracy of the merged AI model was 0.800, the precision was 0.786, the specificity was 0.750, the
recall was 0.846, the F1-score was 0.815, the area under the receiver operating curve was 0.78 and
the average precision was 0.69; (4) Conclusions: This study successfully proposed a feasible grading
system for surgery difficulty and developed a predictive model with reasonable accuracy using AI,
which can assist surgeons in determining surgical difficulty and in choosing the optimal surgical
approach for rectal cancer patients with a structurally difficult pelvis.

Keywords: artificial intelligence; MRI; laparoscopic rectal surgery; surgical difficulty; pelvis

1. Introduction

The standard surgical treatment for rectal cancer is total mesorectal excision (TME).
However, laparoscopic TME is challenging, due to the narrow and deep confines of the
pelvic cavity [1]. There is no widely accepted definition of the “difficult pelvis”, however,
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by surgeons across the board [2]. Recently, there has been an increasing interest in factors
affecting the difficulty of performing surgery in the pelvic cavity. Several studies have
shown that the tumor location, tumor size, gender, body mass index (BMI), pelvic dimen-
sions and angles, previous abdominal surgery, and neoadjuvant radiotherapy affect this
difficulty [3–6]. However, these objective indicators are unreliable and, may not able to
reflect the intraoperative situation. Meanwhile, transanal total mesorectal excision (taTME)
and robotic surgery have offered solutions for patients with a technical difficulty in pelvic
dissection [7,8]. Hence, a reliable indicator of difficulty with adaptable criteria may help to
decide the optimal surgical approach.

MRI plays an important role in the management of rectal cancer [9]. Going a step
further, it could provide more useful radiomics signatures that have not been exploited
by traditional approaches. Artificial intelligence (AI) leverages computer algorithms to
learn from data, extract features, help identify patterns in data, and make predictions,
which shows great application prospects in medical research [10]. Previous studies have
reported that AI has been utilized to guide decision-making in clinical practices, especially
in evaluating cancer stage and response to therapy [11–13]. Additionally, it could guide
surgeons during operation by analyzing intraoperative images [1,14]. In addition to these
practices, there is progress in applying these advancements in AI technology to minimally
invasive surgical procedures.

Considering the above factors, this study aimed to establish a reasonable grading
system for surgical difficulty and to investigate the applicability and advancement of AI in
evaluating the difficulty of laparoscopic rectal surgery, in terms of the pelvis.

2. Materials and Methods

There were two stages in this study (Figure 1). Perioperative characteristics of the
difficult group and non-difficult group patients were compared to evaluate the feasibility
of the surgical difficulty grading system in the first stage. In the second stage, patients
were split into training set, validation set and test set (the proportions of difficult patients
in the three sets were comparable). MR images and clinical variables, including BMI,
gender and neoadjuvant information, were used to establish the difficulty prediction model.
The primary outcome measure was the performance of the model.

Figure 1. Research flowchart (Stage I: evaluating the difficulty grading system by comparing the peri-
operative outcomes of patients in the non-difficult group and the difficult group; Stage II: establishing
an AI model to stratify surgical difficulty preoperatively).
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2.1. Patients

Data were collected from a prospectively established rectal cancer database in the
Division of Colorectal Surgery, Department of General Surgery, Peking Union Medical
College Hospital. Only patients in the database who had been graded according to the
surgical difficulty system (Table 1) were enrolled in this study, from March 2019 to October
2022. The surgical difficulty grading system was established according to the surgeon’s
experience and specimen quality. Surgeons were asked to evaluate and grade the difficulty
of surgery basing on the following reason: 1. narrow pelvis; 2. thick mesorectum; 3. large
tumor size; 4. tissue edema after radiotherapy; 5. indistinct anatomical layer. These reasons
are visualized in Figure 2, and the demonstration video of each difficulty grade is listed in
the Supplementary Material.

Graded patients were eventually enrolled in this study, based on the inclusion criteria
of 1. a tumor within 12 cm from the anal verge; 2. preoperative MRI was accessible; 3.
the depth of tumor invasion was T1−4a. In this study, we focused on analyzing surgical
difficulties caused by pelvic structures, and difficulties caused by other reasons have not
been included so far. Grade I represents no surgical difficulty (non-difficult group), whereas
grade II-IV represented patients with surgical difficulty (difficult group).

The protocol was designed according to the Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis (TRIPOD)[15], approved by the
Ethics Committee of Peking Union Medical College Hospital (No. S-K1585) and registered
with the Chinese Clinical Trial Registry (ChiCTR2200059831). Written informed consent
was obtained.

Table 1. The difficulty grading system.

Grade Definition

I Easy procedure, without difficulty
II Difficult procedure, but no impact on specimen quality (complete TME)
III Difficult procedure, with slight impact on specimen quality (near-complete TME)
IV Very difficult procedure, with severe impact on specimen quality (incomplete TME)

(a) (b) (c)

(d) (e)

Figure 2. Visualization of the reasons for surgical difficulty (a) narrow pelvis; (b) thick mesorectum;
(c) large tumor size; (d) tissue edema; (e) indistinct anatomical layer.
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2.2. Image Preprocessing

In stage I, perioperative outcomes were aligned to the graded surgical difficulty. We
consequently started the next phase by tagging non-difficult group patients with the label 0,
and difficult group patients with the label 1. Therefore, the whole task could be transformed
into a binary classification task (difficult and non-difficult) at stage II.

ITK-SNAP software (version 3.8.0, www.itksnap.org) was utilized to obtain the region
of interest (ROI) for further analysis [16]. The ROIs were carefully delineated along with the
pelvis (Figure 3). Two trained surgeons (Z.S., W.Y.H.) independently conducted segmenta-
tion, and two experienced radiologists (J.J.L., H.D.X.) were introduced for supervision.

To normalize the different scan settings between MR images of patients, the images
and annotations were resampled to 1.5 mm×1.5 mm×1.5 mm voxel spacing using the
SimpleITK library [17,18], and were then converted to the Neuroimaging Informatics
Technology Initiative (NIfTI) format. To avoid the interference of the grayscale texture
and irrelevant tissue, and for the the neural network model to pay attention to the bone
structure and pelvic distance within the ROI, we set the voxel value to 0 for the non-ROI
area, and to 1 for the bilateral ilium and the sacrococcyx. All images are padded to the
same size, with a value of 0.

(a) (b) (c)

Figure 3. An example of manual segmentation of pelvis in MRI. (a) Bilateral ilium and sacrococcyx in
T2-weighted images; (b) Manual segmentation on the same axial slice (Bilateral ilium and sacrococcyx
are highlighted in red); (c) reconstruction of the pelvis.

2.2.1. Network Architecture

Since the data structure and distribution of the images were not complicated, the widely
used ResNet-50 network [19] was chosen as the basic backbone model for this classification
task, and a Convolutional Block Attention Module (CBAM) [20] was added to each ResNet
block to improve the ability of the model to pay more attention to the spatial and feature
relationships. The CBAM module contains both channel attention and spatial attention
blocks. The channel attention block helps the network to re-weight the channels of the
features and focus more on the important channels. Additionally, the spatial attention
mechanism is helpful in this spatial task, by forcing the network to pay more attention
to the important regions, which can further improve the the presentation of grade-based
heat map calculation described below. The classifiers in the network were modified with
additional linear and dropout layers, to avoid the risk of overfitting and to improve the con-
vergence ability of the network model, and the clinical variables consisting of BMI,gender
and neoadjuvant therapy were nomalized to (0, 1), followed by the addition of a linear layer
to re-weight the features captured by the model for the final classification. Such variables
were adopted because, according to our research described below, they correlate with the
surgical difficulty, but can not be easily achieved from the pelvic bone structure. Another
modification was that we replaced all the pooling layers with convolution layers, and the
last global average pooling layers were replaced by a combination of a shrink convolution
layer and a 2-stride downsample convolution layer, in order to force the network to gather
the feature information at the correlative position. Besides, all the convolution layers with
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a stride of 2 were changed to an even kernel size to avoid position offsets during the
downsampling process. The structure of the proposed modified ResNet-50 network is
shown in Figure 4. and the hyper-parameters and details of the network are shown in the
Supplementary Material and Appendix A Table A1.

STAGE 4STAGE 3STAGE 2STAGE 1

8
×

8
×

8
 C

o
n

v
, 

6
4
, 

st
ri

d
e2

4
×

4
×

4
 C

o
n

v
, 

6
4
, 

st
ri

d
e2

1
×

1
×

1
 C

o
n

v
, 

6
4

3
×

3
×

3
 C

o
n

v
, 

6
4

1
×

1
×

1
 C

o
n

v
, 

2
5
6

C
B

A
M

, 
2

5
6

1
×

1
×

1
 C

o
n

v
, 

1
2
8

3
×

3
×

3
 C

o
n

v
, 

1
2
8

, 
(4

, 
st

ri
d

e 
2
)

1
×

1
×

1
 C

o
n

v
, 

5
1
2

C
B

A
M

, 
5

1
2

1
×

1
×

1
 C

o
n

v
, 

2
5
6

3
×

3
×

3
 C

o
n

v
, 

2
5
6

, 
(4

, 
st

ri
d

e 
2
)

1
×

1
×

1
 C

o
n

v
, 

1
0
2

4

C
B

A
M

, 
1

0
2

4

1
×

1
×

1
 C

o
n

v
, 

5
1
2

3
×

3
×

3
 C

o
n

v
, 

5
1
2

, 
(4

, 
st

ri
d

e 
2
)

1
×

1
×

1
 C

o
n

v
, 

2
0
4

8

C
B

A
M

, 
2

0
4

8

F
la

tt
en

L
in

ea
r,

 5
1
2

L
in

ea
r,

 1

D
ro

p
o

u
t,

 0
.5

×4 ×4 ×4 ×4

1
×

1
×

1
 C

o
n

v
, 

2
5
6

Input 

Feature

Re-weighted 

Feature

Spatial 

Attention 

Module

Spatial 

Attention 

Module

Clinical variables:
BMI, Gender, 

Neoadjuvant Therapy

Linear, 512

2
×

2
×

2
 C

o
n

v
, 

2
5
6

, 
st

ri
d

e2

Channel Attention 

Module

C
ro

ss
 E

n
ro

p
y

 L
o
ss

Non-difficult / Difficult

Figure 4. MRI image and clinical variables were used for feature extraction by the proposed modified
ResNet-50 (

⊗
means element-wise multiplication) and the cross-entropy loss in Equation (2) was

adopted for supervision.

2.2.2. Data Augmentation

In order to improve the generalizability of the network and the diversity of the dataset,
and to reduce the risk of overfitting, random augmentation [21] was applied to the training
process. To ensure the consistency of the spatial relationship, random left–right flips and
[−5◦,+5◦] max random axial rotations around the center were adopted. For each patient
per epoch in the training set, random augmentation was performed and enlarged 4 times.
The probability of random left–right flipping was set to 0.5, and the probability of random
axial rotation was set to 0.4.

2.2.3. Implementation and Metrics

The deep neural network models were implemented using the PyTorch framework
(version 1.12.1, pytorch.org, accessed on 6 August 2022). The cross-entropy loss is the loss
function during the training process, which is formulated as follows:

argminxL(x) = −[y · log f (x) + (1− y) · log(1− f (x))], (1)

where x means the input volume and y means the ground truth of the case. Function f (·)
represents the model pipeline, followed by a sigmoid function.

AdamW optimizers were applied with the weight decay set to 1× 10−8. The learning
rate was set to 1× 10−6. The model was trained with the batch-size set to 4, for at least
7000 iterations and the gradient-clipping method was set to 0.5; the early-stop method was
used in the validation set to avoid the risk of overfitting.

2.3. Feature Extraction and Model Construction

Segmented MRI images and clinical variables, including BMI, gender and neoadjuvant
therapy information, were retrospectively retrieved for feature extraction and evaluation.
After feature evaluation, useful signatures were integrated to develop the model, which

pytorch.org
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would preoperatively stratify the difficulty of pelvic operation, and assist surgeons in
selecting optimal surgical approaches (Figure 5).

stratify

MRI Image

Clinical variables

AIintegrate

The categorization of 

surgery

Difficult

OR

Non-difficult

transabdominal

transanal

surgeon selectassist

Figure 5. Overview of the AI model Process.

2.4. Visualization of the Attention Region

The Class Activation Map (CAM) [22,23] can provide visible evaluation of the attention
region of the neural network model, in order to make a class judgment based on the
prediction results and the gradient. To fully visualize the process during the inference
of the model, we used GradCAM++ [24], one of the most popular CAM methods, in our
experiments. The computational process of GradCAM++ is shown in Figure 6, which is
formulated as follows:

α =
g2

R0→1(g2 + Sxyz( f · g3))
, (2)

heatmap = Sc(Sxyz(α · Relu(g)) · f ), (3)

where f and g are the feature and gradient maps of the selected layer, respectively,0
and R0→1(·) replaces zeros in the inputs with ones. Sc and Sxyz are the sum functions along
the feature and space channels.

For adapting the traditional 2D CAM technique to the 3D data, the 2D calculations
were replaced with 3D ones, and then a 3D heatmap with the same size of the input was
obtained. Results could be fully visible using JET color space in the ITK-SNAP software.
In order to comprehensively explore the attention distribution for the skeletal region,
the Demons non-rigid registration method [25] implemented in the SimpleITK library was
applied, in order to unify all the data inputs and heatmap within the same space. Then,
the averaged skeletal structure and the corresponding average heatmap could be obtained,
with calculations of the average values.

2.5. Statistics Analysis

Clinical information was analyzed using SPSS version 26.0 (IBM SPSS INC., Chicago,
IL, USA). Continuous data were shown as medians with interquartile ranges (IQR) or means
with standard deviations (SD). Categorical data were shown as numbers with percentages.
Continuous variables were compared using Mann-Whitney test or independent t test and
the Chi-squared test was used for the comparison of categorical variables. p < 0.05 was
considered statistically significant.

Several metrics consisting of accuracy, specificity, precision, recall, and F1-score were
used to evaluate the network prediction results and network prediction ability [26].
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Figure 6. Visualization of the attention region of model by GradCAM++. The heatmap is generated
based on the Equation (2) (Alpha Calculation) and Equation (3) (heat map calculation).

3. Results
3.1. Grouped Patient Characteristics

Among the 108 enrolled patients, the median age was 64 (56–70) years, and 73 patients
were male. The mean BMI was 24.1 ± 3.4 kg/m2, the mean distance between the lower
edge of the tumor and the anal verge was 6.5 ± 2.0 cm and the median tumor size was 2.0
(1.3–3.1) cm. A total of 77 patients received neoadjuvant therapy. And 13 patients had a
history of abdominal surgery. Patients were divided into the difficult group (n = 53) and
non-difficult group (n = 55), as shown in Table 2.

Table 2. Characteristics of enrolled patients.

Variable Enrolled Patients
(n = 108)

Difficult Group
(n = 53)

Non-Difficult
Group (n = 55)

Age, years, [median (IQR)] 64 (56–70) 66 (58–70) 63 (53–69)
Male, n (%) 73 (67.6) 51 (96.2) 22 (40.0)
BMI, kg/m2, [mean (SD)] 24.1 (3.4) 25.0 (3.4) 23.2 (3.1)
Neoadjuvant chemoradiotherapy, n (%) 77 (71.3) 45 (84.9) 32 (58.2)
Previous abdominal surgery, n (%) 13 (12.0) 5 (9.4) 8 (14.5)
Distance from tumor to anal verge, cm [mean (SD)] 6.5 (2.0) 6.3 (2.0) 6.7 (2.0)
Tumor size, cm [median (IQR)] 2.0 (1.3–3.1) 2.0 (1.2–3.1) 2.0 (1.3–3.1)
Surgery type
LAR, n (%) 79 (73.1) 35 (66.0) 44 (85.5)
taTME, n (%) 18 (16.7) 12 (22.6) 6 (10.9)
ISR, n (%) 5 (4.6) 1 (1.9) 4 (7.3)
Others, n (%) 6 (5.6) 5 (9.4) 1 (1.8)

LAR: low anterior resection; taTME: transanal total mesorectal excision; ISR: intersphincteric resection; Others:
extralevator abdominoperineal excision (ELAPE), Hartmann.

3.2. Associations of Perioperative Outcomes with Surgical Difficulty (Stage I)

Considering there was no anastomosis in extralevator abdominoperineal excision
(ELAPE) and Hartmann procedures, six patients were excluded in stage I. In total, 48 diffi-
cult patients (Grade II-IV) and 54 non-difficult patients (Grade I) were compared to evaluate
the feasibility of the surgical difficulty grading system. As shown in Table 3, the proportions
of male patients and those receiving neoadjuvant chemoradiotherapy in the difficult group
were larger than in the non-difficult group. The mean BMI was larger in the difficult group.
The duration of surgery and blood loss showed significant increases in the difficult group.
What is more, the proportions of complete TME, diverting stoma and anastomotic leaks
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were larger in the difficult group. However, the lymph nodes harvested, postoperative
complications and postoperative hospital stays were comparable between two groups.

Table 3. Comparison of diffiult and non-difficult groups of patients.

Variable
Surgical Difficulty

p ValueDifficult Group
(n = 48)

Non-Difficult Group
(n = 54)

Male, n (%) 46 (95.8) 21 (38.9) <0.001
BMI, kg/m2, [mean (SD)] 25.2 (3.3) 23.2 (3.1) 0.002 ◦

Neoadjuvant chemoradiotherapy 41 (85.4) 32 (59.3) 0.003
Previous abdominal surgery 4 (8.3) 7 (13.0) 0.452
Distance from tumor to anal verge, cm [mean (SD)] 6.5 (1.8) 6.7 (2.0) 0.437 ◦

Tumor size, cm [median (IQR)] 1.7 (1.2–3.0) 2.0 (1.3–3.0) 0.526 *
Duration of surgery, min [median (IQR)] 145.0 (120.0–160.0) 118.5 (100.0–141.3) 0.001*
Blood loss, mL [median (IQR)] 25 (20–50) 20 (10–40) 0.004 *
Diverting stoma, n (%) 43 (89.6) 37 (68.5) 0.010
Complete TME, n (%) 31 (64.6) 54 (100) <0.001
Lymph nodes harvested, n [median (IQR)] 12 (8–17) 13 (10–17) 0.665 *
Postoperative complications, n (%) 17 (35.4) 19 (35.2) 0.981
Anastomotic leak, n (%) 8 (16.7) 2 (3.7) 0.043
Postoperative hospital stays, days [median (IQR)] 7 (6–7) 6 (6–8) 0.478 *

* Mann-Whitney test; ◦ independent t test.

3.3. The Performance of Model (Stage II)
3.3.1. Cross Validation Study

To fully validate the performance and generalization of the proposed model, we
performed a 4-fold cross validation experiment based on the training dataset. The datasets
for each fold consist of images of 63 patients for training, and images of 20 patients for
validation. The final accuracy, precision, specificity, recall and F1 score results in each fold
are presented with the average of each metric in Table 4. The result shows that the model
can achieve good performance with sufficient generalization.

Table 4. Results of the 4-fold cross validation study on the validation set.

Fold Accuracy Precision Specificity Recall F1 Score

1 0.850 0.889 0.900 0.800 0.842
2 0.750 0.692 0.600 0.900 0.782
3 0.850 0.818 0.800 0.900 0.857
4 0.850 0.818 0.800 0.900 0.857

Average 0.825 0.804 0.775 0.875 0.835

3.3.2. The Performance of the Merged Model

After training, we merged the 4-fold models used above by averaging the prediction
scores, and tested the merged model on the separate test set, consisting of images of
25 patients unused in the training process; the results of each fold on the test set are
presented in Table 5. The accuracy of the model in terms of the test set was 0.800, the
precision of the model was 0.786, and the specificity, recall, and F1 score were 0.750, 0.846,
and 0.815, respectively. The Receiver Operating Characteristic (ROC) curve and Precision-
Recall (P-R) curve are shown in Figure 7, the Area Under Curve (AUC) was 0.78 and the
Average Precision (AP) was 0.69. The confusion matrix results of the merged model in
the training set and test set are shown in Figure 8. Then, all the 4-fold established models
were taken for the subsequent experiments to generate the visible heatmaps of the region’s
attention. In Figure 9, after the non-rigid registration process, we took the mean results of
the heatmap generated from layer 4 in the network, and voxels with the top 64,000 (around
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0.5%) heat scores were highlighted. As shown in Figure 9, the purple region indicates the
concentration of factors causing difficulty.

Table 5. Results of the 4-fold models on the test set.

Fold Accuracy Precision Specificity Recall F1 Score

1 0.840 0.800 0.750 0.923 0.857
2 0.880 0.813 0.750 1.000 0.897
3 0.800 0.786 0.750 0.846 0.815
4 0.800 0.786 0.750 0.846 0.815

Average 0.830 0.796 0.750 0.904 0.846

Merged 0.800 0.786 0.750 0.846 0.815

(a) (b)
Figure 7. The ROC curve (a) and P-R curve (b) of the merged model.

(a) (b)
Figure 8. The confusion matrix of (a) the train-validation set and (b) test set based on the
merged model.
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(a)

(b)

Figure 9. Highlighted heatmap of the attention region. (a) anterior view. (b) posterior view.

4. Discussion

The significance of this study is that it brings a new concept to the standard clinical
procedure of preoperative assessment of the optimal surgical options for rectal cancer
patients. It also attempts to define, stratify, and quantify difficulty levels to direct the
surgeon’s practice. This study showed that the grading system could stratify patients
who underwent rectal surgery into different categories of difficulty status, namely non-
difficult and difficult. Compared with the non-difficult group, the duration of surgery was
longer, intraoperative blood loss was greater, the quality of specimens was poorer and the
proportions of diverting stoma and anastomotic leaks were higher in the difficult group.
What is more, this study firstly demonstrated that AI could stratify the pelvic difficulty of
laparoscopic rectal surgery with good performance by incorporating radiomics and clinical
features—the area under the receiver operating curve was 0.78 and the average precision
was 0.69. The difficulty grading system and AI model could enable the concept of the
individualized surgical management of patients with rectal cancer.

The incidence of anastomotic leaks and overall survival largely depend on surgical
quality [27,28]; there is an increasing interest in exploring the factors that affect the difficulty
of laparoscopic rectal surgery [3,29,30] The first attempt of colorectal surgeons was to define
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and classify difficult surgery. Previous studies have chosen the following criteria to define
surgical difficulty: duration of surgery [6,31–33], blood loss [32], conversion to open surgery,
the incidence of morbidity [34], and quality of surgery [35]. The risk of these criteria is that
some criteria could be affected by various factors, including the surgeon’s skills, tumor
location, and patient’s condition. Pure objective indicators are not included, and hence
may not able to reflect the intraoperative situation. We believe intraoperative scoring by
trained surgeons and the quality of specimen would result in a more accurate measurement
for the judgment of difficulty. Thus, a difficulty grading system based on the surgeon’s
experience and specimen quality was firstly purposed by this study. A narrow pelvis, thick
mesorectum, large tumor size, tissue edema, and indistinct anatomical layer were selected
to account for the surgical difficulty in this grading system. In the narrow anatomical space
of the deep pelvis, a larger tumor size and thicker mesorectum have adverse effects on
operation [3,4], limiting the vision of laparoscopy and restricting the ability of surgeons
to operate. Neoadjuvant radiotherapy reduces local recurrence and benefits survival [36],
but it also results in severe tissue edema followed by fibrosis [37], which increases the
difficulty of dissecting the mesorectum. Consistent with the above findings, this study
found that the proportions of males and those receiving neoadjuvant chemoradiotherapy
were larger in the difficult group. Surgical outcomes between non-difficult patients and
difficult patients were compared, indicating that the surgical difficulty grading system
is reliable.

Having the comparable clear division of difficulty, surgeons went a further step by
attempting to predict surgical difficulty for the purpose of supporting clinical practice.
A number of tools have been developed to assist decision-making, such as risk-class
stratifications [30], nomograms [3], etc. As the most commonly developed method, the re-
peatability and practicability of nomograms were being doubted [38]. Several studies used
bony measurements to assess the difficult pelvis; the parameters, however, varied among
different studies, limiting the comparison and utility of models [2]. The clinical applicability
of these methods remains unclear, because of their retrospective nature, small sample sizes,
and inadequate validation of these studies. Thus, previous studies concerning surgical
difficulty prediction require improvement.

AI, involving the integration of automatic extraction and analysis of image character-
istics that are invisible to the naked eye, together with conventional technology, has shown
excellent performance in preoperative decision-making. MRI image-based deep learning
could evaluate circumferential resection margisn [39], pathological complete response
to neoadjuvant chemoradiotherapy [13] and identify metastatic lymph nodes [40]. CT
image-based AI could detect peritoneal carcinomatosis of colorectal cancer [41]. Moreover,
AI could analyze real-time laparoscopic images to guide operation [1]. Until recently,
there has been no research exploring the value of AI in distinguishing between degrees of
surgical difficulty.

Up to now, the current preoperative assessment method for this task is mainly based
on manual measurement. However, manual measurement has the problems of anatomical
marker selection and poor consistency among the patients. The AI system is able to extract
the distance information more effectively to obtain better results. This study made the first
attempt to establish a difficulty-prediction model by using AI. Although the AI system
cannot fully replace the manual measurements for now, it is able to provide at least an
additional preliminary judgment for the surgery. The model has shown good accuracy
and reliability, which has the potential to assist surgeons in judging the surgical difficulty
preoperatively and in choosing the optimal surgical approach for patients with rectal cancer
(Figure 5). MRI images and clinical characters subjected to this model would output a
prediction result (difficult or non-difficult). For patients categorized as difficult, transanal
approaches are supposed to be considered, since the transabdominal approach may not
have the ability to mobilize and resect the rectum in the deep narrow pelvis of patients.
In contrast, for patients analyzed as non-difficult, surgeons could perform transabdominal
surgery with confidence. Remaining as one of the top fields of AI, the calculation process of
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the AI model cannot be fully demonstrated by traditional parameters. Fortunately, the out-
put heatmap drawn by CAM could show the attention region of the model, which could be
aligned, to some extent, in clinical practice. As shown in Figure 9, the purple highlighted
region was the key attention region affecting (pelvic) difficulty, nd was used by the AI
model to judge the difficulty of surgery. The shape of this area was irregular and extended
to the ilia and sacrococcyx, indicating that these structures had adverse influences on
difficulty. The ilium confined the approach of surgical instruments and limited the bilateral
dissection of the rectum in the deep and narrow pelvic cavity, which was consistent with
the intraoperative experience of the surgeon. In the meanwhile, the rectum lies close to the
posterior surface of the prostate, which adds the difficulty of dissection in males. In conclu-
sion, the algorithm we created in this study could automatically extract characteristics and
consequently develop a reliable prediction model. Besides this, the results of the heat map
results also showed that the network exhibits a focus on the position relationship between
the hip and ilium, and further study could help us to better simplify and optimize the
manual measurement method, which we are considering for further research in the future.

5. Limitation

However, as the preliminary exploration in this issue, our study has some unavoidable
limitations. First, the difficulty of surgery is a complex task, so, we only focused on
the pelvic structures as an initial attempt in this study. However, the influence of non-
bone structures such as tumor and mesorectum remains unknown. Second, the small
sample size is still a limitation for further research, and more samples are needed to
meet the requirement of more reliable deep learning models to ensure the robustness and
generalization. We believe that in the future, by enriching the data samples, other factors
can also be integrated in the research. Third, the clinical utility is limited by the cumbersome
drawing of ROIs. Efforts are being made to develop an automated segmentation system
for future application. Fourth, as a single-center retrospective study, selection bias cannot
be completely avoided. What is more, we think the performance of the 3D convolution
neural network (CNN)-based network might be limited by the implicit expression of special
information, which means 3D-CNN might not be the the most suitable framework for this
task. So, even with a reasonable performance in this task, we still have plans to progress
the space-based models, such as point cloud models and graph neural networks (GNN).

6. Conclusions

In conclusion, the surgical difficulty grading system we have established is rational
and practicable. The AI model has good diagnostic performance on the preoperative
stratification of difficult surgery in patients with rectal cancer. Therefore, AI, as a novel
method for individualized difficulty pelvis prediction, has widely potential application in
decision-making. For the next step, further investigation by larger prospective studies is
needed to improve the reliability of the grading system, and more efforts are needed to
validate the predictive performance of the AI model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10040468/s1.

Author Contributions: Conception and design of study: Y.X., Z.S., W.H. Data acquisition: J.L., Z.S.,
W.H., B.W., G.L., Y.X. Analysis: Z.S., W.H., W.L. Interpretation of data: Z.S., W.H., W.L., K.L. Drafting:
Z.S., W.H., W.L., J.L. Critical revision of manuscript for important intellectual content: H.X., J.P., Y.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (62172437);
National High Level Hospital Clinical Research Funding (2022-PUMCH-B-005, 2022-PUMCH-B-069).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from the subject involved in the
study.

https://www.mdpi.com/article/10.3390/bioengineering10040468/s1
https://www.mdpi.com/article/10.3390/bioengineering10040468/s1


Bioengineering 2023, 10, 468 13 of 15

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ethical concerns.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Hyper-parameters and details of the proposed model.

Block Names Output Size Layers

Conv1 1
2

8× 8× 8, 64, stride 2

Conv2_x 1
4

4× 4× 4, 64, stride 2
1× 1× 1, 64
3× 3× 3, 64

1× 1× 1, 256
CBAM, 256

× 3

Conv3_x 1
8


1× 1× 1, 128

4× 4× 4, 128, stride 2
1× 1× 1, 512
CBAM, 512

× 1,


1× 1× 1, 128
3× 3× 3, 128
1× 1× 1, 512
CBAM, 512

× 3

Conv4_x 1
16


1× 1× 1, 256

4× 4× 4, 256, stride 2
1× 1× 1, 1024
CBAM, 1024

× 1,


1× 1× 1, 256
3× 3× 3, 256
1× 1× 1, 1024
CBAM, 1024

× 3

Conv5_x 1
32


1× 1× 1, 512

4× 4× 4, 512, stride 2
1× 1× 1, 2048
CBAM, 2048

× 1,


1× 1× 1, 512
3× 3× 3, 512
1× 1× 1, 2048
CBAM, 2048

× 3

Classifier (Batch size, 1)

1× 1× 1, 256,
2× 2× 2, 256, stride 2

Other Inputs Normalization
(MinMax, Binary)

Flatten,
Linear,→512

Linear, 3→512,
Sigmoid

Channel-wise Multiply

DropOut, 0.5,
Linear, 512→1
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