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Abstract: Corneal endothelial decompensation is treated by the corneal transplantation of donor
corneas, but donor shortages and other problems associated with corneal transplantation have
prompted investigations into tissue engineering therapies. For clinical use, cells used in tissue
engineering must undergo strict quality control to ensure their safety and efficacy. In addition, efficient
cell manufacturing processes are needed to make cell therapy a sustainable standard procedure with
an acceptable economic burden. In this study, we obtained 3098 phase contrast images of cultured
human corneal endothelial cells (HCECs). We labeled the images using semi-supervised learning
and then trained a model that predicted the cell centers with a precision of 95.1%, a recall of 92.3%,
and an F-value of 93.4%. The cell density calculated by the model showed a very strong correlation
with the ground truth (Pearson’s correlation coefficient = 0.97, p value = 8.10 × 10−52). The total
cell numbers calculated by our model based on phase contrast images were close to the numbers
calculated using a hemocytometer through passages 1 to 4. Our findings confirm the feasibility of
using artificial intelligence-assisted quality control assessments in the field of regenerative medicine.

Keywords: corneal endothelial cell; tissue engineering; cellular therapy; artificial intelligence; deep
learning; U-Net

1. Introduction

Corneal endothelial decompensation is commonly addressed through corneal trans-
plantation using donor corneas. In recent decades, lamellar posterior procedures, such
as endothelial transplants, including Descemet’s stripping automated endothelial kerato-
plasty (DSAEK) and Descemet’s membrane endothelial keratoplasty (DMEK), have gained
increasing popularity worldwide [1–4]. These procedures have experienced rapid growth
in the U.S. and Europe and now constitute approximately 60% and 50%, respectively, of
all corneal grafting surgeries in these regions, although adoption in the rest of the world
has been slower. These procedures, on the other hand, are technically challenging and may
present complications, such as the detachment of the graft or haze between layers, and they
may be significantly more difficult to perform in complex cases (e.g., aphakic eyes or eyes
with a past history of filtration surgery or posterior vitrectomy) [5–8]. A further significant
issue is the shortage of donor corneas—at present, worldwide, only one in seventy patients
requiring corneal transplantation are able to receive a donor cornea [9]. Consequently,
many researchers have looked to regenerative medicine as a means of providing more
efficient treatments and overcoming the donor shortage [10–15].
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In 2013, we initiated the first-in-human clinical research into cell therapy for corneal en-
dothelial decompensation through a process that involves injecting cultured human corneal
endothelial cells (HCECs), together with a ROCK inhibitor, into the anterior chamber of the
eye [16]. All of the first 11 cases associated with that study recovered corneal transparency
with the restoration of an in vivo-like sheet structure of the corneal endothelium at the
posterior side of the cornea. The five-year results showed that 10 of the 11 patients main-
tained their corneal transparency with no adverse side effects, such as rejection, irreversible
glaucoma, or tumor formation [17]. However, challenges in the efficient manufacturing of
HCECs for clinical use still limit the efficacy of tissue engineering protocols.

Cell culturing for general clinical use typically involves passaging for in vitro ex-
pansion at designated intervals, and the total number of cultured cells is then estimated
by manual counting with a cell counter or hemocytometer when the cells are passaged,
meaning that cell growth is evaluated only at passaging. We were motivated to develop
a real-time monitoring system for HCEC growth to facilitate more efficient cell manufac-
turing. We hypothesized that utilizing an artificial intelligence (AI) model for the image
segmentation of cultured HCECs would enable the real-time and nondestructive prediction
of the total cell numbers throughout the manufacturing process.

2. Materials and Methods
2.1. Ethics Statement

The human tissue used in this study was handled following guidelines based on
the ethical principles of the Declaration of Helsinki. Normal human donor corneas were
obtained from Eversight (Ann Arbor, MI, USA). No tissues were procured from prisoners.
HCECs were cultured according to a protocol approved by the ethical review committee of
ActualEyes Inc. (Approval No. 22-01).

2.2. Cell Cultures

Donor corneas were stored at 4 ◦C in a storage medium (Optisol-GS; Chiron Vision,
Irvine, CA, USA) for fewer than 20 days before use in corneal endothelial cell cultures.
Cultured HCECs from 54 paired corneas from 27 donors (age range from 5 to 60 years old)
were used for the generation of AI models. An additional 5 paired corneas from 5 donors
(ages 30, 33, 34, 35, and 37 years old) were utilized to culture HCECs, and the cell density
and total numbers of HCECs were estimated by the generated AI models to evaluate the
feasibility of the models.

Descemet’s membrane, including the corneal endothelium, was stripped from the
donor corneas using an IOL SINSKEY curved hook (Inami & Co., Ltd., Tokyo, Japan). The
HCECs were cultured according to a previously reported protocol [18]. Briefly, Descemet’s
membranes from paired corneas (2 corneas) were incubated in OptiMEM-I (Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 1 mg/mL collagenase A (Roche Applied
Science, Penzberg, Germany) and digested at 37 ◦C for 16 h. The released HCECs were
washed with OptiMEM-I and suspended in a culture medium composed of OptiMEM-I,
8% fetal bovine serum, 5 ng/mL epidermal growth factor (EGF; Thermo Fisher Scientific),
10 µM of SB203580 (Cayman Chemical, Ann Arbor, MI, USA), 20 µg/mL ascorbic acid
(Sigma-Aldrich, St. Louis, MO, USA), 200 mg/L calcium chloride, 0.08% chondroitin
sulfate (Sigma-Aldrich), and 50 µg/mL gentamicin (Thermo Fisher Scientific). The HCECs
were then seeded in one well of a 6-well culture plate and cultured in a humidified at-
mosphere at 37 ◦C in 5% CO2. The culture medium was replaced with fresh medium
3 times a week. The HCECs were passaged at a 1:3 ratio every 10 days until passage 4 by
trypsinization with 0.05% Trypsin-EDTA (Thermo Fisher Scientific). Phase contrast images
(1392 × 1040 pixels) of the cultured HCECs were obtained using DM14000B (Leica Mi-
crosystems, Inc., Wetzlar, Germany) at the time of every passage (after 10 days of primary
culture and at each passage). The total cell numbers were calculated using a hemocytometer
at every passage.
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2.3. A Flow Chart for Generating the Models for Predicting Cell Centers

A flow chart for generating the “initial model” and the “cell count model” is shown in
Figure 1. From a total of 3098 phase contrast images, 606 images were used as the dataset
for creating the “initial model” as ground truth. The center of each cell was annotated
manually and confirmed by three researchers. A discussion was conducted to reach a
consensus for cells that were difficult to annotate. The 606 images were divided into
three categories (training data 1: 402 images; validation data 1: 121 images; and test data:
83 images). Preprocessing was performed using Python3 (Python Software Foundation,
https://www.python.org/ (accessed on 29 December 2023), Beaverton, OR, USA) and the
Python image processing library OpenCV. The images were then resized by a factor of 1/4
(348 × 360 pixels) to prevent memory overflow on the Graphics Processing Unit (GPU)
used for training. Gamma correction, contrast adjustment, and highlighting of the cell
boundaries were also conducted. Histogram flattening was then used to flatten the pixel
values and remove fine noise. Training dataset 1 was augmented by inverting the images.
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annotated and used as the dataset for creating the “initial model” as ground truth. The 606 images
were divided into three categories (training data 1: 402 images; validation data 1: 121 images;
and test data: 83 images). Training data 1 was used to generate the “initial model” using U-Net.
The remaining unannotated 2492 images were then annotated using the “initial model”, followed
by manual correction. A total of 3098 ground truth images were divided into training data 2
(n = 2341) and validation data 2 (n = 757). The “cell count model” was generated using U-Net. Finally,
the performance was evaluated using test data.

2.4. Generation of the “Initial Model”

The “initial model” used to predict the center of the HCECs was generated by U-Net.
The program was created using Python 3 and Chainer (Preferred Networks, Inc., Tokyo,
Japan). The ReLU function [19] was used as the activation function for deep learning, and
Adam [20] was used as the optimization method. The optimal number of training cycles
was determined using the value of the cross-entropy error. The network was generated
by learning 402 images (training data 1) for up to 30 epochs, and then, the network was
validated using 121 images (validation data 1).

2.5. Generation of the “Cell Count Model” Using Semi-Supervised Learning

The “initial model” was used to annotate the 2492 remaining unlabeled images. Plot
omissions and over-detections in the predicted images were then manually revised using
the iPad drawing tool Procreate (version 5.0.2 for iPadOS; Savage Interactive Pty Ltd.,
Vienna, Austria) to create ground truth. The 3098 ground truths were divided into training
data 2 (n = 2341) and validation data 2 (n = 757). Data augmentation of training data 2 was
performed on the training data to create 9364 images.

The “cell count model” was generated by U-Net by applying the same method used
to generate the “initial model.” The network was generated by learning 2341 images
(training data 2) for up to 30 epochs, and then, the network was validated using 757 images
(validation data 2). Finally, the cell centers of manually annotated test data (n = 83) were
predicted by the “initial model” and the “cell count model”, and the performance was
evaluated using the parameters of precision, recall, and F-measure.

2.6. Feasibility of Using the “Cell Count Model” to Predict Total Cell Numbers in Cultures

Five paired corneas were cultured and passaged 4 times. The total cell numbers in
culture dishes or flasks were determined using a hemacytometer in every passage. The cell
centers of phase contrast images obtained in every passage were predicted by the “initial
model” and the “cell count model”, and the cell densities in each image were calculated.
The total cell numbers in the culture dishes or flasks were then calculated based on the cell
densities predicted by both models.

3. Results

The “initial model” was generated by the supervised learning of 402 manually anno-
tated images of training dataset 1 utilizing U-Net. To reduce the time required to prepare
larger numbers of ground truth images, we generated the “initial model” as a first step to
annotate the remaining 2492 unlabeled images. The validation loss showed a low value
through 10–14 epochs and gradually increased after 15 epochs, while the training loss
continuously decreased throughout 30 epochs, indicating overfitting after 15 epochs. We
then selected the model generated by 14 epochs as the “initial model” (Figure 2A). Data
annotated using the “initial model” were then manually corrected by the researchers as a
second step to generate ground truth. The time required for manual annotation to prepare
ground truth was 1216.0 ± 81.0 s/image, while the time needed for annotation by the
“initial model,” followed by manual correction, was 40.7 ± 20.0 s/image.

We then generated the “cell count model” using a total of 3098 annotated images
based on the method of semi-supervised learning. The validation loss decreased and
became almost stable after 6 epochs, although the training loss continuously decreased



Bioengineering 2024, 11, 71 5 of 11

throughout the 30 epochs. To avoid overfitting, the model generated by six epochs was
selected as the “cell count model” (Figure 2B). Representative phase contrast images, with
predicted cell centers shown in pink, indicated that both the “initial model” and the “cell
count model” succeeded in predicting the cell centers of the HCECs (Figure 3). The cell
density was occasionally low in some cultures; therefore, we confirmed whether our models
still worked well in cultures with various cell densities. Representative predicted images
of low-, middle-, and high-cell-density cultures showed that the cell centers were well
predicted by both models in all cultures.
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Figure 2. The training and validation loss curves of the networks. (A) The network was generated
by learning 402 images (training data 1) for up to 30 epochs, and the network was validated using
121 images (validation data 1). The validation loss showed a low value through 10–14 epochs and
gradually increased after 15 epochs, while the training loss continuously decreased throughout
30 epochs. The model generated by 14 epochs was selected as the “initial model”. (B) The network
was generated by learning 2341 images (training data 2) for up to 30 epochs, and then, the network
was validated using 757 images (validation data 2). The validation loss decreased and became almost
stable after 6 epochs, though training loss continuously decreased throughout 30 epochs. The model
generated by 6 epochs was selected as the “cell count model”.

The average prediction time for the “cell count model” was 5.8 ± 0.0 s/page. The
performance of the models for predicting cell centers was evaluated by calculating precision,
recall, and F-value. The precision, recall, and F-value were 95.4%, 89.3%, and 91.9%,
respectively, for the “initial model” and 95.1%, 92.3%, and 93.4%, respectively, for the “cell
count model” (Table 1). The precision of the “cell count model” was similar to that of the
“initial model”, but the recall and F-value were higher for the “cell count model” than for
the “initial model”, indicating that the performance of the “cell count model” had been
improved by learning larger numbers of data.

Table 1. Precision, recall, and F-value of the “initial model” and “cell count model”.

Precision (%)
(95% CI)

Recall (%)
(95% CI)

F-Value (%)
(95% CI)

Initial model 95.4
(94.4–96.3)

89.3
(87.5–91.0)

91.9
(90.9–92.9)

Cell count model 95.1
(94.1–96.1)

92.3
(90.8–93.8)

93.4
(92.6–94.2)

We used the predicted cell centers in the phase contrast images of cultured HCECs to
calculate the cell density. When calculated using the “initial model”, the cell density showed
a very strong correlation with the ground truth (Pearson’s correlation coefficient = 0.97,
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p value = 7.07 × 10−50). Similarly, the cell density calculated using the “cell count model”
also showed a very strong correlation with the ground truth (Pearson’s correlation coeffi-
cient = 0.97, p value = 8.10 × 10−52). The Pearson’s correlation coefficients of the associations
between the “initial model” and the ground truth and between the “cell count model” and
the ground truth were at the same level (Figure 4).

Bioengineering 2024, 11, x FOR PEER REVIEW 5 of 11 
 

 
Figure 2. The training and validation loss curves of the networks. (A) The network was generated 
by learning 402 images (training data 1) for up to 30 epochs, and the network was validated using 
121 images (validation data 1). The validation loss showed a low value through 10–14 epochs and 
gradually increased after 15 epochs, while the training loss continuously decreased throughout 30 
epochs. The model generated by 14 epochs was selected as the “initial model”. (B) The network was 
generated by learning 2341 images (training data 2) for up to 30 epochs, and then, the network was 
validated using 757 images (validation data 2). The validation loss decreased and became almost 
stable after 6 epochs, though training loss continuously decreased throughout 30 epochs. The model 
generated by 6 epochs was selected as the “cell count model”. 

We then generated the “cell count model” using a total of 3098 annotated images based 
on the method of semi-supervised learning. The validation loss decreased and became almost 
stable after 6 epochs, although the training loss continuously decreased throughout the 30 
epochs. To avoid overfitting, the model generated by six epochs was selected as the “cell count 
model” (Figure 2B). Representative phase contrast images, with predicted cell centers shown 
in pink, indicated that both the “initial model” and the “cell count model” succeeded in pre-
dicting the cell centers of the HCECs (Figure 3). The cell density was occasionally low in some 
cultures; therefore, we confirmed whether our models still worked well in cultures with vari-
ous cell densities. Representative predicted images of low-, middle-, and high-cell-density cul-
tures showed that the cell centers were well predicted by both models in all cultures. 

 
Figure 3. Representative phase contrast images with prediction of the cell centers using the “initial 
model” and the “cell count model”. Cell centers of cultured human corneal endothelial cells were 
Figure 3. Representative phase contrast images with prediction of the cell centers using the “initial
model” and the “cell count model”. Cell centers of cultured human corneal endothelial cells were well
predicted by both AIs at various cell densities. Blue dots in the ground truth images indicate the manually
annotated cell center. Pink dots indicate the cell centers predicted by the AIs. Scale bar: 200 µm.

Bioengineering 2024, 11, x FOR PEER REVIEW 6 of 11 
 

well predicted by both AIs at various cell densities. Blue dots in the ground truth images indicate 
the manually annotated cell center. Pink dots indicate the cell centers predicted by the AIs. Scale 
bar: 200 µm. 

The average prediction time for the “cell count model” was 5.8 ± 0.0 s/page. The per-
formance of the models for predicting cell centers was evaluated by calculating precision, 
recall, and F-value. The precision, recall, and F-value were 95.4%, 89.3%, and 91.9%, re-
spectively, for the “initial model” and 95.1%, 92.3%, and 93.4%, respectively, for the “cell 
count model” (Table 1). The precision of the “cell count model” was similar to that of the 
“initial model”, but the recall and F-value were higher for the “cell count model” than for 
the “initial model”, indicating that the performance of the “cell count model” had been 
improved by learning larger numbers of data. 

Table 1. Precision, recall, and F-value of the “initial model” and “cell count model”. 

 Precision (%) 
(95% CI) 

Recall (%) 
(95% CI) 

F-Value (%) 
(95% CI) 

Initial model 95.4 
(94.4–96.3) 

89.3 
(87.5–91.0) 

91.9 
(90.9–92.9) 

Cell count model 
95.1 

(94.1–96.1) 
92.3 

(90.8–93.8) 
93.4 

(92.6–94.2) 

We used the predicted cell centers in the phase contrast images of cultured HCECs 
to calculate the cell density. When calculated using the “initial model”, the cell density 
showed a very strong correlation with the ground truth (Pearson’s correlation coefficient 
= 0.97, p value = 7.07 × 10−50). Similarly, the cell density calculated using the “cell count 
model” also showed a very strong correlation with the ground truth (Pearson’s correlation 
coefficient = 0.97, p value = 8.10 × 10−52). The Pearson’s correlation coefficients of the asso-
ciations between the “initial model” and the ground truth and between the “cell count 
model” and the ground truth were at the same level (Figure 4). 

 
Figure 4. Correlation between the cell density predicted by generated AIs and the ground truth. (A) 
The cell density calculated by “initial model” shows very strong correlation with the ground truth 
(Pearson’s correlation coefficient = 0.97, p value = 7.07 × 10−50). In total, 83 test data were evaluated 
using the “initial model”. (B) The cell density calculated by the “cell count model” also shows very 
strong correlation with the ground truth (Pearson’s correlation coefficient = 0.97, p value = 8.10 × 
10−52). In total, 83 test data were evaluated using the “cell count model”. 

We also cultured five lots of HCECs derived from five donors to evaluate the feasi-
bility of using the “cell count model” clinically to predict the total cell numbers (Figure 5). 
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Figure 4. Correlation between the cell density predicted by generated AIs and the ground truth.
(A) The cell density calculated by “initial model” shows very strong correlation with the ground truth
(Pearson’s correlation coefficient = 0.97, p value = 7.07 × 10−50). In total, 83 test data were evaluated
using the “initial model”. (B) The cell density calculated by the “cell count model” also shows very
strong correlation with the ground truth (Pearson’s correlation coefficient = 0.97, p value = 8.10 × 10−52).
In total, 83 test data were evaluated using the “cell count model”.

We also cultured five lots of HCECs derived from five donors to evaluate the feasibility
of using the “cell count model” clinically to predict the total cell numbers (Figure 5). The
blue color in the graphs in Figure 5 indicates the total cell numbers calculated manually
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using a hemocytometer. The total cell numbers were also determined by the cell density
calculated based on the cell centers predicted by our models. Both the “initial model” and
the “cell count model” successfully predicted the total cell numbers from passage 1 to 4
in all five lots. All phase contrast images of all five lots in all passages were successfully
predicted by both models. The “cell count model”, rather than the “initial model”, tended
to show a closer prediction to the manual hemacytometer count, especially in passage 4
(Figure 5).
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Figure 5. Total cell numbers at the time of every culture passage, as predicted by generated AIs.
Five paired corneas were cultured and passaged 4 times. Total cell numbers were determined using
a hemacytometer at the time of every culture passage. Cell centers in phase contrast images were
predicted by the “initial model” and the “cell count model”, and the total cell numbers in the culture
dish or flask were calculated. Both AIs successfully predicted the total cell numbers from passages 1
to 4 in all 5 lots, but a closer prediction to a manual count tended to be observed with the “cell count
model” rather than with the “initial model”. Figure (A–E) show the results of 5 independent cell lots.
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4. Discussion

In this study, we trained U-Net to develop an AI model to predict cell density based on
phase contrast images. This model will eventually enable the real-time and nondestructive
calculation of total cell numbers throughout the cell manufacturing process. Here, we
obtained 3098 phase contrast images of cultured HCECs during primary culture (passage
0) and up to passage 4. Large numbers of data usually allow the generation of high-
performance AI; however, manual data annotation is particularly labor-intensive. In the
current study, the manual annotation of the cell centers in the phase contrast images by the
researchers took 1216.0 ± 81.0 s/image, implying that annotating all 3098 images would
take approximately 1050 h. Therefore, we utilized semi-supervised learning to reduce the
labor-dependent labeling process.

We first generated the “initial model” from 606 labeled data, which were manually
annotated by researchers. This “initial model” was then used to annotate the remaining
2492 unlabeled data. Our subsequent training of the final model (the “cell count model”)
using semi-supervised learning further increased the performance above that of the “initial
model”. Our feasibility study using five independent HCEC lots demonstrated that the
generated model succeeded in predicting total cell numbers from phase contrast images.

Semi-supervised learning is a machine learning paradigm that uses both labeled and
unlabeled data for training [21]. The primary motivation for choosing semi-supervised
learning is that labeling the data is time-consuming and/or expensive, whereas obtaining
unlabeled data requires little time or expense. Semi-supervised learning is widely used in
multiple research fields, including the medical field, where it is applied, for example, in
oncology diagnostics and care [22,23]. The classification of histopathology and radiotherapy
images is essential for various kinds of cancers, such as breast, lung, gastric, liver, colorectal,
kidney, pancreatic, and uterine cancers [24–29], but adequate labeling by experts is often
time-consuming and thus cost-ineffective. Semi-supervised learning is a powerful tool for
dealing with the dilemma of big data, especially in the context of images that are usually
acquired in abundance during routine clinical flows. Therefore, we were motivated to
utilize semi-supervised learning in the current study because we routinely obtained phase
contrast images during the cell manufacturing process for our records, but labeling is
not performed routinely because it is so time-consuming. We expected to generate more
accurate models by training using semi-supervised learning and a combination of both
labeled and unlabeled data than by training using only labeled data [21]. Indeed, in this
study, the F-value of the “cell count model” was increased from 91.9% to 93.4% by the
“initial model”. Our data suggest that semi-supervised learning has applications in the
tissue engineering field for evaluating the status of in vitro cells because phase contrast
images are routinely acquired in abundance during cell manufacturing processes.

In the present study, we trained our models using U-Net, which is a convolutional
neural network (CNN) developed by Ronneberger and colleagues for biomedical image
segmentation [30]. U-Net consists of a contracting path, which is similar to a typical CNN
and an expanding path and includes an upsampling of the feature map followed by a
2 × 2 convolution. The strong use of data augmentation to utilize the available annotated
data enables efficiency and effectiveness in various image segmentation processes with a
small amount of training data. The first analysis of the corneal endothelium, conducted
by Fabijańska, determined that a U-Net-based CNN can perform the segmentation of
HCECs based on the specular microscopy images and reported an Area Under the Receiver
Operating Characteristic Curve (AUROC) level of 0.92 [31]. Subsequent research also
showed that U-Net can be applied to segment HCECs for the evaluation of healthy or
diseased corneal endothelia [32–34] and post-endothelial corneal keratoplasty based on
specular microscopy images [35]. The limitation of our study is that we only utilized U-Net,
which is still considered a foundational model, especially in medical imaging, although
the field of AI for image segmentation is rapidly evolving [36–38]. Future continuous
efforts using newer models are anticipated to offer improved performance, adaptability,
and efficiency.
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We previously achieved the segmentation of CECs with the presence of guttae in a
Fuchs endothelial corneal dystrophy model mouse [39]. Here, we expanded the use of
U-Net from the analysis of in vivo cells to the analysis of in vitro cells for the purpose of
quality control in the context of regenerative medicine. Our model predicted the total cell
numbers; therefore, it can provide real-time data for the numbers of manufactured cells
generated throughout the culture period. Manufacturers may utilize our proposed model
to optimize the timing of cell passages, seeding cell density, and the supplementation of the
components of the culture medium [40,41]. Although those parameters are usually fixed
depending on the cell type, future optimization of these parameters may maximize the
efficiency of cell manufacture. A potential limitation in the context of using this model for
manufacturing clinical use cells is that deciding those parameters based on the AI model
might require challenging communication with regulatory authorities. Collecting data
showing the equivalence of manually counted cell numbers (i.e., the conventional method)
and AI-predicted cell numbers is necessary before a company utilizes our model in its cell
manufacturing process.

Our research group is developing a cryopreserved corneal endothelial cellular product
and is currently in consultation with the Japanese regulatory authority to start clinical trials.
For clinical use, strict quality control assessments are necessary during the manufacture
of these cells to ensure their safety and efficacy [42,43]. In addition, the efficiency of cell
manufacturing should be optimized to enable cell therapy to be a sustainable standard
procedure with an acceptable economic burden. Here, we have shown the feasibility of
using AI-assisted quality control assessments for corneal endothelial cell therapy; how-
ever, this method can theoretically be utilized in various cell types for other fields of
regenerative medicine.
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